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Quantum simulation of 2D topological physics
in a 1D array of optical cavities
Xi-Wang Luo1,2, Xingxiang Zhou1,2, Chuan-Feng Li1,2, Jin-Shi Xu1,2, Guang-Can Guo1,2 & Zheng-Wei Zhou1,2

Orbital angular momentum of light is a fundamental optical degree of freedom characterized

by unlimited number of available angular momentum states. Although this unique property

has proved invaluable in diverse recent studies ranging from optical communication to

quantum information, it has not been considered useful or even relevant for simulating

nontrivial physics problems such as topological phenomena. Contrary to this misconception,

we demonstrate the incredible value of orbital angular momentum of light for quantum

simulation by showing theoretically how it allows to study a variety of important 2D

topological physics in a 1D array of optical cavities. This application for orbital angular

momentum of light not only reduces required physical resources but also increases feasible

scale of simulation, and thus makes it possible to investigate important topics such as

edge-state transport and topological phase transition in a small simulator ready for

immediate experimental exploration.
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A
s a relatively under-exploited optical degree of freedom,
orbital angular momentum (OAM) of light has motivated
much exciting research lately. Beams of OAM-carrying

photons have an azimuthal phase dependence in the form eilj

where the OAM quantum number l can take any integer value1.
These photon modes, which arise in the natural solutions of the
paraxial wave equation in cylindrical coordinates2, can be
manipulated and measured with high precision3–6. Because of
the unlimited range of the angular momentum, OAM-carrying
photons are recognized as a unique asset in many studies. On
the application side, they are used to enable high-capacity
optical communication7,8 and versatile optical tweezers9. In
fundamental research, they have played important roles in
quantum information and quantum foundation6,10–15. Although
experimental study of OAM of light used to be limited to low
angular momentum, there has been tremendous advance lately
motivated by its great potential. This is highlighted by the
remarkable recent demonstration of quantum entanglement
involving angular momenta as high as hundreds16,17.

In spite of the many successful recent studies involving the
OAM degree of freedom of light, its exploitation is still at an early
stage and many novel possibilities remain unrecognized. In
particular, it has not been considered useful for quantum
simulation of important physics problems such as the extra-
ordinary topological phenomena that arise in two-dimensional
(2D) systems subject to external gauge fields. These include the
likes of integer18 and fractional19 quantum Hall effect and
quantum spin Hall effect20, which are characterized by exotic
properties such as quantized conductance and edge-state
transport. They are often difficult to investigate due to stringent
experimental conditions required, and some theoretical
predictions remain challenging to observe20,21. Because of
this, various quantum simulation schemes based on different
physical platforms such as ultracold atoms22–24 and photons25–35

have been suggested recently. None of them involves OAM of
light whose connection to topological physics appears to be
nothing but an illusion even in concept. Not surprisingly, central
to most existing simulation schemes is a 2D architecture
for the simulator. Many of them are still very demanding,
requiring limit-pushing experimental conditions or advanced
new technologies.

In this work, we show that it is not only possible, but
advantageous to use the OAM of light for nontrivial quantum
simulation by demonstrating theoretically how it can enable and
support the study of a broad range of topological physics. In
contrast to other proposals25–33, our system has a one-
dimensional (1D) structure that does not need to be large in
scale, thus reducing the complexity of the simulator. Feasible scale
of simulation is increased despite the simplified system, and it is
so versatile that the effect of arbitrary Abelian and non-Abelian
gauge fields can be studied using standard linear optics devices
only, with no restriction on the form of the gauge fields29,30,33

and no need for specially designed meta-material31 or photonic
crystal33. It then allows to investigate important topological
problems under intense pursuit such as non-Abelian gauge
field induced phase transition between a photonic normal and
topological insulator. Further, we can easily probe the topological
properties of our system by measuring the photon transmission
coefficients which are shown to have deep connections to the
essential topological invariants of the system. All this is possible
because of the inherent properties of the OAM of light.

Results
The 1D array of cavities. Shown in Fig. 1a is our simulation
system. It consists of an array of N nominally identical cavities

that are coupled along the x direction. The system size, N,
does not need to be large; we will show that even a simulator
with just a few cavities is sufficient to demonstrate topo-
logical effects. The building blocks are degenerate cavities36,37,
which have appropriate optical design such that they can support
photon modes with different OAM (Supplementary Note 1).
In each cavity, we make use of clockwise-circulating OAM-
carrying photons and denote their annihilation operator âj;l ,
where j (0rjrN–1) is the index of the cavity in the array and
l is the OAM number of the photon mode. To manipulate
the OAM state of photons, for each cavity we introduce an
auxiliary cavity consisting of two beam splitters (BSs) and
two spatial light modulators (SLMs). The BSs divert a portion
of the light in the main cavity towards the SLMs and merge it
back. When propagating between the BSs, photons can
accumulate a phase. The SLMs, which can be simple spiral
phase plates with very low loss38,39, change the OAM of photons
by ±1.

As depicted in Fig. 1b, by associating the OAM number of the
photon in a cavity with the site index number along the y direction
of an (imaginary) lattice, we can conceptually map our 1D array of
cavities to a 2D rectangular lattice system. In Fig. 1a, the BSs and
SLMs of the auxiliary cavity change the OAM of a portion of the
light in the main cavity by ±1, and this corresponds to hopping of
a particle on the lattice site in Fig. 1b along the y direction to its
neighbouring sites with a probability determined by the reflectivity
of the BSs. In this hopping process, the particle can also acquire an
experimentally controllable phase determined by the imbalance
between the optical paths from BSj

1 to BSj
3 and backwards. As

shown in the Supplementary Note 2, the Hamiltonian of the
simulated system is

H1 ¼ �k
X

j;l

ei2pfj â
y
j;lþ 1âj;l þ â

y
jþ 1;l âj;l þ h:c:

� �
; ð1Þ

where k is the transition rate between different OAM states,
chosen to be the same with the coupling rate between neighbour-
ing cavities, and 2pfj is the phase acquired by the photon in the jth
cavity when it travels between the BSs in
the auxiliary cavity. The term h.c. stands for Hermitian conjugate
of the prior terms. If we set up the system such that fj is
linearly dependent on the cavity index j, fj¼ jf0, then H1
describes a tight-binding model of charged particle in a 2D lattice
subject to a uniform magnetic field with f0 quanta of flux per
plaquette40.

Therefore, by representing a spatial degree of freedom with the
OAM states of photons, we can study a 2D system with a 1D
simulator, greatly reducing the physical resources required for the
simulation. In contrast to earlier 1D optical simulator34, our
system performs a full and genuine 2D simulation, rather than
simulate the 1D behaviour of the system at a fixed Bloch
momentum in the other direction. Meanwhile, in comparison
with a 2D array of coupled cavities, the size of the 2D lattice that
can be simulated is markedly increased along the y direction. This
is due to the fact that, unlike in an atomic system41 where only a
small number of atomic states are available for the simulation,
there is no upper limit for the OAM of photons in theory. In
reality, it is limited by practical factors such as the size of the
optical elements and can be made very large in a proper design. In
contrast, the feasible size in the y direction for a 2D cavity
array would be much smaller, because nonuniformity of the
cavities and local disturbances will make photons quickly lose
coherence after travelling through a few cavities. This remarkable
combination of reduced physical resources and increased scale of
simulation makes our system very promising. Also, our system
can be easily modified to support more demanding simulations
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by making use of additional degrees of freedom of photons.
For instance, we can simulate the quantum spin Hall effect42

in non-Abelian gauge fields43,44 by using the horizontal and
vertical polarizations of polarized photons to represent the up and
down state (s¼±1) of a spin. By using birefringent waveplates
whose optical axes are properly aligned with respect to the
horizontal and vertical polarizations, we can assign different
phases to the two polarizations and cause transitions between
them when they pass the waveplates (see Supplementary
Note 3 for details). We can then manipulate the polarization
states of the photon to mimick the spin flips and spin-dependent
phase delays caused by non-Abelian gauge fields, as illustrated

in Fig. 2. The simulated Hamiltonian is (Supplementary
Note 3)

H2 ¼�k
X

j;l

âyj;lþ 1ei2pŷy âj;l þ âyjþ 1;le
i2pŷx âj;l þ h:c:

� �

þ
X

j;l

ljâ
y
j;lâj;l;

ð2Þ

where âyj;l ¼ ða
y
j;l;$; ayj;l;lÞ is a two-component (the horizontal

and vertical polarization) photon creation operator, and lj is
an effective on-site energy. The tunnelling phases that correspond
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Figure 1 | A 1D array of degenerate cavities for simulating a 2D rectangular lattice in a magnetic field. (a) The optical design for simulating H1. Each

main cavity has an auxiliary cavity consisting of two BSs (BSj
1 and BSj

3) and two SLMs (SLMj
1 and SLMj

2). There is also a coupling cavity (made of BSj
2 and

BSjþ 1
4 ) between adjacent main cavities (It can be replaced with a simple BS to reduce the number of optical elements in experiments). The length of both

the auxiliary and coupling cavity is chosen for destructive interference, and most light remains in the main cavity. The cavities at the two ends of the array

can be coupled to realize periodic boundary condition, or uncoupled for open boundary condition. (b) Mapping of the 1D simulator array in (a) to a 2D

rectangular lattice in a magnetic field. (c) The coupling cavity (left) for simulating H5 and the optical design (right) for the beam rotators BR1 and BR2 with

opposite rotation angles ±W¼±2pf0. The main cavity and auxiliary cavity require no modification, except that the phase difference between the arms

containing the SLMs is set to 0.
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to the potentials of the associated gauge fields22, are given by

ŷx ¼ aŝ1; ŷy ¼ fjþ bjŝ2; ð3Þ

where fj is the spin-independent part of the phase, and a, bj, ŝ1
and ŝ2 are determined by the Jones matrices2 of the waveplates as
shown in Fig. 2. By selecting appropriate waveplates and
manipulating the polarization of the photon accordingly, we
can engineer non-commuting tunnelling phases ŷx and ŷy , and
thus simulate the effect of an arbitrary non-Abelian gauge field.

Probing scheme. Since we represent a spatial degrees of freedom
with OAM states of photons, the measurement of our system
involves manipulation and detection of the OAM states. Specifi-
cally, we pump the jith cavity using a probing light with a defi-
nitive OAM li and measure in the steady state how much ends up
in the OAM mode lo in the joth cavity by leaking a small amount
of light out of each cavity, as shown in Fig. 1a. It is determined by
the transmission coefficient45 (Supplementary Note 4)

Tjo;lo
ji;li

oð Þ ¼ � ig jo; lo
1

o�HSYSþ ig=2

����
����ji; li;

� �
; ð4Þ

where o is the detuning of the probing light from the cavity
frequency, g is the photon loss of the system, and HSYS is the
simulated Hamiltonian. When non-Abelian gauge fields are
concerned, the polarization indexes si and so should also be
included for the input and output modes.

Generation and detection of OAM-carrying photons can be
accomplished very reliably3,6. By a coherent measurement, we can
determine both the amplitude and phase of Tjo;lo

ji;li
ðoÞ. Thanks to

the 1D structure of our system and the use of OAM states, we can
perform this measurement between any pair of (ji, li) and (jo, lo),
equivalent to measuring the transmission coefficient between any
pair of sites in the simulated 2D lattice. Such powerful probing
capability is key to the demonstration of various topological
effects in our system.

Feasible measurement and clear demonstration of topological
properties is the topic of many recent studies21,31,32,46–48 since
generally speaking it is a very challenging task. Remarkably, in
our system it is straightforward and requires no more than

measuring the photon transmission coefficient in equation (4). As
we will show, there is a deep connection between the photon
transmission coefficient and the essential topological invariants,
which can be exploited to demonstrate topological behaviour in
optical systems.

System spectrum and density of states. As can be seen in
equation (4), Tjo;lo

ji;li
oð Þ is sensitive to the energy mismatch

between the frequency of the probing light and the energy of the
system. Because of this, we can study the system’s spectrum by
measuring the transmission coefficient

T ji;li oð Þ ¼
X
jo;lo

T jo;lo
ji;li

oð Þ ¼
X
jo;lo

Tjo;lo
ji;li

oð Þ
��� ���2 ð5Þ

as a function of the frequency of the probing light, where
T jo;lo

ji;li
¼ jTjo;lo

ji;li
j2. For a system in an Abelian gauge field described

byH1, we calculate and plot in Fig. 3a the system spectrum which
is the well-known Hofstadter butterfly40. We see that the main
characteristics of the system spectrum are clearly identifiable even
in a small simulator with just a few cavities.

The transmission spectroscopy is also very valuable for
studying physics associated with a non-Abelian gauge field. As
an example, in equation (3), if we choose ŝ1 ¼ sy , ŝ2 ¼ sx ,
bj ¼ b ¼ a ¼ 1

4, lj¼ 0, and fj¼ jf0¼ 0, we get the 2D Dirac’s
Hamiltonian on a lattice49

H3 ¼ � ik
X

j;l

âyj;lþ 1ei2pjf0sxâj;l þ âyjþ 1;lsy âj;l

� �
þ h:c:; ð6Þ

which is a topic of intense research because of its importance for
understanding the properties of graphene and other exotic
systems23,24,50,51. Characteristic of H3 are four conical
singularities at the Dirac points51 in the spectrum, which give
rise to massless relativistic particles. As the energy deviates from
the Dirac points, the change of the dispersion relation from
relativistic to non-relativistic is revealed by the Van Hove
singularities in the density of states. When the decay rate g is
small, the density of states can be inferred from the photon
transmission spectrum which is shown in Fig. 3b. The Dirac point
at o¼ 0 and two Van Hove singularities near o¼±2k are
observed, confirming Dirac physics related behaviour in the
system.
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(a) Calculated transmission spectra T ¼
PN� 1

ji¼0 T ji;0 of H1 under different

values of magnetic flux f0. Since it is possible to measure the transmission

coefficient between every pair of lattice sites, we add transmissions to all

output channels to obtain a strong signal and increase the sensitivity of the

measurement. (b) Calculated transmission spectrum T ¼
P

ji ;si
T ji ;0;si

of

H3, where T ji;0;si
¼
P

jo ;lo ;so
jTjo ;lo ;so

ji ;0;si
ðoÞj2. In both a and b, the size of the

simulator N¼ 10. The OAM number of the photon included in the

calculation is lA[� 50, 50]. Open and periodic boundary conditions are

used in the x and y direction. The photon loss g¼0.1k.
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Edge states and topological protection. One of the most
remarkable phenomena in topological physics is the existence of
topologically protected chiral edge states in the band gaps of a
finite lattice. In our system, we can study the edge states by
pumping the cavity at the end of the 1D simulator array using a
probing light beam with a definitive OAM. It is equivalent to
driving a site on the edge of a 2D lattice. When the frequency of
the probing light falls in a band gap, excitation of gapless edge
states dictates that the light can only propagate along the edge of
the simulated system. This is clearly demonstrated in Fig. 4a,b,
where chiral edge-state transport is observed in a small simulator.

To study the robustness of the edge states against disorder, we
introduce the average OAM ‘displacement’ for the transport
process defined as

�le oð Þ ¼
X

ji2edge

X
jo;lo

T jo;lo
ji;0 oð Þ � lo; ð7Þ

where T jo;lo
ji;0 ¼ jT

jo;lo
ji;0 j

2, and
P

ji2edge refers to summation over the
sites close to one edge of the lattice where the amplitude of the
edge states is significant. As proved in the Supplementary Note 5,
when the frequency of the probing light o falls in a large band
gap, �le has the interesting property that it is equal to the total
Chern number for the bands below the gap. Also, the value of �le is

mainly determined by states roughly in resonance with o.
Consequently, how �le is disturbed by disorder is a measure for the
robustness of these states. Shown in Fig. 4c are �le and its variation
caused by a random shift in the cavity resonance frequency. It can
be concluded that the edge states are almost immune to the
disorder when the band gap is large compared with the photon
loss and random cavity frequency shift, whereas the in-band
states are strongly affected.

In addition to its fundamental interest, edge-state transport is
also very useful for probing the topological behaviour of a system.
One such example is the observation of the relativistic quantum
Hall effect which arises in the Dirac Hamiltonian H3 with small
but nonzero magnetic flux f0. As shown in Fig. 4d, �le experiences
a double-step leap from 2 to � 2 around the Dirac point at o¼ 0
caused by a sudden change in the topological property of the
system. Such exotic behaviour43,44 was predicted and observed in
graphene52,53.

Topological quantum phase transition. By measuring the sys-
tem spectrum and edge-state transport, we can study nontrivial
physics such as topological quantum phase transitions driven by
non-Abelian gauge fields, which are important for understanding
novel quantum states of matter such as topological insulators and
superconductors21,23,24,43,44,54,55. In our system with non-
Abelian gauge field, if we choose ŝ1 ¼ sx, ŝ2 ¼ sz , fj¼ 0,
a¼ 1/4, bj¼ j/4þb0 and lj¼ l0 � [mod(j, 4) – 1.5] in
equation (3), the Hamiltonian in equation (2) becomes

H4 ¼� k
X

j;l

âyj;lþ 1ei p
2jþb0ð Þsz âj;l þ âyjþ 1;l isxâj;l þ h:c:

� �

þ
X

j;l

l0 � mod j; 4ð Þ� 1:5½ �âyj;lâj;l;
ð8Þ

which describes an effective spin in a non-Abelian gauge field
characterized by spin-dependent magnetic field and strong spin–
orbit coupling. Also present is a periodically modulated on-site
potential lj. In the simulation system, the horizontal and vertical
polarizations with degenerate on-site energies flip to their
counterpart when the photon tunnels between cavities and
acquire opposite phases when the photon goes around a plaquette
in the simulated lattice in the same direction. This is the same
behaviour with that of the spin up and down in an electronic
system, which has time-reversal symmetry, and polarized photon-
edge states analogous to spin edge states can emerge in our
system. The two polarized edge states are associated with opposite
Chern numbers, and thus their total Chern number C is 0
whereas the difference 2n can be nonzero. The properties of such
a photonic topological insulator are in contrast with those of a
normal insulator in which both C and n are 0 and photon
transport of both polarizations is strongly suppressed.

A topological quantum phase transition can be induced in the
system by adjusting the value of the non-Abelian gauge field. In
Fig. 5a, it is shown how the band structure of the system changes
with b0. As b0 increases, the first band gap near o¼ � 1.6k closes
and opens again. Initially, when b0 is small, the topological index n
of the system is n¼ 1, and the system is in a topological insulator
state. Correspondingly, there are a pair of photon-edge states with
opposite polarizations propagating in opposite directions as
shown in Fig. 5b,c. These polarized-edge states are protected as
long as the local noise does not disturb the symmetry between the
two polarizations so that their on-site energies stay degenerate and
their phases around a plaquette remain opposite to each other.
When the energy gap opens again with a large b0, n changes to 0,
and the system becomes a normal insulator. This is confirmed by
the disappearance of the photon-edge states in Fig. 5d,e.
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Measurement of the chern number. The Chern number is the
ultimate quantum invariant to classify topological states and
characterize their behaviour21. As shown in Fig. 4c, in a finite
lattice the Chern number can be measured via the average OAM
displacement �le for edge-state transport. In an infinite system, the

Chern number is equivalent to the TKNN index56. For its
measurement, we insert a pair of beam rotators (BRs) with
opposite rotation angles ±W¼±2pf0 in the coupling cavities, as
shown in Fig. 1c. A BR with a rotation angle W is made of two
Dove prisms rotated by W/2 with respect to each other and can
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b0¼0.125. In (b–e), the size of the simulator N¼ 10. The OAM included in the calculation is lA[� 50,50]. Open and periodic boundary conditions are

used in the x and y direction. The photon loss rate is g¼0.1k.
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Figure 6 | Simulation of the Chern number measurement for H5. (a) Calculated photon transmission jTj;l
0;0j

2. The magnetic flux f0¼ 1/6. The probing

light frequency is at o¼ � 3.09k, where lies the very narrow first energy band. (b) Calculated phase mismatch w(kx,ky) of u1
3 in the Brillouin zone resulting

from two different phase conventions for u1
l kx; kyð Þ in equation (10), defined by dividing the Brillouin zone into B1, whose boundary is marked by the red line

and where u1
0 is always nonzero, and B2, which contains all zero points of u1

0 but where u1
3 does not vanish. In one phase convention, u1

0 is real in B1. In the

other convention, u1
3 is real in B2. The Chern number is determined by the integration of the gradient of w(kx, ky) on the boundary of B1, qB1 (Supplementary

Note 6). In a and b, the size of the simulator N¼ 10. The OAM included in the calculation is lA[�48, 48). Periodic boundary conditions are used in both

the x and y directions. The photon loss rate g¼0.1k.
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change the azimuthal dependence of the OAM mode from eilf to
eil(fþ W). We also balance the two paths of the auxiliary cavities
containing the SLMs. The simulated Hamiltonian becomes

H5 ¼ �k
X

j;l

ayj;lþ 1aj;l þ e� i2plf0 ayjþ 1;laj;l þ h:c:
� �

ð9Þ

which is related to H1 by a gauge transformation and helps keep
the size of the simulator small (Supplementary Note 2). In Fig. 6a,
the amplitude of the photon transmission coefficients jTj;l

0;0j
2 is

shown for a system with a rational magnetic flux f0¼ 1/6. Since
the first energy band of this system is very narrow (see
Supplementary Note 6), in a lossy cavity the probing light will
be in resonance with the entire first energy band57. This allows us
to determine the in-band Bloch eigenstates

eikxjeikylu1
l kx; ky
� �

ð10Þ

from the Fourier transforms of Tj;l
0;0, where kxA[� p,p],

kyA[0,2p/6] define the Brillouin zone and um
l ðkx; kyÞ ¼

um
lþ 6 kx; ky
� �

for the mth band is a periodic function. There is a
Chern-number-conserving gauge freedom in the phase choices of
u1

l ðkx; kyÞ, as shown in Fig. 6b. w(kx,ky), the phase mismatch of u1
3

resulting from the two different phase conventions in Fig. 6b, can
be used to calculate the Chern number (Supplementary Note 6).
Our numerical calculation using w(kx,ky) yields the Chern number
1 for the related band.

Discussion
By mapping the OAM states of photons to spatial coordinates in a
lattice, we have found a promising scheme for studying nontrivial
2D topological physics in a 1D physical simulator. Our method
relies on only linear optics and manipulation of OAM states, and
thus it can be realized with any physical systems that provide
these elements or their equivalent, though longer wavelengths
may have an advantage in coupling a large number of cavities.
Our system is ready for immediate experimental exploration,
because the key elements in our scheme, such as reliable
manipulation of photon modes with high angular momenta4,16,
precise measurement of the OAM states5,6, design and operation
of degenerate cavities36,37 and locking of multiple optical
cavities58, have all been realized. Our idea may also be used to
simulate 1D problems with OAM modes in a single cavity59–61,
and it can lead to novel photonic effects with practical
applications25. Above all, by demonstrating the counter-
intuitive application of photonic OAM in quantum simulation,
our work deepens our understanding of the OAM degree of
freedom and advances our view of photonic quantum simulation.
Building on the presented ideas, we can then leverage the extreme
flexibility and reliability in the design and operation of optical
circuits for quantum simulation of various topological problems.
All these issues and possibilities provide exciting opportunities for
further investigation.
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