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Using static method to measure
tolmetin solubility at different
pressures and temperatures

in supercritical carbon dioxide

Mahboubeh Pishnamazi'%3, Samyar Zabihi*, Pegah Sarafzadeh®, Fatemeh Borousan®’:,
Azam Marjani®*®, Rasool Pelalak! & Saeed Shirazian*!2

Tolmetin is a non-steroidal anti-inflammatory drug being used to decrease the level of hormones
which are the reasons for pain, swelling, tiredness, and stiffness for osteoarthritis and rheumatoid
arthritis cases. We evaluated its solubility in supercritical carbon dioxide (SC-CO,) with the aim of drug
nanonization, considering temperature and pressure variations between 120 and 400 bar and 308-
338 K, in the experiments. In this way, a PVT solubility cell based on static solubility approach coupled
with a simple gravimetric procedure was utilized to evaluate the solubility of tolmetin. The solubility
values between 5.00 x 10~° and 2.59 x 1073 mol fraction were obtained for tolmetin depending on the
pressure and temperature of the cell. The measured data demonstrated a direct correlation between
pressure and solubility of tolmetin, while the effect of temperature was a dual effect depending on the
crossover pressure (160 bar). The calculated solubility data were modeled using several semi-empirical
correlations, and the fitting parameters were calculated using the experimental data via appropriate
optimization method. The correlated solubility data revealed that the KJ model was the most accurate
one with an average absolute relative deviation percent (AARD%) of 6.9. Moreover, the carried out
self-consistency analysis utilizing these correlations illustrated great potential of these models to
extrapolate the solubility of tolmetin beyond the measured conditions.

In general, it is claimed that using non-steroidal anti-inflammatory drugs (NSAIDs) can enhance the risk of heart
attack or a stroke for the people who take these drugs unfortunately without warning. Basically, the NSAIDs rise
the probability risks of significant cardiovascular thrombotic problems, myocardial infarction, and stroke with a
direct correlation to the duration and dosage of its use. Tolmetin, taken for osteoarthritis, rheumatoid arthritis,
ankylosing spondylitis and juvenile rheumatoid arthritis, is one among the approved NSAIDs. Tolmetin is a drug
from the acetic-acid derivative class similar to sulindac, diclofenac, and indomethacin"* Unfortunately, similar
to the other drugs of NSAIDs family, tolmetin is totally well-tolerated, with some side effects such as headache,
and dizziness. Moreover, some significant problems can originate from NSAIDs usage such as gastrointestinal
ulceration and bleeding, increased risk for cardiovascular disease, renal dysfunction, and hypersensitivity reac-
tions including anaphylaxis, exfoliative dermatitis, and Stevens-Johnson syndrome®. Respecting these facts, it
seems necessary to enhance the efficacy of this drug concomitant with lowering its required dosage.
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One of the efficient ways to justify these purposes is the micronization/nanonization process in order to pre-
pare drug particles with small particle size and high surface area’. In detail, if a drug introduces a low solubility
in water, it can be subjected to a micronization process to reduce its size to a value below 10 um? since according
to Noyes—Whitney model, particle size reduction can substantially enhance the drug bioavailability of poorly
soluble substances if their size reduce to micron or nano level**. Moreover, as the drug particles reduce to values
below 5 um, a thinner diffusion layer around the particles would be established and the rate of drug absorption
is not affected anymore by the hydrodynamics in the gastrointestinal tract leading to more effectiveness of the
drug in the body®’. Respecting these facts, several micronization processes are proposed during the past decades
among which, using supercritical fluid (SCF)-based technologies mostly utilize carbon dioxide (CO,) as the
main solvent, is one of the most recently proposed methods to micronize different drugs including diclofenac®,
sulindac’, fenoprofen'?, piroxicam'!, etc.

Regardless of the utilized methods, all of them require the drug solubility in supercritical solvents at vari-
ous operational conditions since these parameters can indicate the required size of the equipment or other
operating conditions. In this way, several works have been done for measuring solubility of potential drugs
in supercritical carbon dioxide such as phenylepherin hydrochloride'?, sulindac, fluoxetine hydrochloride!,
trioctylmethyl ammonium', piroxicam'®, etc.!”-2!. Unfortunately, since measuring the experimental values of
the solubility for all of the substances at the wide range of temperature and pressure is impossible, it is highly
required to utilize models and correlations which can simulate solubility values of them under various pressures
and temperatures such as equations of state (EOS)*>?, artificial neural network?*?, and, semi-empirical density
based correlations®>?”. Among the possible modeling approaches, semi-empirical density based correlations are
one of the widely utilized and examined model since, (a) the required mathematical approach for solving these
correlations is mostly simple which only needs multiple regression methods, and (b) they just need pressure,
temperature, and density values at the corresponding pressure and temperature which are quickly and accu-
rately measurable. So, there is no need for estimated parameters during the modeling approach to make them
more reliable and accurate compared with the aforementioned methods. These correlations have been used and
validated in literature for prediction of solubility***’.

Considering these facts, the solubility of tolmetin in SC-CO, using a PVT cell linked with well-known gravi-
metric technique is measured under wide ranges of pressures (120-400 bar) and temperatures (308-338 K) for
the first time since there is no report regarding the solubility of this drug in the literature. This drug was selected
as the sample drug since there is no report regarding its solubility in SC-CO, according to the best knowledge of
the authors. Besides, the calculated solubility results were correlated using five different three-parameter semi-
empirical correlations which are density-based thermodynamic models mainly used for solubility predictions.
These models include: Bartle et al.*°, Garlapati and Madras?’, Mendez-Santiago and Teja (MST)?', Chrastil*, and
Kumar-Johnston (KJ)*. For this purpose, a multiple regression method was used to find the fitting parameters
of each correlation making anyone to reproduce and correlate the solubility of tolmetin in various pressures and
temperatures. Finally, the extrapolative capability of these correlations was examined using self-consistency test
since this capability is an undeniable and favorable potential of any predictive method.

Experimental

Materials. Tolmetin (C,;H;;NO;), CAS number of 26171-23-3, with molecular weight of 257.29 g gmol™!
was selected as the sample drug for solubility measurement in the current investigation. Tolmetin was purchased
from Matrix Scientific (>95% purity) and was also further treated using CO, (purity>99.8%) at 338 K and
500 bar to purify it**.

Solubility tests. A solubility test apparatus was designed and employed in this work to measure the solubil-
ity values of tolmetin at different pressures and temperatures. The apparatus was designed by Fanavari Atiyeh
Pouyandegan Exir Company (Arak, Iran), and is shown in Fig. 1. The applicability and reliability of the system
has been validated in our previous publication for measuring Fenoprofen solubility in supercritical CO,*. The
system operates based on gravimetric method in which the weight of sample before and after the test is meas-
ured to obtain the values of solubility. As shown in Fig. 1, the heart of process is the PVT cell (volume=0.4 L)
which is used for the solubility tests at various temperatures and pressures using the designed control system
connected to the cell. In the liquefaction unit of the process, supercritical CO, is generated and sent to PVT cell
after passing through the booster, filtering, and surge tank units. All experiments were conducted in triplicate,
and the average values are reported. The detailed description of procedure and solubility measurements can be
found elsewhere'81%2134,

Results and discussion

Experimental results. In measuring the solubility of tolmetin, eight different pressures (120 to 400 bar,
interval 40 bar) were set, while the cell temperatures were set at four values, i.e. 308, 318, 328, and 338 K. The
measurements were repeated three times, and the statistical analysis indicated that the highest value of relative
standard deviation was 8.6%, and the average relative standard deviation of 6.2% was calculated, confirming the
acceptable level of reproducibility of the measurements.

The experimental solubility data of tolmetin is shown in Fig. 2 and listed in Table 1 along with standard devia-
tion (SD) values for the measurements. It turned out that the tolmetin solubility values lie between 5.00 x 10~
and 2.59 x 107® mol fraction (see Table 1). It is clearly observed that the tolmetin solubility is a strong function of
temperature and pressure. The effect of pressure on solubility is shown to be increasing, however sharper change
is observed at higher temperatures, e.g. 338 K. On the other hand, the effect of temperature is initially decreas-
ing, and then increasing after a certain point (around 160 bar). This point is known as cross-over point in which
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Figure 1. SC-CO, drug solubility apparatus'®. Reprinted from'®, Copyright (2020), with permission from

Elsevier.
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Figure 2. Solubility values of tolmetin.

T/K

308 318 328 338
P/bar |y SD y SD y SD y SD
120 1.39%x107* | 1.20x107° | 8.83x10° |5.06x107° |6.80x107° |1.46x10° |5.00x10° |2.68x10°°
160 239%x107* | 1.89x107° |2.35%x10™* | 1.05x107° | 1.86x10° |532x107° | 1.82x107* |4.99x10°°
200 297x107% | 1.51x107° [3.65x10™* |2.21x10° |4.69%x107* |3.28x107° |4.93x10™* |2.32x107°
240 3.55x107* | 1.89x107° | 4.70x107* |2.56x107° | 6.64x10™* [4.16x10° | 8.41x107* |5.69x107°
280 421x107* |2.84x107° | 6.34x107* [4.73x107° |8.74x10™* | 6.98x107° |1.24x107° |7.65x107°
320 498x107* |2.34x107° |7.85x10™* |552x10° | 1.18x107 |1.44x107° | 1.65x10° | 1.11x107*
360 553x107" | 4.44x10° |9.40%x107* |6.44x107° |132x107° |7.81x10° |2.06x107° |1.72x107*
400 6.30x10* | 540x107° | 1.11x107 [7.17x10° | 1.71x107 | 1.09x107* |2.59x107° |2.06x107*

Table 1. Solubility of tolmetin. Standard uncertainty (u), are u (T)=0.1 K and u (P) =0.35 bar.
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Constants
Models (AARD%)?* Mathematical equation of model a b c
Bartle et al. (11.3%) In (‘%’) =a+br /e (0~ pup) 25.9 ~9480 | 0.0122
Mendez-Santiago-Teja (10.2%) | T .1n ( 5?5) —a+b T/K+c-p/kg-m—> |12662- |27.205 |3.93
Kumar and Johnstone (6.9%) Iny=a+ b/T/K +¢-p/kmol- m™3 7.71 -7094.4 | 0.361
Chrastil (12.3%) Ins/kg-m~3 =a+ b/T JK+ ¢ Inp/kg- m—3 | -7149.3 |24.404 7.03
Garlapati and Madras (12.1%) Iny =a+b/T/K + cln(p/kg - m—3 T/K) -66.58 | —5202 6.025

Table 2. Fitting parameters of semi-empirical density-based correlations. *“AARD% =100 x ¥, ((y<*lc —y*®)/
yo).

the influence of temperature on tolmetin solubility changes. In fact, as PVT cell pressure is kept below 160 bar,
an enhancement in the cell temperature caused a reduction in tolmetin solubility while in the pressures greater
than this value, enhancing temperature may more effectively activate the sublimation pressure modification
which can compensate the density decrement effect due to temperature enhancement, consequently causes more
solubility of tolmetin. Furthermore, the observation of cross-over pressure point in the solubility data confirm
the reliability of data for tolmetin solubility, as reported by Foster et al.*.

Modeling. The finding results of solubility are correlated via five semi-empirical thermodynamic equations
for predicting tolmetin solubility. The modelling results are shown in the Table 2 and Fig. 3. Measuring tolmetin
solubility values applying the fitting parameters listed in Table 2 for all models, demonstrated the modeling
possibility of the solubility results of tolmetin include AARD% of about 11.3%, 10.2%, 6.9%, 12.3% and 12.1%
for Bartle et al., Mendez-Santiago-Teja, Kumar and Johnstone (KJ), Chrastil, and Garlapati and Madras models,
respectively.

A considerable advantage of the examined models especially Bartle et al., and Chrastil model is their ability
to predict the total enthalpy, enthalpy of vaporization and solvation enthalpy as follow:

AHg,, = —Rb — 78.8kJ/mol (1)
AHyotal = —Ra — 59.4 kJ/mol @)
AHgolyation = AHyotal — AHgy, — —19.4k]/mol (3)

R is the gas universal constant.

Besides the correlative capability, extrapolative potential is the other important advantage of any correlation
or model. Respecting that, the extrapolative capability of the examined models was investigated performing self-
consistency test (see Figs. 3 and 4). The results demonstrated that the solubility results could satisfy the linear
behavior for all the examined isotherms and isobars in the current investigation regardless of their values. So, it
can be concluded that it would be possible to estimate the solubility of tolmetin in the temperatures and pressures
out of the calculated range since the solubility data obey a simple linear behavior.

Conclusions

Measuring tolmetin solubility in SC-CO, at various pressures and temperatures is the main objective of the
current investigation. Then, a static approach linked to a simple gravimetric approach was utilized to calculate
the solubility of tolmetin with the assist of PVT cell. The measurement revealed that tolmetin solubility was
between 5.00 x 107> and 2.59 x 10~ based on mole fraction. The measurements demonstrated that it is possible to
enhance the solubility of tolmetin by increasing pressure, while increasing temperature can lead to two different
trends of increasing and decreasing. In detail, since the temperature can have influence on density and sublima-
tion pressure concomitantly, but act in opposite directions, it would be the net of these two challenging factors
which demonstrated that temperature with decreasing or increasing result. The point where the temperature
influences changes called cross-over pressure which for the current the system was a transient region between
120-160 bar where for the pressures of 120 and 160 bar, decreasing the density because of the increasing the
temperature is dominant while for the pressures upper than 160 bar, sublimation pressure modification would
be dominant leading to an enhancement in the solubility of tolmetin in SC-CO,. Besides the experimental
measuring of tolmetin solubility, the measured values were correlated utilizing five density-based correlations
since it would not be possible to calculate the solubility of tolmetin in all the ranges of pressure and temperature.
The correlation results revealed that among the examined models, K] led to the lowest AARD% value of 6.9%
while the other models leading higher AARD%, although they still introduce a great admissible precision. The
other important privilege is the extrapolative ability of these models which can be examined by performing self-
consistency tests. The performed self-consistency test revealed a great extrapolative capability of these models
since the measured solubility data for all the examined temperatures and pressures justify a straight line that
shows the other thermodynamic conditions beyond the considered ranges can justify the current line which
means the extrapolative ability of these models.
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Figure 3. Tolmetin solubility results applying, (a) Bartle et al. model, (b) Chrastil, (c) MST and (d) KJ model.
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Figure 4. Self-consistency test utilizing MST model.
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