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A B S T R A C T   

Purpose: The aim of this study is to investigate a new method that combines radiological and 
pathological breast cancer information to predict discrepancies in pathological responses for 
individualized treatment planning. We used baseline multiparametric magnetic resonance im-
aging and hematoxylin and eosin-stained biopsy slides to extract quantitative feature information 
and predict the pathological response to neoadjuvant chemotherapy in breast cancer patients. 
Methods: We retrospectively collected data from breast cancer patients who received neoadjuvant 
chemotherapy in our hospital from August 2016 to January 2018; multiparametric magnetic 
resonance imaging (contrast-enhanced T1-weighted imaging and diffusion-weighted imaging) 
and whole slide image of hematoxylin and eosin-stained biopsy sections were collected. Quan-
titative imaging features were extracted from the multiparametric magnetic resonance imaging 
and the whole slide image were used to construct a radiopathomics signature model powered by 
machine learning methods. Models based on multiparametric magnetic resonance imaging or 
whole slide image alone were also constructed for comparison and referred to as the radiomics 
signature and pathomics signature models, respectively. Four modeling methods were used to 
establish prediction models. Model performances were evaluated using receiver operating char-
acteristic curve analysis and the area under the curve, accuracy, sensitivity, specificity, positive 
predictive value, and negative predictive value. 
Results: The radiopathomics signature model had favourable performance for the prediction of 
pathological complete response in the training set (the best value: area under the curve 0.83, 
accuracy 0.84, and sensitivity 0.87), and in the test set (the best value: area under the curve 0.91, 
accuracy 0.90, and sensitivity 0.88). In the test set, the radiopathomics signature model also 
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significantly outperformed the radiomics signature (the best value: area under the curve 0.83, 
accuracy 0.64, and sensitivity 0.62), pathomics signature (the best value: area under the curve 
0.60, accuracy 0.74, and sensitivity 0.62) (p > 0.05). Decision curve analysis and calibration 
curves confirmed the excellent performance of these prediction models in discrimination, cali-
bration, and clinical usefulness. 
Conclusions: The results of this study suggest that radiopathomics, the combination of both 
radiological information regarding the whole tumor and pathological information at the cellular 
level, could potentially predict discrepancies in pathological response and provide evidence for 
rational treatment plans.   

1. Introduction 

Neoadjuvant chemotherapy (NAC) is used in the treatment of locally advanced breast cancer patients and breast-conserving pa-
tients with large tumors [1]. NAC can shrink the tumor, reduce the clinical stage, improve the success rate of surgery, and achieve 
pathological complete remission (pCR) in patients, resulting in a longer disease-free survival interval and overall survival time [2]. 
However, the response of breast cancer to NAC varies greatly based on many factors, and 2 %–30 % of patients do not benefit from this 
treatment [3] and are delayed in receiving local treatment. In addition, due to the delay of the operation time window, NAC may not 
only increase the drug resistance and metastasis risk of tumors but also cause overtreatment of breast cancer [4]. Therefore, it is 
particularly important to effectively and comprehensively evaluate and predict whether breast cancer patients can benefit from NAC 
before they receive chemotherapy. 

Radiomics is an innovative method of image quantitative analysis that extracts a large number of high-dimensional features that 
cannot be recognized by the naked eye from medical images through data mining and machine learning; the obtained features are then 
applied to a clinical decision support system [5]. Radiomics is of great value in disease characterization, tumor staging, curative effect 
evaluation and prognosis prediction [6,7]. Multi-parameter magnetic resonance imaging (mp-MRI) is the most sensitive imaging 
method for breast cancer, and it has become a routine examination for patients with breast cancer [8]. DCE-MRI is mainly used to 
clarify the biological changes within the tumor through morphological, kinetic and perfusion parameters, so that the curative effect of 
NAT can be evaluated more early and accurately. DWI is widely used as an auxiliary means of DCE-MRI. The combination of them can 
improve the specificity of imaging. At the same time, ADC value, as a biomarker of malignant tumor, can help to evaluate the response 
of breast cancer to NAT [9,10]. With the continuous development of image processing technology and the rise of imaging science, 
multi-parameter MRI-based radiomics can better reflect tumor biological heterogeneity and assist treatment decision-making in the 
differentiation of benign and malignant breast cancer, classification and grading, NAC treatment response and risk prediction [11,12]. 
MRI-based radiomics can not only predict the efficacy of NAC in breast cancer patients by evaluating the imaging characteristics during 
different chemotherapy cycles but also use multiparameter MRI to quantify the dynamic process of tumor development and provide 
key specific information about tumor characteristics and heterogeneity, which improves the efficiency of evaluation and prediction of 
the NAC response [13]. 

The prediction efficacy of MRI-based radiomics often depends on the choice of algorithms and models [14,15]. Previous studies 
have mainly focused on the morphological analysis of tumors, but studies have shown that the pathological features of tumors also 
affect the efficacy of NAC [16,17]. For example, some pathological features, including tumor-associated lymphocytes, may be inde-
pendent predictors of the efficacy of NAC [18]. Quantitative analysis of whole slide images is a new method for analyzing histo-
pathological features. Compared with traditional methods, it avoids the errors caused by subjective factors in pCR and prognostic 

Fig. 1. Flowchart of the patient selection process.  
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ability evaluation and improves the accuracy of diagnosis. Studies have shown that artificial intelligence can be used to automatically 
analyze pathological features and provide relevant indicators for predicting the efficacy of neoadjuvant chemotherapy [19–21]. In this 
study, we extracted radiological features from multiparameter MRI of breast cancer patients, combined them with the histopatho-
logical characteristics identified by artificial intelligence, established a prediction model of breast cancer neoadjuvant chemotherapy, 
analyzed whether it can predict patients’ pCR before treatment, and evaluated patients’ response to chemotherapeutic drugs to better 
guide breast cancer neoadjuvant chemotherapy decision-making. 

2. Materials and methods 

2.1. Patients 

This retrospective study was approved by the ethics committee of the ethics committee of our hospital, and the need for informed 
consent was waived. A total of 200 patients with breast cancer who underwent neoadjuvant chemotherapy in our hospital from August 
2016 to January 2018 were consecutively enrolled in this study. The inclusion criteria (Fig. 1) were as follows: (1) breast cancer 
patients had completed standardized neoadjuvant chemotherapy; (2) before treatment, hematoxylin and eosin (H&E) staining biopsy 
was performed and confirmed as breast cancer; and (3) standardized baseline mp-MRI examination was performed. The exclusion 
criteria were as follows: (1) there were other tumors or diseases that affect the efficacy of neoadjuvant chemotherapy; (2) MRI images 
or pathological sections were of insufficient quality to obtain measurements; and (3) the clinical data of patients missing or incomplete. 
The decision to administer NAC was made cooperatively by the chief surgeon, oncologist, and patient. The chemotherapy regimen 
included cyclophosphamide + epirubicin + docetaxel, cyclophosphamide + docetaxel, or epirubicin + docetaxel, and all patients 
received complete neoadjuvant chemotherapy. 

2.2. MRI image acquisition 

All breast MRI examinations were performed using a 1.5 T MR scanner (Magnetom Avanto, Siemens, Germany) within 1 week 
before initiating NAC. Axial dynamic contrast enhanced (DCE) images and diffusion Weighted Imaging (DWI) with two b values (0 and 
800 s/mm2) were acquired for each patient. DCE sequences were collected after an initial fat-saturated T1-weighted precontrast scan. 
After an intravenous injection of 0.2 ml/kg gadolinium contrast, the first postcontrast scan was obtained, and then seven subsequent 
postcontrast images were acquired. Experimental details are summarized in Table 1 of the supplementary materials. 

2.3. Whole slide image (WSI) acquisition 

H&E-stained slides from biopsy formalin-fixed paraffin-embedded tissue were used for pathological diagnosis. WSIs for analysis 

Table 1 
Baseline characteristics of the patients.  

Characteristics Training Group (n = 124) p Testing Group (n = 31) p 

pCR (n = 31) Non-pCR (n = 93) pCR (n = 8) Non-pCR (n = 23) 

Age 44.161 ± 7.26 46.086 ± 8.533 0.262 51.250 ± 6.135 45.56 ± 7.347 0.059 
cT stage  0.242  0.703 
1 1 (0.032) 3 (0.032)  0 (0.000) 0 (0.000)  
2 27 (0.870) 67 (0.720) 8 (1.000) 20 (0.869) 
3 3 (0.096) 14 (0.150) 0 (0.000) 3 (0.130) 
4 0 (0.000) 9 (0.096) 0 (0.000) 0 (0.000) 
cN stage  0.616  0.704 
0 4 (0.129) 22 (0.236)  2 (0.250) 7 (0.304)  
1 24 (0.774) 61 (0.655) 4 (0.500) 14 (0.608) 
2 2 (0.064) 7 (0.075) 1 (0.125) 1 (0.043) 
3 1 (0.032) 3 (0.032) 1 (0.125) 1 (0.043) 
ER status (%)  0.066  0.330 
Positive 21 (0.677) 79 (0.849)  3 (0.375) 19 (0.826)  
Negative 10 (0.322) 14 (0.150) 5 (0.625) 4 (0.173)  
PR status (%)  1.000  0.008* 
Positive 26 (0.838) 80 (0.860)  3 (0.375) 21 (0.913)  
Negative 5 (0.161) 13 (0.139) 5 (0.625) 2 (0.086) 
HER2 status (%)  0.916  0.925 
Positive 19 (0.612) 54 (0.580)  5 (0.625) 12 (0.521)  
Negative 12 (0.387) 39 (0.419) 3 (0.375) 11 (0.478) 
Ki-67 status (%)  0.390  0.142 
Positive 22 (0.709) 56 (0.602)  8 (1.000) 15 (0.652)  
Negative 9 (0.290) 37 (0.397) 0 (0.000) 8 (0.347) 

ER estrogen receptor, PR progesterone receptor, HER2 human epidermal growth factor receptor 2. 
*p < 0.05. 
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were collected by panoramic digital image scanning technology (KF-PRO-005, Ningbo Konfoong Bioinformation Tech Co., Ltd.). 
Panoramic digital image scanning technology was used to collect WSIs at 20× magnification for analysis and generate 0.25 μm/pixel 
digital pathological images for pathological feature extraction. 

2.4. Tumor segmentation and radiomics feature extraction from MRI 

Two full-time radiologists with 10 years of working experience conducted the first phase of DCE subtraction image and DWI image 
processing in Siemens syngo. via workstation. The radiology application (Syngo.via, Frontier Radiomics) uses a semiautomatic seg-
mentation algorithm to outline the region of interest (ROI), and automatically extracts quantitative image features, which are called 
radiomic features and include 18 first order statistics features, 75 texture features, 17 shape features and 744 wavelet features. The 
texture features included 24 Gy cooccurrence matrix features (GLCM), 14 Gy level dependence matrix features (GLDM), 16 Gy level 
run length matrix features (GLRLM), 16 Gy level size zone matrix features (GLSZM), and 5 neighbor gray tone difference matrix 
features (NGTDM). To obtain the wavelet features, we first applied wavelet filters to each input MR image, yielding 8 decompositions 
(all possible combinations of applying either a high or a low pass filter), which were used to calculate the textural features. Shape- 
based features quantitatively described the two-dimensional size and shape of the ROI. 

2.5. ROI segmentation and pathomics feature extraction from WSIs 

The pathologist applied a 20× magnification to the panoramic digital section, identified the tumor cells and intercepted the image. 
Then, CellProfiler (version 3.1.9, https://cellprofiler.org/) [22] was used to automatically extract the features of the intercepted 20×
magnified pathological section images to obtain the heterotypic information of tumor cells. CellProfiler is an open-source tool widely 
used in the field of biological image analysis and can be used to analyze images quantitatively. In this study, features such as pixel 
intensity, morphology and nuclear texture were extracted and used as derive the pathological features. 

2.6. Feature selection and forecasting model construction 

The feature selection workflow is shown in Fig. 2. In the process of radiological feature extraction, intraclass correlation coefficients 
(ICCs) were used to evaluate interobserver consistency. The radiological features with ICCs greater than 0.75 were categorized as 
having good agreement with high reproducibility, and those with ICCs less than 0.75 were eliminated. The same process of ICC 
evaluation of pathological features was performed with the radiological features. Feature selection was performed separately for the 
MRI radiomic features, pathomic features, and radiopathomic features (pathomic features + radiomics features) of the training set. By 

Fig. 2. Comprehensive schematics of the methodology developed and implemented in this study for radiomic feature and pathomic 
feature selection. 
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Pearson correlation analysis, features with correlation coefficients higher than 0.9 were first excluded. Then, using one-way analysis of 
variance (ANOVA), the top 50 features with the largest variances were retained. Finally, feature filtering was performed using LASSO 
(Fig. 1 in the Supplementary material). Detailed information on the features is presented in Tables 2, 3, and 4 of the Supplemental 
Material. Then, using the selected features, logistic regression, Naïve Bayesian, random forest regression, and XGBoost models were 
implement and their performance on different data sets was compared. A 5-fold cross-validation method was applied for the training 
process of all models, i.e., the training set was divided equally into five parts, with one part serving as the testing set and the remaining 
four parts as the training sets. The model established by using pathomic features alone is referred to as the pathomics signature (PS) 
model, the model established by using radiomic features alone is referred to as the radiomics signature (RS) model, and the model 
established by combining radiomic features and pathological features is referred to as the radiopathomics signature (RPS) model (As 
shown in Table 3). 

2.7. Statistical analysis 

Differences between groups were assessed using Mann‒Whitney U tests or t tests for continuous variables and chi-squared tests for 
categorical variables. We assessed the predictive ability of the PS, RS and RPS models using receiver operating characteristic (ROC) 
curve analysis. The area under the curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), and negative pre-
dictive value (NPV) were calculated. The DeLong test was performed to determine whether the differences in predictive ability be-
tween the three models were statistically significant. The statistical analyses were performed using Python (version 3.6.5). 

3. Results 

3.1. Patient characteristics 

A total of 155 breast cancer patients with an average age of 46 years (range 38–54 years, 46.00 ± 8.06) were enrolled and divided 
into the training (n = 124) and the testing sets (n = 31). Table 1 shows the baseline characteristics of the patients in the training set and 
testing set. The distributions of the patient characteristics in the two data sets were similar. In the training and testing data sets, the 
proportions of patients with pCR were 25.0 % and 25.8 %, respectively, and except for the PR status in the testing set, there were no 
significant differences in clinical characteristics such as age, stage and Ki-67 status between the pCR group and the non-pCR group (p >
0.05). 

3.2. Feature selection 

A total of 1708 radiomic features were extracted from the DCE and DWI images of each patient, including 854 DCE features and 854 
DWI features, and a total of 260 pathomic features were extracted from pathological section images. The intraobserver ICCs of the MRI 
radiomic features ranged from 0.89 to 0.95, and the interobserver ICCs of the pathomic features ranged from 0.83 to 0.97. This result 
indicated that feature extraction had good repeatability between observers. With the LASSO feature coefficients, rad-scores for 
different data sets were constructed (Eqs. 1, 2, 3 in the Supplementary material). After performing ANOVA and LASSO, 15 MRI 
radiomic features, 4 pathomic features and 29 radiopathological features were selected, and the models were established. 

The results of 5-fold cross-validations of different models using the set of radiomics features showed that Naïve Bayesian model and 
random forest model had the highest accuracy (ACC), which were 0.71 ± 0.12 and 0.71 ± 0.11, respectively, and the logistic 
regression model had the highest AUC (0.68 ± 0.11). The results of five cross-validations of different models using the pathomics 
features showed that the best model was logistic regression, with an ACC of 0.75 ± 0.04 and an AUC of 0.71 ± 0.04. Based on radiomic 
features and pathomic features, the parameters obtained of the RPS models were improved, and the optimal model was the naive 
Bayesian model, with an ACC of 0.89 ± 0.05 and AUC of 0.96 ± 0.03. Detailed information on the results is presented in Tables 5, 6, 
and 7 of the supplemental material. 

Table 2 
Prediction performance of different models for the training set.  

Features Models AUC Sensitivity Specificity Accuracy 

Radiomics Logistic Regression 0.68 0.68 0.74 0.73 
Naïve Bayesian 0.65 0.61 0.87 0.81 
Random forest 0.64 0.71 0.96 0.90 
XGBoost 0.58 0.90 0.97 0.95 

Pathomics Logistic Regression 0.71 0.03 1.0 0.76 
Naïve Bayesian 0.68 0.26 0.89 0.73 
Random forest 0.67 0.84 0.99 0.95 
XGBoost 0.67 0.90 0.92 0.92 

Radiopathomics Logistic Regression 0.83 0.87 0.83 0.84 
Naïve Bayesian 0.74 0.71 0.95 0.89 
Random forest 0.77 0.81 0.99 0.94 
XGBoost 0.79 0.90 1.0 0.94  
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3.3. Performance comparison of the prediction models 

As shown in Fig. 3a–c and Table 2 and in the training set, the highest AUC of the RS models was 0.68 with an ACC of 0.73, and the 
highest AUC of the PS models was 0.71 with an ACC of 0.76. The highest AUC value of the RPS models was 0.83 with an ACC of 0.84, 
which surpassed than that of the RS and PS models in the training set. In the test set (Fig. 3d–f and Table 2), the RS models had better 
AUCs than the PS models, and the highest AUC was 0.83 with an ACC of 0.64. Compared to the four RS models, the highest AUC for the 
PS models was only 0.60 with an ACC of 0.74. While the RPS obtained by Naïve Bayesian model is the best AUC of 0.91 in the test set, 
with ACC of 0.90. 

Shown by the DeLong test, there was a significant difference between the AUC values of the models based on pathomic features only 
and those based on the combined features (p = 0.03). There were no significant differences between the AUC values of the models using 
radiomics features only and those using the combined features (p = 0.32), nor were there differences between the results of models 
using pathomic features only and those using MRI radiomics features only (p = 0.41). The decision curve analysis (DCA) results are 
shown in Fig. 4. In the test set, compared with the random forest model using MRI radiomic features and the random forest model using 
pathomic features, the naive Bayesian model based on radiopathomic features consistently exhibited higher overall net benefits 
(Fig. 4a). In addition, the calibration curve showed that, compared with the random forest model using MRI radiomic features and the 
random forest model using pathomic features, the prediction probability of the naive Bayesian model based on radiopathomic features 
showed good agreement with the real outcomes of neoadjuvant chemotherapy for breast cancer (Fig. 4b–d). 

4. Discussion 

NAC can reduce or even fully eliminate the primary tumor and regional lymph nodes, which has gradually become an important 
part of the standard treatment of breast cancer. It is very important to find feasible methods that can predict the sensitivity of patients 

Table 3 
Prediction performance of different models for the testing set.  

Features Models AUC Sensitivity Specificity Accuracy 

Radiomics Logistic Regression 0.83 0.62 0.65 0.64 
Naïve Bayesian 0.79 0.62 0.78 0.74 
Random forest 0.81 0.50 0.95 0.83 
XGBoost 0.78 0.50 0.82 0.74 

Pathomics Logistic Regression 0.57 0.78 1.0 0.77 
Naïve Bayesian 0.59 0.25 0.86 0.70 
Random forest 0.60 0.62 0.78 0.74 
XGBoost 0.60 0.62 0.52 0.54 

Radiopathomics Logistic Regression 0.86 0.75 0.69 0.70 
Naïve Bayesian 0.91 0.88 0.91 0.90 
Random forest 0.79 0.37 0.91 0.77 
XGBoost 0.65 0.37 0.86 0.74  

Fig. 3. The receiver operating characteristic (ROC) curves of the radiomics signature(a), (d), the pathomics signature(b), (e), and the radio-
pathomics signature(c) (f) in the training and test cohorts. 
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to NAC and whether they will achieve pCR because these predictions can help some insensitive patients avoid the toxicity of NAC 
treatment and avoid missing the best time for surgery; they can also guide the choice of follow-up chemotherapy drugs for treatment- 
sensitive patients. In this study, radiological and pathological features were extracted from mp-MRI and WSI, respectively, several 
feature prediction models were established, and the effectiveness of the different prediction models was compared. The results showed 
that the feature combination model established by Naïve Bayesian method had the best overall performance in prediction of patho-
logical response after breast cancer patients received NAC; the optimal models of pathological features and radiological features alone 
were not as good as the combined model. 

Radiomics is a rapidly developing research field [5], and many researchers have used radiomics methods to predict the pathological 
response to neoadjuvant chemotherapy in breast cancer patients. In this study, only the prediction model based on radiomics features 
was used, AUC values of 0.78–0.83 could also be obtained on the testing set. Many researchers have also confirmed that radiomics 
models based on MRI can predict the pathological response to neoadjuvant chemotherapy in patients with breast cancer [23–25]. Liu 
et al. [26] evaluated the performance of a new predictive model using multiparametric MRI in patients with breast cancer and achieved 
an AUC of 0.86. After that, researchers further improved the diagnostic efficiency by improving the algorithm and model development 
process [27–29]. However, radiomics only extracts the atypical features of tumor tissue, while the pathological characteristics of the 
tumor cell dimension also play an important role in the clinical decision-making of breast radiotherapy and medical oncology [30]. 
Therefore, this study also extracted the pathomics features of patient biopsy sections. 

In contrast to radiomics, which largely relies on in vivo imaging, pathomics considers cell and subcellular biological information. 
This method has been applied and achieved good results in predicting the prognosis of renal cell carcinoma [31], diagnosing and 
predicting the survival of bladder cancer [32], and predicting the efficacy of neoadjuvant therapy in patients with rectal cancer [33]. 
However, pathomics is a recently established subfield, there are few relevant studies, and there is no standardized feature specification 
of radiomics systems for verification and calibration[34]. In this study, the AUC of the prediction model established by using pathomics 
alone was between 0.57 and 0.60, and the results were consistently not as good as those of the radiomics model, but the accuracy of the 
RPS model combining the radiomic and pathomics features was higher than those of the PS and RS models. Therefore, we speculate 
that more comprehensive information can be obtained by combining the tissue structure atypia of patients’ MRI and the cell atypia of 
pathological sections to better predict the pathological responses of patients. However, there were few pathomics features extracted, so 
in this study, the performance of models using pathomics alone was not good. When using pathomics features alone, the selected 
features are not consistent with the pathomic features used in the radiopathomics model, which may be because when modeling alone, 
the selected features cannot accurately represent the characteristics of patients’ tumor cells in the training set. After combining the two 
features, there are more types of features, and the selected features can better reflect the real data. Therefore, it is necessary to combine 
radiomic and pathomics features for joint modeling. In this study, the best AUC of the respective optimal models based on pathomic 
features only was 0.71, while using the combined features, it was 0.91. Meanwhile, the accuracy increased from 0.76 to 0.90. 

In this study, four modeling methods were used in conjunction with the three feature sets to obtain the best prediction model. The 
random forest algorithm performed relatively well on both data sets using only pathological or only radiological features (both AUC 

Fig. 4. Decision curve of the three models in the test data set (a) and calibration curves of the three models (b, c, d).  
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and ACC indicated high performance). This is because random forest is an integrated algorithm. Thus, it can handle both discrete data 
and continuous data. It is not sensitive to data and has strong adaptability to data sets. Additionally, random forest algorithm in-
troduces randomness to avoid overfitting. The model that achieves the best performance in the combined use of radiomic features and 
pathomics features data sets was Naive Bayes algorithm. Naive Bayesian algorithm is not sensitive to noise in high-dimensional data 
[35,36]. Because it only uses the important features to reduce the influence of noise information, the Naive Bayesian algorithm can 
achieve the best performance. 

In the RPS, the first three radiomics features with the highest coefficient were reference to as the wavelet- 
HHL_firstorder_Maximum_DWI, wavelet-HHL_glcm_InverseVariance_DWI, and wavelet-LHH_glcm_Imc2_T1. The first feature is the 
first-order feature extracted from the DWI sequence, which describes the distribution of gray-level pixel intensity in the image [37]. In 
this study, the larger the eigenvalue, the more likely it was for patients to achieve pCR. The latter two features are the GLCM (gray level 
cooccurrence matrix) features extracted from the DWI and T1 enhancement sequences, which are used to evaluate the combination of 
gray-level spatial dependence [38,39]. In this study, the coefficients of these two features were negative. With increases in these two 
feature values, the possibility of patients achieving pCR is smaller. 

The limitation of this study lies in the small number of cases and the lack of external verification. This is because there are few 
inpatients who meet the enrollment conditions, so it was difficult to obtain data from other research centers for external verification. 
Due to the recent introduction of pathomics and less extractable features, more researchers are needed to develop and standardize the 
features. 

5. Conclusion 

Overall, our research indicates that the combined analysis of functional, morphological and biological characteristics facilitates a 
comprehensive information platform for accurate and noninvasive prediction of the therapeutic effects of neoadjuvant chemotherapy 
in breast cancer patients. Therefore, the predictive model using multiparameter MR imaging combined with histopathology is 
conducive to the stratification of patients before treatment and can support more personalized and targeted clinical decision-making. 
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DCA: Decision curve analysis 
DCE: Dynamic contrast enhanced 
DWI: Diffusion weighted imaging 
ER: Estrogen receptor 
GLCM: Gray cooccurrence matrix 
GLDM: Gray level dependence matrix 
GLRLM: Gray level run length matrix 
GLSZM: Gray level size zone matrix 
H&E: Hematoxylin and eosin 
HER2: Human epidermal growth factor receptor 2 
ICCs: Intraclass correlation coefficients 
mp-MRI: Multiparametric magnetic resonance imaging 
MRI: Magnetic resonance imaging 
NAC: Neoadjuvant chemotherapy 
NGTDM: Neighbor gray tone difference matrix 
NPV: Negative predictive value 
pCR: Pathological complete remission 
PPV: Positive predictive value 
PR: Progesterone receptor 
PS: Pathomics signature 
ROC: Receiver operating characteristic 
ROI: Region of interest 
RPS: Radiopathomics signature 
RS: Radiomics signature 
WSI: Whole slide image 
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