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ABSTRACT

Annotating the functions of gene products is a main-
stay in biology. A variety of databases have been
established to record functional knowledge at the
gene level. However, functional annotations at the
isoform resolution are in great demand in many bi-
ological applications. Although critical information
in biological processes such as protein–protein in-
teractions (PPIs) is often used to study gene func-
tions, it does not directly help differentiate the func-
tions of isoforms, as the ‘proteins’ in the existing
PPIs generally refer to ‘genes’. On the other hand,
the prediction of isoform functions and prediction of
isoform–isoform interactions, though inherently in-
tertwined, have so far been treated as independent
computational problems in the literature. Here, we
present FINER, a unified framework to jointly pre-
dict isoform functions and refine PPIs from the gene
level to the isoform level, enabling both tasks to ben-
efit from each other. Extensive computational exper-
iments on human tissue-specific data demonstrate
that FINER is able to gain at least 5.16% in AUC and
15.1% in AUPRC for functional prediction across mul-
tiple tissues by refining noisy PPIs, resulting in sig-
nificant improvement over the state-of-the-art meth-
ods. Some in-depth analyses reveal consistency be-
tween FINER’s predictions and the tissue specificity
as well as subcellular localization of isoforms.

INTRODUCTION

Annotating functions of gene products in complex biologi-
cal systems is of fundamental importance. A large number
of annotation approaches (1,2) have been proposed and a

variety of databases have been established to record func-
tional annotation of genes (3,4). However, most of the ex-
isting functional annotations are at the gene level, which is
coarse-grained and insufficient as a gene might have mul-
tiple products. In fact, alternative splicing of mRNAs fre-
quently occurs in eukaryotes, leading a single gene to of-
ten produce multiple protein isoforms (5). The isoforms of
a gene may carry different or even opposite biological func-
tions (6). For instance, two of the isoforms of BCL2L1 gene,
BCL-xL and BCL-xS, exhibit completely opposite func-
tions: BCL-xL inhibits programmed cell death while BCL-
xS promotes it (7). The diversity of gene products requires
finer functional annotations at the isoform level instead of
the gene level.

Since the experimental technologies to determine isoform
functions are usually time-consuming and costly, computa-
tional approaches to predict isoform functions are highly
desired. Many methods have been proposed in recent years
(8–16). Most of these approaches apply the multiple in-
stance learning (MIL) technique to explore isoform fea-
tures, including isoform sequence motifs, conserved do-
mains and expression profiles. More specifically, the MIL
technique attempts to learn function-specific isoform fea-
tures, i.e. features that belong to at least one isoform of
each gene possessing the function. The resulting function-
specific features are then used to predict the functions
of new (or queried) isoforms. However, these methods all
suffer from the limitation that some key functional fea-
tures (such as protein–protein interactions discussed be-
low), which are proved to be effective in predicting gene
functions, may not be available at the isoform level. Hence,
they have prediction performance less than desirable.

Besides functional features of individual isoforms, the in-
teractions among isoforms also form an important infor-
mation source of isoform functions. The underlying ratio-
nale can be clearly demonstrated by an analogy to protein–
protein interactions (PPIs): a protein usually performs spe-
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Figure 1. Schematic overview of the FINER workflow.

cific functions through interacting with other proteins (17),
thus enabling the prediction of protein functions through
analyzing protein interactions. The existing PPI networks
are essentially at the gene level as they exhibit only in-
teractions among corresponding genes without providing
more detailed information concerning the interaction of
isoforms. In fact, the isoforms of a gene may have different
interacting partners, possibly due to the difference in their
interacting domains resulted from alternative splicing (18).
Thus, although PPIs have been successfully used for predict-
ing gene functions (19,20), they cannot be directly applied
to infer fine-grained isoform functions. Recently, extensive
studies have been performed to refine protein–protein in-
teractions into isoform–isoform interactions (IIIs) (21–25).
Clearly, the problems of isoform function prediction (IFP)
and isoform–isoform interaction prediction (IIIP) are in-
herently intertwined, implying that they may not be well
addressed if considered separately. Thus, how to solve the
two problems jointly and exploit the reciprocal relationship
between them remains an interesting challenge.

In this work, we present a novel approach, called FINER
(i.e. enhancing the Functional prediction of Isoforms via
NEtwork Refinement on their interactions), that jointly
solves the IFP and IIIP problems, thus allowing one prob-
lem to benefit from the other. Our approach contains three
key elements as shown in Figure 1B: (i) The function pre-
diction module predicts the functional labels of isoforms
from their amino acid sequences and conserved domains.
(ii) The interaction network refinement module identifies
real interacting isoform pairs from known interacting gene
pairs and denoises the existing IIIs simultaneously. (iii) A
mutual regularizer encourages the above two modules to
agree with each other, i.e. isoforms with similar predicted
functions will be likely connected in refined III networks
and vice versa. Through the mutual regularizer, the func-
tion prediction module and interaction network refinement

module exchange information and, in turn, improve their
own prediction of isoform functions and interactions.

To evaluate our approach FINER, we applied it to pre-
dict tissue-specific functions and interactions of isoforms in
human. Understanding tissue-specific functions of isoforms
is an important but challenging task: On one hand, tissue-
dependent isoform usages are pervasive across human tis-
sues, since a gene may express various isoforms to perform
different functions in different tissues (26,27). On the other
hand, less is known about the tissue specificity of PPIs (28).
Although PPIs can be associated with tissues through the
consideration of tissue-specific expression data (29,30), the
derived interactions are perhaps less reliable, thus making
the refinement on tissue-specific interactions highly desir-
able. In addition, diverse tissues serve as multiple sources
of datasets for testing our approach. We further analyzed
the relationship between our functional prediction and the
subcellular localization and the tissue specificity of isoforms
(Figure 1C). The experimental results clearly demonstrate
the advantages of our approach over the state-of-the-art
methods in predicting isoform functions and interactions,
as well as its potential in revealing the roles of isoforms in
diverse human tissues and diseases.

MATERIALS AND METHODS

Data collection

To predict isoform functions, we need gene-level func-
tional annotation ground-truth, features of individual iso-
forms (including isoform sequences and conserved do-
mains) and isoform–isoform interactions (derived from
gene-level protein–protein interactions and isoform co-
expression networks) (Figure 1A). The data used in the
study are described in detail as follows.

(i) Isoform sequences: We downloaded ‘Coding DNA Se-
quence’ (CDS) of human genome (GRCh38.p13) from
the NCBI Reference Sequences database (RefSeq, as
of January, 2020) (31). For each CDS, we constructed
an isoform by translating it into the amino acid se-
quence. Two or more isoforms corresponding to the
same CDS are treated as a single isoform. To ensure
isoform quality, only manually curated RefSeq records
were recruited into our study. As a result, we obtained a
total of 43 289 isoforms from 19 408 genes, consisting
of 33 529 isoforms from 9648 multiple-isoform genes
(MIGs) and 9760 single-isoform genes (SIGs).

(ii) Isoform conserved domains: For each isoform, we ac-
quired its conserved domains by searching its amino
acid sequence against the NCBI Conserved Domain
Database (32).

(iii) Functional annotation ground-truth of genes: We
adopted the functional terms defined by Gene Ontol-
ogy (GO) (3), wherein GO terms are organized in hi-
erarchies represented as directed acyclic graph (DAG)
structures, describing functions at different levels of ab-
straction. For the genes used in the study, we down-
loaded their functional annotations from the Gene On-
tology Annotation (GOA) database (33). To ensure the
annotation quality, we kept only manually curated GO
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annotations and skipped electronic annotations con-
taining the ‘IEA’ evidence code.

(iv) Protein–protein interactions: We used the PPI data col-
lected by Zitnik et al. (20), in which, various types of
physical PPIs from six reputable resources were com-
bined (34–39). All the PPIs have experimental sup-
ports. The reader is referred to Zitnik et al. (20) for a
detailed description of the data. By mapping the col-
lected data to the genes used in our study, we acquired
a total of 317 750 interactions among 19 408 genes.

(v) Isoform expression profiles: To collect expression pro-
files of isoforms, we first retrieved RNA-seq experi-
ments for different types of normal human tissues from
the NCBI Sequence Read Archive (SRA) database
(40), where corresponding accession numbers were ob-
tained from the Human Protein Atlas (HPA) database
(41) and the recount-brain project (42) (see Supple-
mentary Table S1 for a list of RNA-seq experiments).
Next, we applied the tool Kallisto (43) to obtain quan-
tified isoform expression profiles in each experiment
(measured in Transcripts Per Million or TPM).

Construction of tissue-specific datasets

In the study, we applied FINER to predict isoform func-
tions for 12 selected major tissues and three brain sub-tissue
of human. These tissues were selected as follows. From the
tissues recorded in the BRENDA Tissue Ontology (44),
we first selected tissues with valid tissue-specific GO terms.
Here, GO terms specifically describing cellular functions of
each tissue were retrieved from Greene et al. (27), and only
GO terms associated with at least five genes were recruited
into our experiments (see Supplementary Table S2 for the
lists of tissue-specific GO terms). Next, following the crite-
rion used by Li et al. (9), we selected tissues associated with
at least six RNA-seq experiments to guarantee the quality
of co-expression networks to be constructed later. As a re-
sult, we obtained a total of 12 major tissues and three brain
sub-tissues of human, which are rich enough to represent
both diversity and different levels of specificity of human
tissues.

Unlike isoform sequences and conserved domains that
are tissue-independent, isoform expression profiles and in-
teractions are highly tissue-specific. To construct tissue-
specific PPI networks, we first selected genes with high tis-
sue specificity, i.e. the so-called ‘tissue enhanced genes’ (41).
Specifically, for each of the 12 major tissues, we selected
genes that have at least four-fold higher mRNA levels over
the average levels in the other major tissues. For the three
brain sub-tissues, we relaxed the above threshold to 2-fold
due to the smaller differences between sub-tissues. Next,
a subnetwork was extracted from the global PPI network
for each tissue as the tissue-specific PPI network, in which
each edge from the global PPI network was included if at
least one of the two genes connected by the edge is tis-
sue enhanced. The underlying rationale is that tissue en-
hanced genes are likely to perform functions specific to the
involved tissues, while their interacting partners, if not tis-
sue enhanced, are likely ubiquitously expressed genes that
perform tissue-specific functions only when interacting with
tissue enhanced genes (27,45).

We further constructed isoform co-expression networks
by measuring expression correlations of isoform pairs
across all RNA-seq experiments associated with the tis-
sue, wherein only isoforms of genes appearing in the corre-
sponding tissue-specific PPI network were considered. Ex-
pression correlation coefficients as edge weights were com-
puted by the absolute value of the leave-one-out Pearson
correlation coefficients (46), which is robust against single
experimental outliers. To retain reliable co-expression edges
but avoid noisy ones, we only kept the top five percent edges
with the largest weights in each co-expression network.

The framework of FINER

The architecture of FINER consists of three key modules,
namely, the function prediction module that predicts iso-
form functions (denoted as GO terms) for the input iso-
forms from their sequences and domains, the III refinement
module that iteratively refines the gene-level PPI network
to the isoform–isoform interaction network by taking into
account isoform co-expression relationship, and a mutual
regularization module that enables the exchange of infor-
mation between the above two modules. A schematic illus-
tration of the architecture is provided in Figure 2. The de-
tails of the three modules, together with their training pro-
cedures, are described below.

Function prediction module and its learning objective

We constructed the function prediction module on the basis
of DIFFUSE (12) with extensions (Figure 2A). The back-
bone of DIFFUSE is a deep neural network designed for
predicting isoform functions based on isoform sequences
and conserved domains. Specifically, the neural network
contains two components: (i) A convolutional neural net-
work (CNN) component is used to extract sequence fea-
tures of isoforms, in which the amino acid sequence of each
isoform is encoded as a series of overlapping tri-grams s.
Each tri-gram is encoded as a continuous vector by the
dense embedding layer (47). A one-dimensional convolu-
tional layer with multiple convolution filters is then em-
ployed to detect functional sites by scanning the encoded
sequence and represent the extracted information into a se-
quence hidden feature vector hs . A pyramid pooling layer
was designed in the CNN component to deal with isoform
sequences of different lengths. (ii) The other component is
a recurrent neural network (RNN) with long short-term
memory (LSTM) units (48). In the RNN component, each
type of conserved domain is represented as a unique token.
Domains of each isoform are ordered as a sequence of to-
kens d, which are encoded by the same dense embedding
technique and then input to the LSTM units successively.
Content of tokens with their order information for each iso-
form are thus captured and again represented as a domain
hidden feature vector hd .

The two types of hidden features, hs and hd , are concate-
nated and then fused as a unified functional feature vector h
through a fully connected layer. The feature extraction and
fusion process are formally defined as:

h = Dense([hs, hd ]) = Dense([CNN(s), RNN(d)]), (1)
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Figure 2. Schematic illustration of the architecture of FINER, which consists of three modules: (A) a neural network based function prediction module,
(C) an III refinement module for iteratively updating III networks and (B) a mutual regularization module that is introduced to enable the previous two
modules to exchange information with each other. That is, module B encourages isoforms with similar predicted functions to be more likely connected in
the refined III networks, and vice versa. See the Materials and methods section for more details.

where Dense( · ) denotes the fully connected layer and [ ·, ·]
denotes the concatenation of two vectors.

Unlike DIFFUSE, which produces a binary prediction
on each individual GO term, FINER produces a multi-
label prediction on all the GO terms specific to a given
tissue simultaneously, thus making the entire training pro-
cess more efficient and allowing common knowledge to be
shared across all GO terms. Specifically, we used a fully con-
nected layer to map a functional feature vector h to an out-
put vector o:

o = Dense(h). (2)

Here, the output vector o has T dimensions, where T de-
notes the number of GO terms specific to a tissue. The sig-
moid function is applied on each dimension of the output
to normalize the prediction on each GO term to a score in
the range [0, 1], indicating how likely the input isoform per-
forms the corresponding function.

Because of the hierarchical nature of GO, an isoform is
automatically labeled with a GO term if any of its child
terms are labeled on the isoform. To ensure consistent pre-
diction on all GO terms, we designed a hierarchical predic-
tion layer as done in Kulmanov et al. (19). For each term
in the set of T GO terms, we created a binary mask vec-
tor, denoted as ct (where t = 1, 2, ..., T), wherein the bits
corresponding to the GO term and its children are set as 1.
The maximum score from the element-wise product of the
output vector and the mask vector is set as the GO term’s
prediction, which is formally denoted as:

at = max(ct ◦ o) for t = 1, 2, ..., T. (3)

Finally, the prediction results on all T terms are merged
as the functional prediction of the input isoform p =
Hierarchical(o) = (a1, a2, ..., aT).

To overcome the difficulty of lack of ground-truth iso-
form function annotations, we applied the MIL technique,
following the previous work on isoform function prediction
in (8,12). Specifically, each gene is treated as a bag and the
isoforms of a gene are treated as the instances of the bag.

For a given function, positive bags refers to genes associated
with the function. Clearly, a positive bag should contain at
least one positive instance but may also have some negative
instances, while a negative bag should contain no positive
instances. We initialize all instances of positive bags with
positive labels, and the others with negative labels. Given an
isoform i and its initial label on GO term t, we can define
the following ‘binary cross entropy loss’:

li,t = −(yi,t log(pi,t) + (1 − yi,t) log(1 − pi,t)), (4)

where yi, t is a one-hot indicator for the label of isoform
i on GO term t, and pi, t is the corresponding prediction
score. To characterize the above bag instance relationship,
we weighted each ‘binary cross entropy loss’ by the corre-
sponding prediction score, so that significant punishment
would be applied on large prediction scores with negative
labels but not on small prediction scores with positive la-
bels.

Given a set of K isoforms, the learning objective for the
function prediction module is to minimize the following
‘function prediction loss’ defined by the following weighted
binary cross entropy (49):

L f p = −
K∑

i

T∑

t

p̂i,tli,t, (5)

where p̂i,t is a constant assigned by pi, t to avoid direct min-
imization of the prediction score. The isoform labels are re-
calculated after each training iteration under the MIL con-
straints, which will be described in more detail in the sec-
tions below.

III refinement module and its learning objective

For a given tissue, we iteratively refine its isoform–isoform
interaction network initialized as the tissue-specific PPI net-
work (Figure 2C). The III network contains the isoforms
of genes that appear in the tissue-specific PPI network. Ini-
tially, we connect isoforms if and only if their genes have
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interactions in the tissue-specific PPI network. We formally
define an III network as a undirected graph G I I I = (V, E),
in which isoforms are represented as a set of nodes V =
{vi }|V|

i=1, and their interactions are represented as edges E be-
tween nodes. Our goal is to produce a refined III network
G ′

I I I = (V, E′) on the same set of nodes but with a new set
of edges E′, reflecting real interactions among isoforms.

We refine the III network according to isoforms’ neigh-
bors in the current III network and the isoform co-
expression relationship. For each isoform vi ∈ V, these two
types of information are represented as a node feature vec-
tor xi . The details of this representation are described as
follows.

(i) Isoform neighborhood: The neighborhood of node vi
is defined as a set of nodes visited by a series of random
walks starting from vi, denoted as Ni (50). The isoforms
with similar neighborhoods should share similar node
feature vectors as they have similar interacting partners.
To characterize this relationship, we specify the follow-
ing objective function: For a node vi, the objective seeks
to correctly predict Ni from their node feature vectors.
As the neighborhood relationship is not certainly bidi-
rectional based on its definition, we use a context vec-
tor x′

i to represent each node when it is treated as the
prediction target. Thus, predicting the neighborhood is
modeled as the conditional likelihood given by a soft-
max unit parameterized by the products of node vec-
tors. The objective is to minimize the following negative
log likelihood through the updating of node feature and
context vectors:

Lnb = −
|V|∑

i=1

∑

j∈Ni

log p(v j |vi )

= −
|V|∑

i=1

∑

j∈Ni

log
exp(x′T

j xi )
∑

vk∈V exp(x′T
k xi )

.

(6)

As the computation of the full softmax is expensive,
we approximate the objective using negative sampling
(51). For each node vj in the neighborhood of node
vi, we sample a set of non-neighborhood nodes, Ri j ⊆
V − Ni . Thus, the task becomes to distinguish node vj
from nodes in Ri j . Then, the above objective can be for-
mulated as the following ‘network neighborhood loss’:

Lnb = −
|V|∑

i=1

∑

j∈Ni

(log σ (x′T
j xi ) −

∑

k∈Ri j

log σ (x′T
k xi )).

(7)

(ii) Co-expression relationship: Co-expressed isoforms are
usually those involved in common biological processes
and thus may have common interacting partners (52).
As introduced in the ‘Construction of tissue-specific
datasets’ section, the tissue-specific co-expression net-
work G EXP = (V, R) is constructed on the same set of
nodes V as the tissue-specific III network, with a set
of weighted edges R where the weight of edge rij be-
tween nodes (vi, vj) reflects the expression correlation

between two corresponding isoforms. Then, the follow-
ing ‘co-expression loss’ introduces a regularization for
node feature vectors under the squared Euclidean dis-
tance, weighted by the edge weights of the co-expression
network, which encourages similar node feature vectors
to be shared by co-expressed isoforms:

Lcoe =
|V|∑

i=1

|V|∑

j=1

ri j ||xi − x j ||22. (8)

To predict interactions from node features, we built a bi-
nary classifier. Specifically, for a pair of nodes (vi, vj), we
first combine their feature vectors using the element-wise
multiplication, i.e. xi ◦ x j , which is a commonly used opera-
tion in modeling the symmetric relations from vector repre-
sentations (53–55). Then, the sigmoid function is applied on
the weighted summation of the combined representation’s
dimensions, which outputs a score in the range [0, 1], indi-
cating how likely the interaction happens between the two
corresponding isoforms:

zi j = σ (wT(xi ◦ x j )), (9)

where w is a vector of trainable parameters which learns to
weight the contribution of different dimensions of node fea-
ture vectors. To train the weight vector, we treat links in the
current III network as labels and apply the same weighted
cross entropy introduced in Equation 5 as the ‘link predic-
tion loss’:

Llp = −
|V|∑

i=1

|V|∑

j=1

ẑi j (ei j log(zi j ) + (1 − ei j ) log(1 − zi j )),

(10)

where eij is a binary indicator for the link between node i
and node j in the current III network and ẑi j is a constant
assigned by zij. Feature vectors are also adjusted to adapt
to the weight vector based on the objective function, which
facilitates the training process.

Mutual regularization and the joint learning objective

The key idea, which forms the cornerstone of this work, is
to establish the connection between the two tasks, IFP and
IIIP. Inspired by the graph regularizer (56) recently pro-
posed for training neural networks with the help of static
graphs, we propose a mutual regularizer for both modules
(Figure 2B) that uses edges in the current III network to
regularize the learning process of the functional predictor
and also encourages dynamic adjustments in the III net-
work consistent with the prediction results made by the
functional module:

Lmut = −
|V|∑

i=1

|V|∑

j=1

zi j (m − ||h i − h j ||22), (11)

where h i and h j are functional feature vectors of the cor-
responding isoforms of node i and j, defined in Equation
1, and m is a predefined margin. Intuitively, this ‘mutual
regularization loss’ encourages the functional predictor to
learn similar functional feature vectors for two isoforms if
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they are connected in the current III network. On the other
hand, if two isoforms have similar functional feature vec-
tors, i.e. the squared Euclidean distance over them is smaller
than the predefined margin m, a larger prediction score of
their interaction is encouraged.

To sum up, the joint objective of FINER is to minimize
the following loss function:

L = λ1L f p + λ2Lmut + λ3Lnb + λ4Lcoe + λ5Llp, (12)

where �1, �2, �3, �4, and �5 are the balancing hyper-
parameters.

Training procedure of FINER

To learn general functional knowledge from sequences and
domains, we first pretrain the function prediction module
using a large number of proteins retrieved from the Swis-
sProt database (57) as done in DIFFUSE (12). In this study,
we collected 98 400 eukaryotic (other than human) pro-
tein sequences with GO annotations from the SwissProt
database. Conserved domain data were retrieved accord-
ingly using the same method described before. The ‘binary
cross entropy loss’ defined in Equation 4 is used to pretrain
the functional predictor.

Next, the function prediction module and the III module
are alternately trained with the isoform data, until conver-
gence. The pseudocode for the learning algorithm is given
in Algorithm 1, and its basic ideas are sketched below.

(i) Training the function prediction module: In the func-
tional module training phase, parameters of the func-
tional predictor � are updated by minimizing the
weighted summation of two components in the loss
function with the stochastic gradient descent method:

min
�

λ1L f p + λ2Lmut. (13)

To speedup learning, isoforms connected in the current
III network are sampled into the same training batch.
After each training phase of the functional module, the
inference is performed for all isoforms on their func-
tional feature vectors h and functional predictions p.
Under the MIL setting, for each GO term, the labels
of all instances in positive bags are updated according
to the following criteria: (i) Instances with prediction
scores above the predefined threshold are assigned with
positive labels, while the others are assigned with nega-
tive labels. (ii) For each positive bag, if all its instances
are assigned with negative labels, we select the instance
with the largest positive prediction score in the bag as
positive. The updated labels are used for training in sub-
sequent iterations.

(ii) Training the III network refinement module: In the III
module training phase, node vectors and weight param-
eter w are updated by minimizing the weighted summa-
tion of four components in the loss function with the
stochastic gradient descent method:

min
x,x′,w

λ2Lmut + λ3Lnb + λ4Lcoe + λ5Llp, (14)

After each training phase of the III module, the infer-
ence is performed for each node pair (vi, vj) on the link
prediction zij, based on which, edges in the current III
network are updated to obtain a refined III network.
Due to the noisy nature of tissue-specific PPIs, we
would like to denoise the existing interactions while dis-
covering de novo interactions. Therefore, unlike the label
update procedure in the functional module, edge update
here does not consider bag-instance constraints. The
following criteria are considered when updating edges
instead: (i) In the refined III network, edges are set be-
tween nodes if the corresponding link prediction scores
are above the predefined threshold. (ii) To guarantee
the inclusion of interaction information for each iso-
form, the top 10 edges with the largest link prediction
scores associated with each node are also included in
the refined III network. Edges in the refined network
are then used for regularizing the functional module in
subsequent iterations.

RESULTS

Prediction of tissue-specific isoform functions

We applied FINER to predict tissue-specific functions of
isoforms on the human tissue datasets, including 12 major
tissues and three brain sub-tissues. The prediction proce-
dure, together with the calculation of prediction accuracy,
are described below:

(i) Dataset partition: For each tissue, we randomly parti-
tion its isoforms into training, validation and test sets
with the proportions of 70%, 10% and 20%, respec-
tively. Hyper-parameters of the models are manually
tuned based on model performance on the validation
data (see Supplementary Table S3 for the calibrated
hyper-parameter values). The validation data are finally
merged with the training data to train a model for per-
formance evaluation on the test data. To avoid potential
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information leak (i.e. different components of the par-
tition share isoforms with very similar sequences and
thus similar functions), we first require that isoforms of
the same gene are partitioned into the same set. In addi-
tion, since the function prediction module is pretrained
with the SwissProt protein sequences from different eu-
karyotes and there are closely related paralogous genes
in the human genome, we consider clusters of ortholo-
gous groups (COGs) defined in the EggNOG database
up to the level of eukaryotes (58) (note that such COGs
also include many paralogous genes) to prevent closely
related homologous genes from being split among dif-
ferent sets. In other words, all genes of the same COG
are required to be partitioned together. In addition, all
(non-human) SwissProt proteins belonging to COGs
that contain (human) genes in the test set are excluded
from the pretraining phase.

(ii) Prediction accuracy evaluation: As the ground-truth of
isoform functions is generally unavailable, we adopt the
widely used alternative evaluation strategy at the gene
level (8,9,11,12), with the rationale that if the functions
of isoforms are correctly predicted, their gene functions
should be correctly predicted automatically. Hence, for
each GO term, a prediction score for each gene is gen-
erated by taking the maximum prediction score among
its isoforms, and the performance is measured by com-
paring the gene-level prediction with the ground-truth.
Both the area under the receiver operating characteris-
tics curve (AUC) and the area under the precision-recall
curve (AUPRC) are used to evaluate the performance
for each GO term. To make comparisons across differ-
ent datasets fairly, we unify the AUPRC baseline as 0.1
for all GO terms as done in (11,12).

To evaluate the effect of III refinement on functional
prediction, we compare the performance of FINER with
that of FINER without III refinement as well as with
FINER without co-expression regularization in the III re-
finement module. Figure 3 summarizes the average AUC
and AUPRC values over all the GO terms in each tissue.
On average, FINER achieves improvements of 5.80% and
21.5% over FINER without III refinement in terms of AUC
and AUPRC, respectively, on the major tissue datasets,
as well as improvements of 5.16% and 15.1% in terms
of AUC and AUPRC, respectively, on the brain datasets.
In addition, FINER achieves improvements of 1.94% and
4.28% over FINER without co-expression regularization
in terms of AUC and AUPRC, respectively, on the ma-
jor tissue datasets, as well as improvements of 1.51% and
7.37% in terms of AUC and AUPRC, respectively, on the
brain datasets. The learning curves of the function predic-
tion module in Figure 3C clearly demonstrate that the per-
formance of the module benefited from the refinement of
III networks, i.e., the performance of the function predic-
tion module clearly gets better after each III network up-
date, until convergence (see Supplementary Figure S1 for
learning curves on all the other tissues).

A concrete example is shown in Figure 4. Isoform
NM 000660 is the single isoform of gene TGFB1. Ac-
cording to GO annotations, TGFB1 is labeled as hav-
ing the heart-specific function of cardiac chamber de-

velopment (GO:0003205). Without applying III refine-
ment, NM 000660 is predicted to have the function of
GO:0003205 with a score of only 0.571, which is just at
the boundary between having or not having the function.
Meanwhile, most of its interacting partners in the initial
III network are predicted as not having the function. In
contrast, when applying III refinement, NM 000660 is pre-
dicted to be interacting with isoforms that are predicted as
having the function, and NM 000660 itself is predicted as
having the function with a high score of 0.870.

Comparison with the existing methods

We further make comprehensive comparisons between the
functional prediction performance of FINER and that of
several state-of-the-art methods with different objectives,
including two recent isoform function prediction methods
DIFFUSE (12) and DisoFun (14), a tissue-specific pro-
tein function prediction method OhmNet (20) and a gen-
eral biological network refinement method NE (59). Note
that three isoform function prediction methods, DisoFun,
ISOGO (16) and IsoResolve (15) have been published in the
literature after DIFFUSE. Although these methods have
not been compared with DIFFUSE directly on the same
dataset, their reported overall performance all seem to be
worse than that of DIFFUSE. Among the methods, Diso-
Fun adopted a more strict evaluation metric in its perfor-
mance evaluation. Moreover, it also considers PPI infor-
mation similar to FINER. We, therefore, choose to include
DisoFun in the comparison here.

DisoFun predicts isoform functions using a matrix fac-
torization approach based on isoform expression profiles,
where PPIs are used to perform a gene-level regulariza-
tion. OhmNet first learns protein embeddings from dif-
ferent tissue-specific PPI networks, taking into considera-
tion the dependence between tissues. Independent function
classifiers are then trained to predict tissue-specific protein
functions at the gene level. NE has been successfully used
to denoise tissue-specific PPIs in the literature (59). In the
study, we apply NE to denoise initial III networks in our
datasets. To compare the effect of their results on enhancing
isoform function prediction with that of our refined III net-
works, we provide FINER with NE’s denoised III networks
and keep them fixed throughout functional prediction. We
denote this model as FINERfixed+NE. To make the com-
parisons more clear, we include the performance of FINER
without III refinement here, denoted as FINERfixed+RAW.
As shown in Table 1, FINER improved over the best per-
formance of the three isoform/protein function prediction
methods (i.e. OhmNet, DisoFun and DIFFUSE) on both
the major tissue and brain datasets by 6.94% and 6.57%, re-
spectively, in terms of average AUC, as well as 11.62% and
21.1%, respectively, in terms of average AUPRC. We ob-
serve that the standard deviations (SDs) in FINER’s perfor-
mance across different tissues are generally smaller than the
other methods. Moreover, a comparison among FINER,
FINERfixed+NE and FINERfixed+RAW demonstrates that
FINER acquires larger performance gains from our itera-
tively refined III networks than the denoised III networks
of NE, even though they are still better than the initial net-
works.
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Figure 3. (A) Comparison of functional prediction performance measured by the average AUC over GO terms on each dataset, between FINER (orange),
FINER without co-expression regularization (blue), and FINER without III refinement (green). The number of GO terms associated with each tissue is
noted after the name of the tissue. (B) Comparison of functional prediction performance measured by the average AUPRC. (C) Learning curves of the
function prediction module with (orange) and without (green) III refinement on the Heart tissue dataset in terms of both AUC and AUPRC.

Due to the lack of tissue-specific interaction ground-
truth, we measure the consistency between our refined III
networks and the results of a state-of-the-art III prediction
method. TENSION (24) is compared here as it is the most
recent tissue-specific III prediction method. For each tissue,
a core subnetwork is extracted from the predicted III net-
work of each method, which is induced by the set of iso-
forms whose genes are associated with the tissue-specific
functions. The Jaccard index is used to measure the similar-
ity between the subnetworks generated by the two methods
for each tissue. As shown in Supplementary Table S4, the
average of Jaccard indexes across all tissues is 0.332, and
they are all significantly larger than the expected ones if
two networks are randomly (and independently) generated
with the same sets of nodes and number of edges as in the

networks predicted by FINER and TENSION (under the
column E[Jaccard index] in Supplementary Table S4). The
moderate similarity between the core parts of III networks
on most of the tissues suggests that the III predictions made
by the two methods are perhaps informative.

Consistency between the predicted functions of isoforms and
their tissue specificity

We validate our isoform-level predictions by investigating
their consistency with the tissue specificity of isoforms. It
is well-known that the expression of genes is usually tissue-
specific. Previous studies have shown that in a certain tis-
sue, the highly expressed genes are usually associated with
functions specific to the tissue (60). For example, genes with
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Figure 4. Illustration of the interactions and functional prediction scores
on the term GO:0003205 of isoform NM 000660 in both the initial III net-
work and the refined III network. Red nodes represent isoforms predicted
as having the function, while blue nodes represent isoforms predicted as
not having the function.

elevated expression in skin are associated with functions re-
lated to the barrier function, skin pigmentation and hair de-
velopment, while genes elevated in liver are associated with
metabolic processes and glycogen storage (41). As isoforms
are actual function carriers, we expect that this relationship
also remains true at the isoform level. That is, the set of iso-
forms elevated in a tissue should be enriched with the cor-
responding tissue-specific functions. Thus, we quantify the
expression specificity of each isoform in a given tissue by
the fold change of its mRNA level in the tissue over the av-
erage level in other tissues. For each tissue, a set of ‘tissue
enhanced isoforms’ are selected from the test set based on
the ‘tissue enhanced’ criteria same as those in the Materials
and methods section. To generate functional annotations of
isoforms on each GO term, we binarize the corresponding
prediction scores by applying the threshold that optimizes
the F1 score with respect to the gene-level ground-truth.
Then, Fisher’s exact test is performed to test each tissue-
specific GO term’s enrichment in the set of tissue enhanced
isoforms. The multiple testing correction with false discov-
ery rate (FDR) controlling is applied to the P values. Fig-
ure 5A shows the fractions of GO terms that are enriched
in the tissue enhanced isoform sets of each tissue. Enrich-
ment (i.e. P(corrected) ≤ 0.05) is found in 91.4% (385 out
of 421) of the GO terms on the major tissue datasets and
84.0% (42 out of 50) on the brain datasets. These results
confirm that the consistency between (predicted) functions
and tissue-specific expressions remains at the isoform-level.

We further investigate whether our functional predictions
differentiate tissue enhanced isoforms from non-tissue en-
hanced ones in functional genes. Specifically, for each tissue-
specific GO term, we consider only the genes that are as-
sociated with the term, and divide isoforms of these genes
into two sets, namely, a set of ‘tissue enhanced isoforms’ and
a set of ‘non-tissue enhanced isoforms’ based on the same
criteria as before. Note that either the tissue enhanced iso-
form set or the non-tissue enhanced isoform set could be
empty for a GO term. If this happens, the corresponding
GO term is then ignored in the analysis. We compare the
fold enrichment of a GO term in both sets. The higher the
fold is, the more significant enrichment is found in a set. As
shown in Figure 5B, the one-sided Wilcoxon test exhibits
significant differences of GO enrichment between such two

sets of tissue enhanced and non-tissue enhanced isoforms.
The results suggest that FINER was able to identify tissue-
enhanced isoforms from genes with tissue-specific functions
and assign these functions to such isoforms.

Consistency between the highest connected isoforms and iso-
form protein-level expression

Previous studies have found that in a given tissue, the iso-
form of each gene with the most interacting partners usually
shows a higher expression level than other isoforms of the
same gene and is more likely to play functional roles in the
tissue. This observation is consistent across a variety of tis-
sues at both the transcript level and the protein level (21,61).
To check the validity of this observation in our refined III
networks, we identify the highest connected isoform (HCI)
of each MIG in different tissues, where the HCI is defined
as the isoform of each MIG that has the highest degree in
the III network of a given tissue. An independent dataset for
tissue-specific protein-level expression of isoforms was then
collected from Wang et al. (62). For each tissue, the dataset
lists a set of isoforms that are detected at the protein level by
mass spectrometry. Due to its low sequence coverage, most
genes have only one detected isoform in each tissue, which
usually is the highest expressed isoform at the protein level.
Ideally, the HCIs of each MIG in different tissues should
be the isoforms that have protein expression evidence in the
corresponding tissues. As shown in Table 2, the numbers
of MIGs whose HCIs in a tissue are detected at the pro-
tein level, denoted as NFINER, are significantly higher than
the expected numbers of MIGs (Nchance) if their HCIs in
the tissues are randomly chosen and detected at the protein
level. We repeat the same experiment on the III predictions
of TENSION. The numbers of MIGs with HCIs in the III
networks predicted by TENSION that are detected at the
protein level, denoted as NTENSION, are not as significantly
different from Nchance as the ones of FINER. These results
confirm the above observation in our refined III networks.

We also consider more isoforms of each MIG that have
high degrees in the predicted IIIs, and found that the num-
bers of MIGs whose third highest connected isoforms (third
HCIs), second highest connected isoforms (second HCIs)
or HCIs obtained by FINER are detected at the protein
level monotonically increase in all tissues (Supplementary
Tables S5 and S6). This suggests that the isoforms detected
at the protein levels tend to have higher degrees in the III
networks predicted by FINER. However, this monotonicity
property does not always hold in the III networks predicted
by TENSION.

Consistency between interactions of isoforms and their sub-
cellular localization

Subcellular localization of isoforms determines the environ-
ments where they operate. Therefore, subcellular localiza-
tion plays a significant role in controlling the availability
of interacting partners of isoforms and further influencing
their functions (63). Thul et al. (64) also discovered that in-
teractions among proteins within the same or connected cell
organelles are more likely to happen compared to isoforms
between disconnected organelles. Inspired by this finding,
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Table 1. Comparison of functional prediction performance between FINER and some existing state-of-the-art methods

Major tissue datasets Brain datasets

Method AUC (SD) AUPRC (SD) AUC (SD) AUPRC (SD)

OhmNet 0.751 (0.099) 0.431 (0.196) 0.743 (0.123) 0.423 (0.223)
DisoFun 0.805 (0.188) 0.460 (0.236) 0.770 (0.214) 0.419 (0.242)
DIFFUSE 0.836 (0.134) 0.568 (0.208) 0.822 (0.190) 0.541 (0.256)
FINERfixed+RAW 0.845 (0.102) 0.522 (0.185) 0.833 (0.149) 0.569 (0.254)
FINERfixed+NE 0.859 (0.104) 0.540 (0.178) 0.841 (0.131) 0.577 (0.242)
FINER 0.894 (0.080) 0.634 (0.158) 0.876 (0.115) 0.655 (0.234)

Figure 5. (A) The fractions of GO terms that are enriched in the set of tissue enhanced isoforms of each tissue. Different levels of enrichment are colored
differently. (B) Fold enrichment of GO terms in sets of tissue enhanced isoforms (green) and sets of non-tissue enhanced isoforms (orange), where for each
GO term, only isoforms of genes associated with the term are considered. The one-sided Wilcoxon test is performed on the results of each tissue with at
least 5 GO terms (numbers of GO terms are noted in the titles) included in this analysis to test the significance of the difference in GO enrichment between
tissue enhanced and non-tissue enhanced isoform sets.

Table 2. The numbers of MIGs whose HCIs are detected at the protein level in each tissue. Comparisons are made between HCIs of III networks predicted
by FINER and those predicted by TENSION

Tissue # of MIGs Nchance NFINER (P-value) NTENSION (P-value)

Heart 316 121 217 (2.35E-14) 177 (9.12E-14)
Lung 272 103 150 (1.72E-13) 121 (1.91E-03)
Lymphocyte 399 157 252 (4.33E-14) 196 (5.04E-06)
Placenta 599 228 345 (5.95E-14) 236 (1.29E-01)
Testis 754 287 421 (5.80E-14) 313 (5.40E-03)
Thyroid gland 466 180 287 (3.46E-14) 196 (2.37E-02)
Uterine endometrium 235 91 147 (1.98E-14) 124 (8.47E-07)

we collected some data of isoform subcellular localization
from Uhlén et al. (41), in which isoforms are annotated
with locations predicted from their sequences: soluble (in-
tracellular isoforms), membrane-spanning or secreted. We
then examine the enrichment of interactions among iso-
forms in the same or between different subcellular locations.
Figure 6A and C show that, when considering isoforms of
SIGs alone, a significant enrichment of interactions is al-
ways found between isoforms within the same subcellular
location but rarely found between those in different loca-
tions, no matter the initial or refined III networks are used.
On the other hand, an enhancement of this trend (i.e., en-
richment of interactions between isoforms within the same
subcellular location) can be seen in refined III networks

compared with the initial ones in the Heart, Skeletal mus-
cle, Skin and Thyroid gland tissues. In contrast, Figure 6B
and D show that, when considering only isoforms in MIGs,
more enrichment of interactions between isoforms in dif-
ferent locations is found in the initial III networks, but the
above trend observed in SIGs still remains true in the re-
fined III networks. A plausible conclusion from these obser-
vations is that our results concerning the isoforms of SIGs
show consistency with the previous findings (64). In other
words, even though isoforms at the same subcellular loca-
tion may not belong to the same or connected organelles, it
is conceivable that interactions could be more likely to hap-
pen between these isoforms compared to isoforms in dif-
ferent locations, as found consistently in our observations.



NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 2 11

Figure 6. Heat maps describe the probability (measured by the FDR-corrected P value for the binomial test) of observing at least as many isoforms in a
given location (y axis) by chance, given the location of each isoform’s interaction partner (x axis). (A) Comparison of the above probabilities between the
isoforms of SIGs in the initial III networks and those in the refined III networks for the 12 major tissues. (B) The same comparison for the isoforms of
MIGs in the 12 major tissue datasets. (C) The same comparison for the isoforms of SIGs in the 3 brain sub-tissue datasets. (D) The same comparison for
the isoforms of MIGs in the three brain sub-tissue datasets.

However, since different isoforms of MIGs can be localized
differently, initializing III networks based on PPIs may in-
troduce many false interactions between isoforms from dif-
ferent locations. Through III network refinement, real in-
teractions are revealed and thus the expected trend is recov-
ered.

Differentiating functions of isoforms with different localiza-
tion

It is commonly found that a single gene can encode isoforms
with different subcellular localization (41), which suggests
the potential functional differences between them. We test if
FINER can correctly differentiate the functions of isoforms
from the same gene, measured in terms of consistency with
their localization. We focus on a set of subcellular location
enriched GO terms. Specifically, for each subcellular loca-
tion, we consider the set of genes that encode isoforms lo-
cated there. Then, GO terms that are enriched in the gene
set are selected as the location enriched terms through GO
enrichment analysis. For each selected GO term and the
corresponding subcellular location, we consider MIGs that
are associated with the GO term and encode isoforms with
different localization containing at least one isoform in the
considered location. Isoforms with prediction scores greater
than the background of their genes are annotated with the

GO term, where the background of a gene is defined as the
average prediction score of all its isoforms. The Jaccard in-
dex is used to quantify the agreement that isoforms anno-
tated with a GO term are also located in its corresponding
subcellular location.

Figure 7 shows that the predictions of FINER achieve
a higher consistency with isoform subcellular localization
than those of DIFFUSE and DisoFun in 6 out of the 7
considered GO terms, while DIFFUSE generally outper-
forms DisoFun. This result suggests that isoform localiza-
tion information resides in the refined IIIs and isoform se-
quences may help FINER differentiate the functions of iso-
forms with different localization.

Case studies with literature support

We finally perform a literature search for experimental
evidence to support the predictions of FINER. In par-
ticular, some evidence concerning the tissue specificity of
isoforms and their functions is collected from the liter-
ature for three genes. The first gene FYN encodes iso-
forms FynB and FynT. Whereas FynB accumulates highly
in the brain, FynT is expressed predominantly in lympho-
cytes. Accordingly, FynT but not FynB serves a tissue-
specific function in T-cell activation (65). This evidence is
consistent with the relationship between function and tis-
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Figure 7. Comparison between FINER (blue), DIFFUSE (yellow) and
DisoFun (red) in terms of consistency between their predictions on loca-
tion enriched GO terms and subcellular localization of isoforms, where the
consistency is measured by the Jaccard index.

sue specificity analyzed in Figure 5. FINER correctly pre-
dicted the tissue-specific functions of both isoforms. For the
lymphocyte-specific GO term ‘Regulation of T cell activa-
tion (GO:0050863)’, FynT has a prediction score 1.3 times
the background score of its gene, while FynB only has a
score 0.6 times the background. The second gene PPARG
involves two isoforms with different tissue specificity. The
expression of PPARG2 is restricted mainly to the adipose
tissue, whereas PPARG1 is expressed in the adipose tissue
and many other tissues. PPARG2 can stimulate the for-
mation of adipocytes (fat cells). However, evidence shows
that PPARG1 has no or reduced ability to induce adipo-
genesis (66,67). Our predictions on the GO term ‘Fat cell
differentiation (GO:0045444)’ accord with the experimen-
tal observation. That is, PPARG2 has a prediction score
1.2 times the background, while the score of PPARG1 is
0.8 times the background. The last example concerns three
isoforms encoded by gene TITIN. While the isoform N2A
is the major isoform of TITIN expressed in skeletal muscles,
N2B and N2BA are major TITIN isoforms expressed in the
heart, whose expression ratio is related to human heart dis-
eases (68). The III predictions of FINER show that N2A
is the highest connected isoform in the refined III network
of skeletal muscles, while isoforms N2B and N2BA are the
highest connected ones in that of the heart (Supplementary
Figure S2), consistent with the relationship analyzed in Ta-
ble 2.

In addition, we are able to find some experimental ev-
idence that indirectly supports the predictions of FINER
concerning the tissue-specific functions of isoforms in four
genes. The evidence is collected by the following procedure.
For each tissue, among all the MIGs associated with at
least one GO term specific to the given tissue, the MIGs
whose HCIs have the top five highest degrees (among all
HCIs) are selected. An exhaustive literature search is then
performed against the selected MIGs. Information about
tissue-specific functions and corresponding predictions of
FINER concerning the isoforms in these MIGs is listed

in Supplementary Table S7 (along with the cases discussed
in the previous paragraph). Details of the functional evi-
dence are discussed below. The gene CD40 plays an impor-
tant signal transduction role in the pathway responsible for
B-cell growth and differentiation. Compared with the iso-
form NM 001250 encoded by CD40, isoform NM 152854
lacks the transmembrane domain, which makes it signal-
nontransducible (69). Consistently, for the lymphocyte-
specific GO term ‘Positive regulation of B cell differentia-
tion (GO:0045579)’, FINER predicts NM 001250 to have
a score 1.2 times the background score of its gene, while
NM 152854 has a score 0.9 times the background. The gene
WT1 regulates gonad development through activating the
expression of the gene SF1. However, the presence of the
KTS motif in WT1 isoforms hinders their interaction with
the SF1 promoter (70). Accordingly, among the six isoforms
encoded by WT1, FINER gives the three isoforms lacking
the KTS motif (NM 001198551, NM 024424, NM 000378)
higher scores on the testis-specific GO term ‘Male gonad
development (GO:0008584)’ than the other three isoforms
with the KTS motif, as shown in Supplementary Table S7.
In the adipose tissue, the gene GATA2 acts as a nega-
tive regulator of adipocyte proliferation through interac-
tion with FOG proteins, where the interaction relies on
the contact of their zinc fingers (71). Between the two iso-
forms encoded by GATA2, NM 001145662 lacks a zinc fin-
ger compared with NM 032638. Accordingly, FINER pre-
dicts NM 032638 to have a score 1.2 times the background
on the GO term ‘Negative regulation of fat cell prolifera-
tion (GO:0070345)’, while the score of NM 001145662 is
0.8 times the background. The gene NKX2-5 acts as a tran-
scription factor during the thyroid gland development (72).
Among the three isoforms NM 004387, NM 001166175
and NM 001166176 of NKX2-5, the DNA-binding do-
main is missing in NM 001166175 and NM 001166176
due to alternative splicing. Correspondingly, on the thy-
roid gland-specific GO term ‘Thyroid gland development
(GO:0030878)’, the isoform with the DNA-binding domain
(NM 004387) is predicted with a higher score than the other
two as shown in Supplementary Table S7.

DISCUSSION

Isoform function prediction (IFP) and isoform-isoform in-
teraction prediction (IIIP) are two important problems in
studying the diversity of gene products. The close ties be-
tween functions and interactions of protein isoforms make
the IFP and IIIP problems inherently intertwined. In this
work, we presented FINER, a unified framework for solv-
ing the two problems jointly. FINER establishes the con-
nection between IFP and IIIP by introducing a joint learn-
ing objective, which enables both tasks to benefit from
each other. We apply FINER to predict tissue-specific iso-
form functions and interactions on two datasets, which con-
tain 12 major tissues and three brain sub-tissues of hu-
man, respectively. FINER outperforms the state-of-the-art
methods across different tissue datasets and provides iso-
form function and interaction predictions that accord with
other biological evidence, including isoform tissue speci-
ficity and isoform subcellular localization. These results
suggest FINER’s potential in facilitating the functional ex-
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ploration of (individual) isoforms and their roles in diverse
human tissues and diseases.

There are several directions for future work. First, the re-
lationship between tissues is not considered in FINER. The
reason is that the tissues studied in this work are relatively
independent from each other. If tissue-specific functional
terms and well-characterized RNA-seq data are available
for a wider range of tissues in the future, the dependence be-
tween tissues can be considered and transferring functional
knowledge between closely related tissues can be explored
in FINER. In addition, FINER converges quickly in prac-
tice with several rounds of alternately training the function
prediction module and the III refinement module, although
we do not have a theoretical proof for its convergence yet.
We hope to perform more theoretical analysis in the future.
Moreover, although this work focuses on the fundamental
problem of isoform function prediction, it would be inter-
esting to see whether FINER can be directly applied to pre-
dict isoform–disease associations effectively.
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