
fped-10-874771 May 24, 2022 Time: 16:0 # 1

ORIGINAL RESEARCH
published: 30 May 2022

doi: 10.3389/fped.2022.874771

Edited by:
Sarah K. Tasian,

Children’s Hospital of Philadelphia,
United States

Reviewed by:
Marek Ussowicz,

Wrocław Medical University, Poland
Barbara Spitzer,

Memorial Sloan Kettering Cancer
Center, United States

*Correspondence:
Gabriel Levy

ga.levy@uclouvain.be

Specialty section:
This article was submitted to

Pediatric Hematology
and Hematological Malignancies,

a section of the journal
Frontiers in Pediatrics

Received: 13 February 2022
Accepted: 29 April 2022
Published: 30 May 2022

Citation:
Levy G, Kicinski M,

Van der Straeten J, Uyttebroeck A,
Ferster A, De Moerloose B,

Dresse M-F, Chantrain C, Brichard B
and Bakkus M (2022) Immunoglobulin

Heavy Chain High-Throughput
Sequencing in Pediatric B-Precursor

Acute Lymphoblastic Leukemia: Is the
Clonality of the Disease at Diagnosis

Related to Its Prognosis?
Front. Pediatr. 10:874771.

doi: 10.3389/fped.2022.874771

Immunoglobulin Heavy Chain
High-Throughput Sequencing in
Pediatric B-Precursor Acute
Lymphoblastic Leukemia: Is the
Clonality of the Disease at Diagnosis
Related to Its Prognosis?
Gabriel Levy1,2,3* , Michal Kicinski4, Jona Van der Straeten5, Anne Uyttebroeck6,
Alina Ferster7, Barbara De Moerloose8, Marie-Francoise Dresse9,
Christophe Chantrain10, Bénédicte Brichard3 and Marleen Bakkus5

1 de Duve Institute, Université Catholique de Louvain, Brussels, Belgium, 2 Ludwig Institute for Cancer Research, Brussels,
Belgium, 3 Department of Pediatric Oncology and Hematology, Cliniques Universitaires Saint-Luc, Université Catholique
de Louvain, Brussels, Belgium, 4 European Organization for Research and Treatment of Cancer (EORTC) Headquarters,
Brussels, Belgium, 5 Molecular Hematology Laboratory, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels,
Belgium, 6 Department of Pediatric Hemato-Oncology, UZ Leuven, Leuven, Belgium, 7 Department of Pediatric
Hematology-Oncology, Children’s University Hospital Queen Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium,
8 Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium,
9 Department of Pediatrics, Centre Hospitalier Régional (CHR) de la Citadelle, Liège, Belgium, 10 Division of Pediatric
Hematology-Oncology, Centre Hospitalier Chrétien (CHC) MontLégia, Liège, Belgium

High-throughput sequencing (HTS) of the immunoglobulin heavy chain (IgH) locus is a
recent very efficient technique to monitor minimal residual disease of B-cell precursor
acute lymphoblastic leukemia (BCP-ALL). It also reveals the sequences of clonal
rearrangements, therefore, the multiclonal structure, of BCP-ALL. In this study, we
performed IgH HTS on the diagnostic bone marrow of 105 children treated between
2004 and 2008 in Belgium for BCP-ALL in the European Organization for Research and
Treatment of Cancer (EORTC)-58951 clinical trial. Patients were included irrespectively
of their outcome. We described the patterns of clonal complexity at diagnosis and
investigated its association with patients’ characteristics. Two indicators of clonal
complexity were used, namely, the number of foster clones, described as clones with
similar D-N2-J rearrangements but other V-rearrangement and N1-joining, and the
maximum across all foster clones of the number of evolved clones from one foster
clone. The maximum number of evolved clones was significantly higher in patients
with t(12;21)/ETV6:RUNX1. A lower number of foster clones was associated with a
higher risk group after prephase and t(12;21)/ETV6:RUNX1 genetic type. This study
observes that clonal complexity as accessed by IgH HTS is linked to prognostic factors
in childhood BCP-ALL, suggesting that it may be a useful diagnostic tool for BCP-ALL
status and prognosis.

Keywords: minimal residual disease (MRD), BCP-ALL, clonal evolution analysis, prognostic factors, high-
throughput sequencing (HTS)
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KEY POINTS

1. IgH high-throughput sequencing allows new insights into the
clonal architecture of BCP-ALL.

2. A higher number of evolved clones at diagnosis of BCP-ALL
was associated with the presence of t(12;21)/ETV6:RUNX1.

3. Patients with a higher number of foster clones were patients in
the better prognosis group.

INTRODUCTION

B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is
the most common pediatric neoplasm (1, 2). It is a clonal
genetic heterogeneous disease generally thought to arise from the
malignant transformation and expansion of a single lymphoid
progenitor at various stages of development (3–5). The precise
pathogenetic events leading to the development of ALL are
still unknown, but evidence supports the hypothesis of driver
mutations followed by secondary events, that can occur in
subclones of the original leukemic cell following different
evolution patterns (5, 6).

Early in B-cell development, somatic recombinations at the
immunoglobulin heavy chain (IgH) locus give rise to unique
rearrangements resulting from the random coupling between
one of the many possible variable (VH), diversity (D), and
joining (JH) genes [V(D)J recombination or combinatorial
diversity], as well as imprecise joining of gene segments and the
addition of nucleotides to the DNA sequence at splice sites (N-
diversity or junctional diversity) (Figure 1) (7, 8). Identical IgH
rearrangements, which are a unique signature to B-cells, reflect
the clonal nature of a population, and reversely, the clonality of
B-cell populations can be assessed by IgH analysis. By extension,
IgH rearrangements constitute clonotypic markers and allow
high-resolution tracking of the architecture and clonal dynamic
of BCP-ALL cells (3, 9).

In fact, IgH studies in paired diagnosis, treatment follow-
up, and relapse samples revealed that leukemic cells maintain
ongoing IgH changes alongside the disease (10, 11), in particular
VH replacement. These changes give insight into the continuous
evolution of the BCP-ALL structure with a given number of
leukemic subclones that are present at diagnosis or can appear
during treatment and possibly reemerge at relapse alongside a
dominant clone (3, 9, 10).

Minimal residual disease (MRD), reflecting treatment
efficiency, is considered to be the strongest prognostic factor
in both children and adult ALL, independently of traditional
prognostic factors, such as age, blast count at diagnosis,
immunophenotype, or genetic abnormalities (12–15). The
term MRD describes a level of disease that is undetectable
by conventional cytomorphology and is not accompanied by
any clinical symptom. Current methods to monitor MRD in
ALL include multicolor flow cytometric (MFC) detection of
aberrant immunophenotypes, allele-specific oligonucleotide
RQ-PCR (ASO-PCR) amplification of immunoglobulin (Ig),
and T-cell receptor (TCR) genes and/or real-time quantitative
polymerase chain reaction (RQ-PCR) of fusion transcripts

(16–19). Although MFC, ASO-, or RQ-PCR methods are
used in a clinical setting and have proven reliable to reach
high sensitivity, they all have their own limitations. Among
those, MFC can lead to a false-negative finding if antigen
expression changes over the course of the disease, fusion
transcript RQ-PCR is applicable only in patients with target
fusion genes and faces limited standardization, and Ig/TCR
ASO-PCR is time-consuming as it needs optimization of patient-
specific reagents and assays, which themselves are prone to
false-negative results following clonal evolution of the disease
(16, 18).

Next-generation sequencing (NGS)-based methods, also
called deep- or high-throughput sequencing (HTS) methods, can
be used to monitor MRD by detailed sequencing of the V(D)J
junctions (16, 17, 20–23).

Next-generation sequencing methods have the advantage to
allow quick access to the full IgH repertoire of an individual,
without the necessity to develop personalized assays, and have
proven to give a more complete insight into the leukemic
population than conventional ASO-PCR at each time-point of
the MRD monitoring. In comparison to current methods of
MRD measurement that had limited to no capacity to monitor
the evolution of leukemic subclones during treatment, they
thus allow follow-up of subclones and/or identification of new
emerging clones throughout the evolution of the disease (3,
21, 24).

Therefore, these methods are sources of great promises, and
their major limitation in children resides currently in the need
for standardized bioinformatics methods to interpret thoroughly
the results of cohort studies to validate this approach (16, 23).

Along with their development for monitoring MRD, HTS
methods have also shed light on mechanisms associated with
leukemic clonal evolution that were previously underappreciated
and have allowed studying leukemic cell evolution according to
their niche. For example, Bartram et al. were able to demonstrate
that central nervous system (CNS) and bone marrow (BM) clones
are the same alongside the evolution of the disease and that BM
infiltration would be present at some level, even in apparently
isolated CNS relapse (25).

Comprehension of the molecular pathways involved in
V(D)J recombinations is still being investigated, as is their
relation with genetic instability and potential oncogenicity
(26). Papaemmanuil et al. demonstrated in 2014 the relation
between leukemogenesis in t(12;21)/ETV6:RUNX1 positive
childhood BCP-ALL leukemia and the RAG recombinase
activity, an endonuclease required for V(D)J recombination (27).
Furthermore, RAG-mediated aberrant recombinations might
also be involved in the evolution of t(9;22)/BCR-ABL positive
BCP-ALL (28, 29).

Nevertheless, to date, there is less understanding of the
association between the clonal architecture of the disease at
diagnosis and its clinical presentation or prognosis. In this study,
we investigated the association between the number of leukemic
clones, as defined by clonal IgH rearrangements, the number
of evolved clones, as defined by the same D-J stem, and the
characteristics of patients and known prognostic factors of BCP-
ALL at diagnosis.
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FIGURE 1 | Design of the experiments. On the left panel, the steps for the V(D)J somatic recombination of the IgH locus are represented. Diversity is enabled
through a random combination of one of many variables (V ), diversity (D), and joining (J) gene segments although the major contributor to the diversity of the
immunoglobulin repertoire is the variable truncation of the recombined gene segments in synergy with the addition of non-templated (N) nucleotides, the so-called N
regions within the rearrangements (8). Index clones were designated as clones representing ≥5% of the individual clonotypes with the same V(D)J rearrangement.
Analysis of the V(D)J-sequence allowed identification of related foster clones among index clones. Foster clones were defined as clones with similar D-N2-J
rearrangements, but other V-rearrangements and N1-joining, regardless of their percentage. Evolved clones were clones related to the index and foster clones by
sharing the same or partly the same D-J stem, regardless of their frequency. The total number of clones per patient was the sum of evolved clones, and the
maximum number of evolved clones was the highest number of evolved clones across all foster clones.

MATERIALS AND METHODS

Samples
The samples of this study originated from patients registered
in the European Organization for Research and Treatment of
Cancer (EORTC)-58951 study for the treatment of ALL or
lymphoblastic non-Hodgkin’s lymphoma in children between
one and 18 years (Supplementary Figure 1) (30, 31).

A subgroup of Belgian patients treated for BCP-ALL
between 2004 and 2008 was systematically reviewed for IgH
recombinations. Diagnostic BM samples with a clonal IgH
rearrangement and sufficient leftover material were retained for
the study. The patients were selected with no knowledge of their
outcomes. A total of 105 samples that fulfilled inclusion criteria
were used for NGS analysis.

Mononuclear cells (MNCs) had been separated by
LymphoprepTM density gradient centrifugation (Elitech – Cat.
No. AX-1114547) from BM aspirates at diagnosis, and genomic
DNA was extracted using the QIAamp R© DNA Blood Mini Kit
(QIAGEN R©). The DNA was stored at −20◦C for later use.

V(D)J Sequence Analysis
Next-generation sequencing for IgH was performed using
the LymphoTrack R© IGH FR1-MiSeq R© kit (Invivoscribe R©, Cat.
No. 91210039). A maximum of 50 ng diagnostic DNA was

amplified and sequenced. The primers used for sequencing
targeted the framework region 1 (FR1) and the JH region.
The library was sequenced with the MiSeq R© device (Illumina R©,
2 × 250 cycles) at a final concentration of 14 pM and 1%
PhiX. A minimum of 20.000 reads had to be obtained for
each sample. Sequencing results were aligned with IMGT/V-
QUEST (7).

Definitions Used for the Classification of
the Clones
Index clones: the frequency of every clonotype in each
sample was determined by calculating the number of
sequencing reads for each clonotype divided by the
total number of sequencing reads in the sample. In
line with former studies (3, 32), an index clone was
designated as a clone representing ≥5% of the individual
clonotypes (Figure 1).

Foster clones: analysis of the V(D)J-sequence allowed
identification of related foster clones among index clones.
Foster clones were defined as clones with similar D-N2-J
rearrangements, but other V-rearrangement and N1-joining,
regardless of their percentage. The foster clones were
manually sorted by searching all the sequences with the
same D-N2-J region; a minimum of 1/2 of the D-region
was used. In case of no D-region, a minimum of 1/2 of the
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N-region was used. A foster clone indicator was given to
each foster clone.

Evolved clones: clones related to the foster clone by sharing the
same or partly the same D-J stem, regardless of their frequency.
The total number of evolved clones per patient was defined as
the sum of clones across all index clones, where the number of
clones per index clone was equal to the number of clones evolved
from the index clone +1 (as the number of evolved clones did not
include the original index clone).

To abrogate the arbitrary 5%-limit designating the index
clones, two indicators of clonal complexity were used for the
statistical analysis:

(1) The number of foster clones.
(2) The maximum across all foster clones of the number

of evolved clones from one foster clone (referred to as
the maximum number of evolved clones hereafter). This
number included the foster clone itself.

Description of the Population and
Disease
The following covariates were considered in the description of the
population and for the assessment of prognostic categorization:
sex, age at diagnosis (1 to <5 vs. 5 to <10 vs. ≥ 10 years), white
blood cell (WBC) count at diagnosis (<10 × 109/L vs. 10 × 109

to <50 × 109/L vs. ≥50 × 109/L), initial CNS involvement
(CNS-1 vs. others) (30, 31), National Cancer Institute (NCI)
risk group (33), EORTC risk group after prephase, and ALL
genetic type. EORTC risk group was defined as in the 58951 trial
analysis [initial very low risk (VLR) vs. average risk 1 (AR1) vs.
AR2 vs. very high risk (VHR)] (30, 31). ALL genetic type was
classified as: t(12;21)/ETV6:RUNX1 abnormality determined by
FISH vs. hyperdiploidy vs. others. Hyperdiploidy (yes vs. no)
was defined as in previous EORTC studies (>50 chromosomes,
DNA index, and FISH used in case of no reliable cytogenetic data
available) (34).

Statistical Analysis
We studied the association between clonal complexity as
indicated by the number of foster clones and the maximum
number of evolved clones and other patients’ characteristics. For
the continuous covariates (age and WBC count) and the ordinal
covariate EORTC risk group (VLR vs. AR1 vs. AR2 vs. VHR), the
Spearman test was used. For the covariates with two categories
(sex, NCI risk group, and initial CNS involvement defined as
CNS-1 vs. other) and the nominal covariate ALL genetic type
[t(12;21)/ETV6:RUNX1 vs. hyperdiploidy vs. other], the Kruskal–
Wallis test was used. All tests were performed at a two-sided
significance level of 0.05. The analysis was performed using
SAS version 9.4.

Ethical Approval
Agreement for clinical and biological research according to local
and international guidelines had been issued at the time of
inclusion in the EORTC-58951 clinical trial. DNA samples from

leukemic cells were issued from archived material issued for
diagnostic and follow-up purposes.

RESULTS

Description of the Population
The description of the population is summarized in Table 1.
Among the patients from the EORTC-58951 study, 105 who
entered the trial between 2004 and 2008 meeting the inclusion

TABLE 1 | Description of the population.

Patients (N = 105)

N (%) or median

Sex

Male 60 (57.1)

Female 45 (42.9)

Age, years

Median 4.1

1 to <5 63 (60.0)

5 to <10 25 (23.8)

≥10 17 (16.2)

WBC, 109/l

Median 9.5

<10 55 (52.4)

10 to <50 35 (33.3)

≥50 15 (14.3)

NCI risk group

Standard risk 75 (71.4)

High risk 30 (28.6)

EORTC risk group after prephase

VLR 23 (21.9)

AR1 63 (60.0)

AR2 9 (8.6)

VHR 10 (9.5)

Initial CNS involvement

CNS-1 92 (87.6)

CNS-2/TLP+ 11 (10.5)

Missing 2 (1.9)

t(12;21)/ETV6:RUNX1

No 75 (71.4)

Yes 27 (25.7)

Missing 3 (2.9)

Hyperdiploidy

No 62 (59.0)

Yes 39 (37.1)

Missing 4 (3.8)

Hypodiploidy

No 94 (89.5)

Yes 2 (1.9)

Missing 9 (8.6)

WBC, white blood cell; NCI, National Cancer Institute; EORTC, European
Organization for Research and Treatment of Cancer; VLR, very low risk; AR-1/2,
average risk 1/2; VHR, very high risk; CNS, central nervous system.
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TABLE 2 | Distribution of the number of index clones and foster clones.

Number of foster clones

1 (N = 29) 2 (N = 58) 3 (N = 17) 4 (N = 1) Total (N = 105)

N (%) N (%) N (%) N (%) N (%)

Number of
index clones

1 26 (89.7) 0 (0.0) 0 (0.0) 0 (0.0) 26 (24.8)

2 2 (6.9) 46 (79.3) 0 (0.0) 0 (0.0) 48 (45.7)

3 1 (3.4) 9 (15.5) 15 (88.2) 0 (0.0) 25 (23.8)

4 0 (0.0) 2 (3.4) 2 (11.8) 0 (0.0) 4 (3.8)

5 0 (0.0) 0 (0.0) 0 (0.0) 1 (100.0) 1 (1.0)

8 0 (0.0) 1 (1.7) 0 (0.0) 0 (0.0) 1 (1.0)

criteria of BCP-ALL with the target for the IgH study were
selected (Supplementary Figure 1). There were 75 patients
(71.4%) with NCI standard-risk leukemia and 30 (28.6%) with
NCI high-risk leukemia. According to the EORTC risk group, 23
patients (21.9%) were in the VLR group, 63 (60.0%) in the AR1
group, 9 (8.6%) in the AR2 group, and 10 (9.5%) in the VHR
group. Leukemia involved t(12;21)/ETV6:RUNX1 abnormality in
27 cases (25.7%) and hyperdiploidy in 39 cases (38.6%).

Descriptive Statistics of the Number of
Clones
The number of index clones was 1 for 24.8%, 2 for 45.7%, 3
for 23.8%, and greater than 3 for 5.7% of the patients (Table 2
and Supplementary Table 1). The number of foster clones was
1 for 27.6%, 2 for 55.2%, 3 for 16.2%, and 4 for 1.0% of the
patients. The median of the total number of evolved clones per
patient was 13 (range: 1–1,046). The median number of the
maximum number of evolved clones was 9 (range: 1–734). The
maximum number of evolved clones was weakly associated with
the number of foster clones (Spearman correlation: rho = 0.20,
p = 0.04) (Figure 2A). On the log scale, there was a strong linear

association between the total number of clones and the maximum
number of evolved clones, indicating that among patients with
many evolved clones, the clones typically evolved from the same
foster clone (Figure 2B).

Associations Between Clonal Complexity
and Baseline Characteristics of the
Patients
We found no significant association between the number of foster
clones and the covariates sex, age, WBC count at diagnosis, initial
CNS involvement, or NCI risk group (Table 3). Patients in lower
EORTC risk groups had more foster clones than patients in
higher-risk groups (p = 0.007). The genetic type was associated
with the number of foster clones as well (p = 0.032), with patients
with t(12;21)/ETV6:RUNX1 having a smaller number of foster
clones. Among patients with t(12;21)/ETV6:RUNX1, 7.4% of
the patients had three or four clones, as compared with 25.6%
among patients with hyperdiploidy and 17.1% of patients with
other genetic types.

There was no significant association between the covariates
sex, age, WBC count at diagnosis, NCI, EORTC risk group,
or initial CNS involvement and the maximum number of
evolved clones (Table 4). However, the maximum number
of evolved clones was strongly associated with the genetic
type (p = 0.002) (Table 4 and Figure 3). Patients with
t(12;21)/ETV6:RUNX1 had significantly more evolved clones
than patients with hyperdiploidy or other genetic abnormalities.
The median of the maximum number of evolved clones was
54 for t(12;21)/ETV6:RUNX1, 5 for hyperdiploidy, and 6 for
other genetic types.

DISCUSSION

To analyze the correlation between clonal complexity of leukemia
at diagnosis and described prognostic risk factors, we chose in
this study the categories of foster clones and evolved clones

FIGURE 2 | The number of foster clones, the maximum number of evolved clones, and the total number of clones. (A) The thick horizontal lines represent the
medians and the boxes indicate the first and the third quartiles of the maximum number of evolved clones. Each point shows data for one patient. (B) The colors
indicate the number of foster clones. Each point shows data for one patient.
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TABLE 3 | Associations between the number of foster clones and patients’
characteristics.

Number of foster clones

1 (N = 29) 2 (N = 58) 3 (N = 17) 4 (N = 1) p-Value

N (row %) N (row %) N (row %) N (row %)

Sex 0.076

Male 14 (23.3) 32 (53.3) 14 (23.3) 0 (0.0)

Female 15 (33.3) 26 (57.8) 3 (6.7) 1 (2.2)

Age, years 0.59

1 to <5 16 (25.4) 37 (58.7) 10 (15.9) 0 (0.0)

5 to <10 8 (32.0) 13 (52.0) 4 (16.0) 0 (0.0)

≥10 5 (29.4) 8 (47.1) 3 (17.6) 1 (5.9)

WBC, 109/l 0.45

<10 12 (21.8) 32 (58.2) 10 (18.2) 1 (1.8)

10 to <50 12 (34.3) 19 (54.3) 4 (11.4) 0 (0.0)

≥50 5 (33.3) 7 (46.7) 3 (20.0) 0 (0.0)

Initial CNS
involvement

0.75

Number of
observations

28 57 17 1

CNS-1 25 (27.2) 50 (54.3) 17 (18.5) 0 (0.0)

CNS-2/TLP+ 3 (27.3) 7 (63.6) 0 (0.0) 1 (9.1)

NCI risk group 0.72

Standard risk 20 (26.7) 44 (58.7) 11 (14.7) 0 (0.0)

High risk 9 (30.0) 14 (46.7) 6 (20.0) 1 (3.3)

EORTC risk
group after
prephase

0.007

VLR 2 (8.7) 14 (60.9) 7 (30.4) 0 (0.0)

AR1 20 (31.7) 33 (52.4) 9 (14.3) 1 (1.6)

AR2 2 (22.2) 7 (77.8) 0 (0.0) 0 (0.0)

VHR 5 (50.0) 4 (40.0) 1 (10.0) 0 (0.0)

Genetic type 0.032

Number of
observations

28 55 17 1

t(12;21)/
ETV6:RUNX1

11 (40.7) 14 (51.9) 2 (7.4) 0 (0.0)

Hyperdiploidy 6 (15.4) 23 (59.0) 10 (25.6) 0 (0.0)

Other 11 (31.4) 18 (51.4) 5 (14.3) 1 (2.9)

WBC, white blood cell; CNS, central nervous system; NCI, National Cancer
Institute; EORTC, European Organization for Research and Treatment of Cancer;
VLR, very low risk; AR-1, –2, average risk-1, –2; VHR, very high risk.

from the foster clone. The notion of index clone, as described
since the first studies on IgH HTS, takes indeed separately into
account each clone with a frequency higher than 5% (3). By
manually analyzing the D-N2-J sequences, we could gather index
clones belonging together, sharing the same D-N2-J stem, thus
originating from the same foster clone. Then, manual sorting
allowed us to describe precisely the number of evolved clones,
regardless of their percentage. The numbers of foster clones
and of evolved clones from the foster clones were significantly
associated. Leukemia with a higher number of foster clones had
also more evolved clones.

A majority of patients had two foster clones. This observation
was enabled by the fact that we considered the foster clones rather
than the index clones and would be in line with Alves-Pereira
et al. (35), who showed in 2014 that both IgH alleles are recruited
independently and in parallel during V(D)J recombination in

TABLE 4 | Associations between the maximum number of evolved clones and
patients’ characteristics.

N Min Q1 Median Q3 Max p-Value

Sex 0.59

Male 60 1 3.5 9.5 55.5 734

Female 45 1 3.0 8.0 64.0 306

Age, years 0.072

1 to <5 63 1 4.0 13.0 64.0 734

5 to <10 25 1 4.0 12.0 36.0 172

≥10 17 1 2.0 3.0 57.0 159

WBC, 109/l 0.49

<10 55 1 3.0 7.0 50.0 734

10 to <50 35 1 3.0 17.0 113.0 520

≥50 15 1 3.0 12.0 36.0 371

Initial CNS involvement, N = 103 0.78

CNS-1 92 1 3.0 9.5 61.5 734

CNS-2/TLP+ 11 1 2.0 9.0 32.0 216

NCI risk group 0.065

Standard risk 75 1 4.0 13.0 65.0 734

High risk 30 1 2.0 4.0 36.0 371

EORTC risk group 0.48

VLR 23 1 3.0 5.0 20.0 153

AR1 63 1 4.0 16.0 79.0 734

AR2 9 1 2.0 9.0 36.0 371

VHR 10 1 1.0 8.5 32.0 172

Genetic type, N = 101 0.002

t(12;21)/ETV6:RUNX1 27 1 7.0 54.0 131.0 520

Hyperdiploidy 39 1 3.0 5.0 21.0 306

Other 35 1 2.0 6.0 25.0 734

Min, minimum; Q1, first quartile; Q3, third quartile; Max, maximum; WBC, white
blood cell; CNS, central nervous system; NCI, National Cancer Institute; EORTC,
European Organization for Research and Treatment of Cancer; VLR, very low risk;
AR-1, –2, average risk-1, –2; VHR, very high risk.

pre-B cells. This process of rearrangement is regulated by
feedback mechanisms that are set up once a productive VH
to DJH joining took place and which are partly lacking in
leukemic cells (11). It has also been suggested that the pattern
of ongoing rearrangements in an individual patient reflects the
IgH rearrangement status of the precursor cell at the time of
malignant transformation (11). As the idea of a monoclonal
origin of ALL is nowadays undermined by many studies that
reported that up to 40% of BCP-ALL are (at least) oligoclonal
at diagnosis (3, 36), this might explain why 18 patients had
more than two foster clones (17%). Furthermore, it is not known
what proportion of cells rearrange the alleles synchronously
(35), which could also account for leukemic cell lines with only
one foster clone.

In patients with t(12;21)/ETV6:RUNX1, there were
significantly less foster clones but the maximum number
of evolved clones was higher. The t(12;21)/ETV6:RUNX1
translocation is present in around 25% of childhood BCP-
ALL (5) and is related to a better prognosis (37). This would
therefore be in line with the fact that patients who had more
clonal evolutions also belonged more often to the EORTC
VLR or AR1 risk.
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That patients with t(12;21)/ETV6:RUNX1 had significantly
less foster clones, and a higher maximum number of evolved
clones could confirm results obtained in 2004 by Hübner
et al. on t(12;21)/ETV6:RUNX1 BCP-ALL, who found that
t(12;21)/ETV6:RUNX1 BCP-ALL had a higher number of Ig/TCR
rearrangements but with lower IgH oligoclonality (38).

Biologically, t(12;21)/ETV6:RUNX1 would appear early in
leukemic blasts (39) and lead to an arrest in B-cell differentiation
but would not be sufficient to induce leukemia (29). The
critical secondary events leading to leukemic transformation
in t(12;21)/ETV6:RUNX1 BCP-ALL would frequently be
linked to genomic rearrangements mediated by aberrant
RAG recombinase activity (27), which is increased in
t(12;21)/ETV6:RUNX1 BCP-ALL (40, 41). The fact that RAG
activity plays an important role in V(D)J rearrangement (26,
42) might furthermore explain why we found significantly more
clonal evolution in the patients who had t(12,21)/ETV6:RUNX1
positive BCP-ALL.

The RAG activity is however not only increased in
t(12;21)/ETV6:RUNX1 BCP-ALL and is found, for example, in
BCR-ABL1 ALL (28), which were considered of bad prognosis
before the availability of tyrosine kinase inhibitors (43). ALL
with KMT2A translocation in infants are also known to be
oligoclonal and are of worse prognosis (36, 44). Moreover, if
RAG activity would be responsible for secondary translocations
in t(12;21)/ETV6:RUNX1 BCP-ALL, they seem neither to be the
cause of the latter translocation nor explain early translocations
in fetal life (45). Besides, the relation between the number of
clones and the molecular characteristics of the leukemic cells has
not been established so far and relies on much more complex and
multifactorial mechanisms than RAG activity, which intervenes
at the cleavage phase. In 2014, Gawad et al. (46) individually
sequenced 1,479 single tumor cells from six patients with BCP-
ALL. In addition to the clonal structure of the disease, they
showed how deletions, IgH sequences, and specific mutations
segregated between clones. They also confirmed (19, 47) that
ongoing V(D)J recombination of variable magnitude between
different clones in the same patient could occur in the most
evolved clones. Generalization of their results might however
be difficult, as five out of the six patients in the study harbored
t(12;21)/ETV6:RUNX1.

In their first HTS study (3), Gawad et al. showed the
multiplicity of the potential evolution of leukemic cells. We found
between 1 and 1,046 evolved clones per patient in our study.
This number differed greatly in different studies, between 1 and
4,025 in the study by Gawad et al. (3), between 1 and 6,934 in
the study by Faham et al. (17), or between 9 and 59 in the study
by Bashford-Rogers et al. (9). Nevertheless, most studies do not
refer to the total number of evolved clones, and the phylogeny
of the leukemic cells is not always taken into account in HTS
studies. The evolution of the IgH repertoire defining the evolved
clones as seen by HTS needs however to be studied deeper, as
it seems to progress separately from the mutational evolution of
subclones (6, 48), or even from the changing immunophenotype
of subclones (46) alongside the disease and at relapse (49).

With the generalization of HTS as a new way to efficiently
monitor MRD (18), there is all the more a need for the

FIGURE 3 | The maximum number of evolved clones vs. genetic type. The
thick horizontal lines represent the medians and the boxes indicate the first
and the third quartiles of the maximum number of evolved clones. Each point
shows data for one patient.

consensual definition for clones and subclones, as MRD is
another independent prognostic marker of BCP-ALL, if not
the most important (12, 13, 15). A European network, the
EuroClonality-NGS Consortium was created to tackle these
questions (23) as software are being designed and tested (20,
22, 50, 51) for monitoring MRD by HTS. This study gives
insight into the problems that have to be considered whenever
leukemic clones are defined by their clonal IgH sequence. The
question remains whether evolved clones are part of the leukemic
clone and thus have to be monitored in the MRD testing or
just an epiphenomenon reflecting the maturation phase of the
leukemic clone. Moreover, we based our study on index clones
(and consecutively, on foster clones) defined as clones above the
threshold of five percent of the individual clonotypes (3, 32). With
evolving HTS technics and deeper sequencing, this definition
could also vary and lead to another comprehension of the clonal
landscape of leukemias.

Finally, we found no statistically significant association
between the other characteristics and prognostic factors for
leukemia in children (sex, age, WBC count at diagnosis, NCI
risk group, or initial CNS involvement) and the number of foster
clones and evolved clones. One possible explanation for this is the
relatively small number of cases investigated. Although this study
constitutes one of the biggest cohorts on IgH HTS at diagnosis,
the sample size would not have allowed enough statistical power
to analyze the association between clonal complexity and EFS or
other described prognostic factors of pediatric leukemia, which
is indeed a very heterogeneous disease with many prognostic
factors present only in small subsets of patients, as, for example,
genetic abnormalities (52, 53). Furthermore, only patients with
IgH recombinations were included in this study and we did
not investigate the association between the absence of IgH
recombination (which stipulated an exclusion from our cohort)
and belonging to a particular group of risk. Ding et al., among
others, suggested that it might be interesting to also look at
recombinations of the TCR, even in patients with BCP-ALL, as
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around 10% of their cohort of patients with BCP-ALL expressed
a dominant TCR rearrangement (24 cases out of 219 patients
with ALL) (49), while the so-called illegitimate rearrangements –
TR rearrangements in BCP-ALL – have been identified in up to
80–90% of patients with BCP-ALL (54, 55). Likewise, some 40%
of BCP-ALL also carry an IGK rearrangement (54). We focused
our study on diagnostic blasts as sequencing of relapse samples
was not available to us. Studies targeting the evaluation of HTS
for MRD monitoring will hopefully allow gaining access to such
data (20).

Furthermore, we limited our study to IgH sequencing and
did not look at BCR expression. It has been shown that many
ALL carry non-productive BCR/TCR (56) in both alleles or
the only expressed dominant allele, which was suggested to
support the hypothesis that BCR might act as a tumor suppressor
in most cases of B-precursor ALL (57). This might therefore
also be looked at when considering prognostic factors and
IgH rearrangements.

One interesting point in our study remains that we considered
the number of clones and evolved clones as a potential individual
and isolated prognostic marker of the disease, a question not
referred to in studies on clonality in BCP-ALL. There is to date
less knowledge of the link between genetic alterations in BCP-
ALL and recombinations of the IgH or TCR, although some
authors suggested a role of some genetic aberrations or age at
diagnosis (38, 55, 58, 59). New methods to dig into clonality as
single-cell DNA amplicon sequencing (60) could help understand
those mechanisms and be combined with sequencing of the IgH
or TCR.

Our study does not allow the proclamation of the number of
foster clones or of evolved clones from the foster clone as new
and prognostic factors for childhood BCP-ALL. Further studies
on a bigger scale would be needed to support this hypothesis
and might end up in subclonal analyses being part of compound
prognostic scores. The generalization of HTS methods for the
measurement of MRD might bring opportunities to gain access
to such HTS data of diagnostic and follow-up ALL samples.
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