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Cardiovascular disease (CVD) complications have contributed significantly toward poor
survival of cancer patients worldwide. These complications that result in myocardial and
vascular damage lead to long-term multisystemic disorders. In some patient cohorts, the
progression from acute to symptomatic CVD state may be accelerated due to
exacerbation of underlying comorbidities such as obesity, diabetes and hypertension.
In such situations, cardio-oncologists are often left with a clinical predicament in finding the
optimal therapeutic balance to minimize cardiovascular risks and maximize the benefits in
treating cancer. Hence, prognostically there is an urgent need for cost-effective, rapid,
sensitive and patient-specific screening platform to allow risk-adapted decision making to
prevent cancer therapy related cardiotoxicity. In recent years, momentous progress has
been made toward the successful derivation of human cardiovascular cells from induced
pluripotent stem cells (iPSCs). This technology has not only provided deeper mechanistic
insights into basic cardiovascular biology but has also seamlessly integrated within the
drug screening and discovery programs for early efficacy and safety evaluation. In this
review, we discuss how iPSC-derived cardiovascular cells have been utilized for testing
oncotherapeutics to pre-determine patient predisposition to cardiovascular toxicity. Lastly,
we highlight the convergence of tissue engineering technologies and precision medicine
that can enable patient-specific cardiotoxicity prognosis and treatment on a multi-
organ level.
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INTRODUCTION

There is a growing burden on the healthcare system with the rise in mortality rate associated with
cardiovascular diseases (CVD) and cancer. A 2018 statistics reported ∼17 million deaths globally
from CVD and ∼9 million deaths from cancer (Benjamin et al., 2019; Bray et al., 2018; Siegel et al.,
2019). By 2040 these figures are expected to double due to a staggering increase in new cases. As of
2019, ∼16 million individuals have been reported as cancer survivors, with nearly two-third of
survivors above the age of 60, while 1 in 10 survivors younger than 50 years of age (Miller et al., 2019).
It is becoming increasingly evident that cardiotoxicity in cancer patients arise from
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chemotherapeutic drugs that inadvertently target the heart
causing adverse effects such as ventricular systolic and
diastolic dysfunction, arrhythmias, pericarditis, myocardial
ischemia and heart failure (Figure 1). Indeed, these severe
cardiovascular risks further contributes to the mortality rate
seen in cancer patients (Sarfati et al., 2016; Miller et al., 2019).
Even though, regulatory agencies such as the Food and Drug
Administration (FDA) oversee a rigorous review process for new
drugs, when it comes to life-threatening diseases such as cancer,
the risk-benefit threshold may be higher. In a retrospective study,
of all new drug approvals from 1997 to 2016, it was found that
48% had a higher rate of safety-related label changes (Mostaghim
et al., 2017). Furthermore, between 2012 and 2017, approximately
95% of all cancer drugs were expedited through the approval
process (Hwang et al., 2018). Due to lack of comprehensive
testing and recent expedited approval process for many cancer
drugs, there are always concerns regarding efficacy and safety. In
order to faithfully predict the cardiotoxic side effects of
investigational drugs, development of scalable testing platforms
in vitro is essential. The discovery of human induced pluripotent
stem (iPSC) technology has made it possible to regulate organ-
specific switches in stem cells to generate any cell type outside the
body in a highly controlled artificial environment (Sayed et al.,
2016; Sayed and Wu, 2017). In the context of the heart, iPSC-
derived cardiomyocytes (iPSC-CMs) has emerged as an attractive
testing platform to not only understand basic biology of inherited
and non-inherited cardiomyopathies, but also serve as a
pharmacological barometer to understand drug-related
toxicities and efficacy of new therapeutics (Sayed and Wu,
2017; Sayed et al., 2019; Rhee et al., 2020). In the context of
oncotherapeutics, the primary goal is to retard cancerous growth
and limit any bystander effects to other cell types of the body that

share homologous intra and extracellular targets. Indirect effects
of cancer drugs on the heart comprising of multiple cell types may
trigger a complex integrated response leading to cardiotoxicity
(Gintant et al., 2019). iPSC technology has not only enabled mass
production of cardiovascular cell types but also recapitulate
disease phenotypes and pharmacological responses. In the
recent years, development of standalone engineered tissue
systems and high-throughput screening modalities has gained
immense interest due to their potential to serve as surrogate
clinical trials in vitro for safety and efficacy (Fermini et al., 2018).
In this review, we summarize the pre-clinical cardio-toxicology
studies of chemotherapeutic agents on iPSC-CMs and current
limitations associated with the use of iPSC-CMs. Finally, we cover
the emerging in vitro models that have evolved over the recent
decade, offering novel and more predictive alternative for
mechanistic assessment of cardiotoxicity and efficacy of
oncotherapeutics.

INDUCED PLURIPOTENT STEM CELLS
CARDIOMYOCYTES IN CANCER DRUG
CARDIOTOXICITY
Assessment of cardiovascular risks using conventional
approaches such as non-clinical animal models have been
challenging due to striking differences in both biochemical
regulation and functional parameters such as beat rate and
calcium handling (Sayed et al., 2016). In contrast, human
iPSC-CMs share a higher resemblance to their non-human
counterparts and offer higher sensitivity and specificity toward
cardioactive or cardiotoxic drugs (Grimm et al., 2018). One of the
key advantages of using iPSC-CMs is their ability to capture

FIGURE 1 | Conventional post-Symptomatic patient risk indentification in Cardio-Oncology. Modern prognostic risk-based cardiotoxicity assessment.
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patient-specific drug responses, which may arise from a variety
for underlying genetic or metabolic alterations. On a broader
scale, iPSC-CMs have shown to exhibit inter-individual
variability that enables us to extend our understanding to a
larger group of individuals or population for better
categorization into responders and non-responders toward a
treatment (Burnett et al., 2019).

The potential of iPSC-CMs as an indispensable pre-clinical
tool for drug screening assays have already been demonstrated
with the Comprehensive in vitro Proarrhythmia Assay (CiPA)
initiative. CiPA aims to evaluate the proarrhythmic risk of new
drugs through a comprehensive mechanistic assessment and
validation on human iPSC-CMs. These drug assessments
occur in four distinct stages: 1) Characterization of the drug
effects on human cardiac currents; 2) In silico reconstruction of
the ventricular electrophysiology; 3) modeling the effects on iPSC
or embryonic (ES)- derived ventricular cardiomyocytes; and 4)
clinical evaluation of cardiac risk. The primary endpoint assay is
detection of electrophysiological abnormalities that could be due
to changes in repolarising or depolarising ionic currents (iNA,
iTo, iCal, iKr, iKs, iK1). Electrophysiological abnormalities are
often underreported in several drug induced toxicities but are key
early indicators of potential drug-induced adverse effects
(Doherty et al., 2013; Sharma et al., 2017). Therefore,
systematic characterization and longitudinal assessments are
required to understand acute, subacute and chronic toxicities
observed in cancer drug-induced cardiac dysfunction. Indeed,
several large scale, multi-centre studies have been conducted to
detect ionotropic drug effects with well-defined ionic current
parameters (Blinova et al., 2018). One of the major limitations of
human iPSC-CMs is the immature phenotype that resemble the
fetal stage of cardiac development (van den Berg et al., 2015). For
example, iPSC-CMs lack morphological, metabolic and
electrophysiological maturity when compared to adult
cardiomyocytes. To overcome this, several techniques have
been developed to enable higher degree of maturation. A
comprehensive review of these methods is described elsewhere
(Guo and Pu, 2020; Karbassi et al., 2020). Despite these
limitations, iPSC-CMs due to their unlimited production
capacity are preferred over human heart biopsy samples which
are very limited and difficult to maintain in vitro. Traditional cell
models for oncotherapeutic efficacy testing were created using
cancer cell lines. The opportunity to use patient-derived iPSC-
CMs and derivatives is a step toward in using the technology to
capture the susceptibility of the cancer patients developing
cardiotoxicity.

Current cancer drugs that are mainly studied for adverse
cardiotoxic events belong to the class of 1) anthracyclines; 2)
tyrosine kinase inhibitors; and 3) checkpoint inhibitors. The
co-incidence of cardiotoxicity associated with
chemotherapeutic drugs was first identified and reported in
1970s (Lefrak et al., 1973; Von Hoff et al., 1979). Since then
studies have identified three common mechanisms by which
cancer drugs induce cardiotoxicity. These include double
stranded DNA breaks, targeting of DNA modifying enzymes
to inhibit replication, and blocking of key prosurvival or
metabolic signaling pathways.

Anthracyclines
The most widely used anthracyclines in the clinic are
doxorubicin, daunorubicin, epirubicin and idarubicin. These
anthracycline class of drugs induce “by-stander” cardiotoxic
effects due to non-specificity on targets that are shared
between both metabolically active cancerous cells and healthy
cardiac cells. Doxorubicin (DOX), in particular have been shown
to elicit a dose-dependent effect both in an acute or chronic
setting (Doyle et al., 2005) (Sorensen et al., 2003). Indeed, chronic
cardiotoxic effects have been reported in adults who were treated
with doxorubicin in their childhood (Lipshultz et al., 2005).
Multiple studies have been conducted in the past to
understand the mechanisms that causes DOX induced
cardiotoxicity. For example, mitochondrial oxidative stress
caused due to rapid reduction of DOX, disruption of
cytochrome enzymes, accumulation of iron and generation of
free-radical ions is considered to be one of the modes of toxicity
(Davies and Doroshow, 1986; Lebrecht et al., 2003; Ichikawa et al.,
2014) (Papadopoulou and Tsiftsoglou, 1993). Similarly, the direct
binding of DOX to topoisomerase 2 isoenzymes, which results in
double stranded DNA breaks (Lyu et al., 2007; Zhang et al., 2012;
Vejpongsa and Yeh, 2014) is considered to be another major
factor contributing to cardiotoxicity. Dexrazoxane, an FDA-
approved drug has shown to confer cardioprotective effects in
DOX treated patients (Swain et al., 1997) by inhibiting the
catalytic activity of topoisomerase II β (TOP2B) (Bureš et al.,
2017; Jirkovský et al., 2018). Indeed, the iPSC-CM platform has
also been employed to study the cardiotoxic effects of DOX. In a
recent study, Burridge et al. derived iPSC-CMs from two groups
of patients to evaluate the effects of DOX in vitro (Burridge et al.,
2016). These included patients that developed cardiotoxicity
following DOX treatment (DOXTOX) and patients that failed
to show cardiotoxic symptoms (DOXCON). iPSC-CMs derived
from DOXTOX patients showed poor survival with high
oxidative stress and DNA damage when compared to
DOXCON iPSC-CMs (Burridge et al., 2016). In another study,
iPSC-CMs generated from 45 patients when exposed to varying
concentrations of DOX revealed genetic basis for cardiotoxicity,
wherein 477 expression variants that modulate signature
transcriptomic profile were identified (Knowles et al., 2018).
Indeed, genome-wide association studies (GWAS) among
patient populations have revealed several significant variants
that potentiate direct interaction with the TOP2B promoter
region or mediate differential splicing of cardiac troponin gene
(Aminkeng et al., 2015; Wang et al., 2016). Such patient
stratification and inter-individual variability achieved using
iPSC-CMs offer a strong basis for detecting patient-specific
responses to cancer therapies based on their genotypic and
phenotypic sensitivities.

Tyrosine Kinase Inhibitors
Human iPSC-CMs have been utilized to screen cardiovascular
toxicities associated with tyrosine kinase inhibitors (TKIs) to
mirror clinical phenotypes. TKI-associated cardiotoxicities in
cancer patients include arrhythmias, myocardial infarction and
reduced left ventricular ejection fraction (LVEF) (Force et al.,
2007). While TKIs act by blocking tyrosine kinase receptors that
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stunts cell proliferation, survival andmigration, their effects at the
cellular level include increased reactive oxygen species (ROS)
production, lipid and cholesterol accumulation, and activation of
caspases (Doherty et al., 2013; Schwach et al., 2020).

One of the first large-scale studies looking at TKI-induced
cardiotoxicity tested 21 FDA approved TKIs on iPSC-CMs
derived from 11 healthy and two cancer patients on a high-
throughput platform (Sharma et al., 2017). Six TKIs (regorafenib,
vemurafenib, nilotinib, crizotinib, sorafenib and vandetanib)
exposed to iPSC-CMs were found to exhibit varying degrees of
cytotoxic and functional deficit. In particular, three TKIs
(sorafenib, regorafenib and ponatinib) were found to be highly
cytotoxic causing mitochondrial stress, contractility changes and
cell death. In accordance with clinical findings (Lee et al., 2019),
two of the TKIs, nilotinib and vandetanib were found to induce
arrhythmias at a cellular level. Subsequent studies performed on
iPSC-CMs revealed that cardiotoxicity associated with sorafenib
is likely due to a metabolic shift from oxidative phosphorylation
to glycolysis (Wang H. et al., 2019). Tyrosine kinase activity may
also be reduced through blockade of human epidermal growth
factor receptor 2 (HER2), a proto-oncogene upregulated mainly
in breast cancer. Activation of HER-2 pathway is known to play
an important role in cardiac development and drug-induced
cardioprotection through endothelial-cardiomyocyte signaling
(Lee et al., 1995; Lemmens et al., 2007; Galindo et al., 2014).
In an iPSC-CM model, inhibition of HER2 signaling pathway
with trastuzumab was shown to cause impairment in contractile
and calcium handling properties which were reversed through
metabolic modulation with AMP-activated protein kinase
(AMPK) (Kitani et al., 2019). Similarly, exogenous treatment
with neuregulin-1 (NRG-1) and heparin-binding epidermal
growth factor (HB-EGF) has shown to confer cardioprotective
effects in iPSC-CMs against DOX, however, co-treatment of DOX
and trastuzumab were shown to partially negate the effect of
NRG1 (Kurokawa et al., 2018).

Immunotherapies
Cancer immunotherapy drugs are targeted biologics aimed to
reinvigorate the immune cells’ capacity to target and eliminate
cancer cells. In chimeric antigen receptor (CAR) T-cell therapy,
patient’s T cells are isolated and engineered to express receptors,
which upon binding to cancer cells lead to cell death. Sporadic
clinical cardiotoxicity has been reported mainly arising from co-
expression of tumor targets or antigen cross-reactivity with
cardiac proteins (Morgan et al., 2010; Cameron et al., 2013).
One of the widely accepted adverse cardiac effects of CAR T-cell
therapy is believed to be due to a “cytokine storm” caused by the
activation of lymphocytes and the release of inflammatory
cytokines. Cytokine storm also known as cytokine release
syndrome (CRS) can lower cardiac ejection fraction and cause
arrythmias (Neelapu et al., 2018). Immune checkpoint inhibitors
(ICIs) are another class of T-cell modulators that prevent T-cells
from being turned-off or remain in an anergic state. Several
adverse cardiac events have been noted in patients treated with
ICIs including myocarditis, vasculitis, electrophysiological
abnormalities and arrhythmias (Mahmood et al., 2018;
Moslehi et al., 2018). Even though mortality associated with

such adverse events are disproportionately high, the incidence
of such an event is rare. Target ligands of checkpoint inhibitors
such as programmed cell death ligand 1 (PD-L1) expression has
been reported in cardiomyocytes (Nishimura et al., 2001). Based
on this, it can be speculated that possible underlying mechanisms
of cardiotoxicity may be due to 1) homology in antigen expressed
on tumor cells and cardiomyocytes, which are recognized by
T-cells; 2) T-cell response toward unknown cardiac antigen; and
3) diverse T-cell receptor repertoire with distinct antigen binding
on both tumor cell and cardiomyocytes followed by initiation of
an effector response (Brown et al., 2020). Co-culture studies using
iPSC-derived cardiovascular cells and primary T-cells or
exposure to patient’s serum may reveal more insights into
active biomarkers or non-canonical molecular interactions that
result in myocardial toxicities in these patients.

ADDRESSING FUNCTIONAL AND
CELLULAR HETEROGENEITY IN
CARDIOMYOCYTES DERIVED FROM
INDUCED PLURIPOTENT STEM CELLS
SOURCES

hiPSC-CMs have emerged as one of the important predictive
tools is due to its ability to retain genetic identity of the patient for
disease modeling and discovery of personalized medicine.
However, somatic cell sources for pluripotency induction,
differences in cardiomyocyte differentiation protocols and
heterogeneity in myocyte composition can lead to
inconsistencies in the outcomes of pharmacological studies.
Several studies have indicated that differences in genetic
background and iPSC-CM derivation methodologies can
influence epigenetic landscape and consequently gene
expression. For example, iPSCs derived from cardiac
progenitor cells are shown to have higher cardiac
differentiation potential compared to non-cardiac sources
(Sanchez-Freire et al., 2014; Meraviglia et al., 2016). This
suggests that although reprogramming erases most epigenetic
modifications, some tissue-specific signatures may remain
unaltered and thereby influence cardiac differentiation
potential (Kim et al., 2011; Rouhani et al., 2014). From a drug
testing point-of-view, epigenetic variations may alter cellular
responses to drugs, overriding the phenotypic response. Such
changes can be overcome by adopting uniform reprogramming
methodology to reduce epigenetic alterations (Bar and
Benvenisty, 2019). In addition to higher reproducibility, iPSC-
CM drug responses can be validated by generation of artificial
intelligence (AI) algorithms that can systematically compare
endpoint measurements such as action potential (AP) or
calcium handling parameters to extrapolate experimental
outcome for a given class of drug (Juhola et al., 2018; Kernik
et al., 2020). However, the full potential of such tools can only be
exploited with data generated using iPSC-CMs of comparable
quality. Integration of several such comprehensive data types will
help distinguish the complex causal relationships from the noise
introduced due to the quality of the cells.

Frontiers in Pharmacology | www.frontiersin.org February 2021 | Volume 12 | Article 6073644

Thomas et al. Biomimicking Cardiotoxicity-in-a-Dish for Better Cancer Therapy

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


To date several key optimizations in cardiac differentiation
have been explored to derive iPSC-CMs using simple, cost-
effective and xeno-free methods (Lian et al., 2012; Burridge
et al., 2014). Despite these refinements, current differentiation
protocols provide satisfactory yield for small-scale use.
Furthermore, there is considerable variability in obtaining
highly pure population of ventricular, atrial or pacemaker
subtypes. To minimize batch-to-batch variability,
reproducibility and functional quality of the cardiomyocytes
generated, small-scale protocols need to be robustly tested in
large scale culture devices and bioreactors. Currently, static two
dimensional (2D) multi-layer flasks and dynamic three-
dimensional (3D) microcarrier adherent systems are able to
generate 1.5–2.8 billion cardiomyocytes in a single bioprocess
(Correia et al., 2014; Tohyama et al., 2017). A recent report also
demonstrated that iPSC-CMs can be expanded to a hundred-fold
through inhibition of glycogen synthase kinase-3β (GSK-3β)
pathway during early stages of cardiac differentiation. These
cells obtained can be purified using non-genetic methods such
as metabolic selection with lactate-containing medium or a dye to
label mitochondria that occupy ∼40% of the CM volume (Hattori
et al., 2010; Tohyama et al., 2013).

With regard to function, in adult cardiomyocytes mature
structural features are intertwined with functional regulation.
Unlike adult cardiomyocytes, neonatal or iPSC cardiomyocytes
do not show rectangular morphology, exhibit spontaneous
generation of AP, have lower density of mitochondria and
higher dependence on glycolytic metabolism over fatty acid
oxidation. Several recently developed techniques help iPSC-
CM maturation through metabolic supplementation (Parikh
et al., 2017; Feyen et al., 2020), incremental pacing (Chan
et al., 2013) and culture substrate modifications to promote
higher contraction forces (Pandey et al., 2018). Currently,
these culture procedures from somatic reprogramming to
obtaining functionally mature iPSC-CMs require over a
month’s time, which may limit their use for point-of-care
testing. Therefore, utilization of a single platform that enables
rapid generation of functionally mature iPSC-CMs from the
donor cells will accelerate the drug testing timeframe.

BUILDING PHYSIOLOGICALLY RELEVANT
IN VITRO CARDIAC MODELS

Current drug discoveries and therapeutic testing takes place on
conventional 2D tissue culture platforms. However, there are
several limitations with using platforms that are non-
physiological in a reductionist manner. 2D planar culture
platforms offer flexibility and ease of use, however, fail to
capture the structural complexities that are seen in 3D tissues
and organ systems. These 3D tissues develop through gradients of
biochemical andmechanical signaling, andmulticellular crosstalk
that contribute to the maintenance of tissue homeostasis. In a
biological context, 2D platform offers the least resistance at a
single-cell level wherein cellular turnover, metabolism, and
protein synthesis occur in an accelerated manner. In contrast,
in a 3D tissue-like architecture these processes occur in concert

with changes in the local extracellular environment, receiving
feedback responses from a multitude of cells that are tightly
packed in a small volume (Baker and Chen, 2012; Thomas et al.,
2018; Thomas et al., 2020). With the recent advancements in
bioengineering tools, 3D culture systems with varying degrees of
complexities have gained significant traction in the field of drug
testing and drug discovery (Figure 2). Indeed, 3D cultures of
iPSC-CMs in the form of engineered myocardium have been
shown to enhance physiological hypertrophy, improve maturity,
and enhance drug response (Karbassi et al., 2020).

Three Dimensional Cardiac Constructs for
Drug Testing
iPSC-CMs have been used to generate 3D myocardium as self-
assembled, scaffold-free, spontaneously beating clusters referred
as cardiac spheroids. Alternatively, iPSC-CMs can also be
embedded in natural or synthetic extracellular matrix (ECM)
in form of engineered heart tissues (EHTs) that allow anisotropic
tissue-like orientation and cellular alignment. iPSC-CMs in both
scaffold-free cardiac spheroids and matrix assembled tissues have
shown to exhibit more mature characteristics when compared to
2D cultures (Hoang et al., 2018). Maturity training in 3D cultures
are conferred using biophysical stimulation with passive stretch
and electromechanical conditioning (Ronaldson-Bouchard et al.,
2018); whereas biochemical stimulation is induced by metabolic
and hormonal programming (Parikh et al., 2017). Obtaining a
“near” physiological maturation through such techniques can
significantly improve drug responses. From a disease modeling
perspective, EHTs fabricated from iPSC-CMs manifest a more
clinically relevant phenotype in familial arrhythmogenic
syndromes compared to iPSC-CMs at a single-cell level
(Goldfracht et al., 2019). In two recent studies, EHTs derived
from iPSC-CMs demonstrated a high force-frequency
relationship and physiological response to ionotropic and
chronotropic drugs (Mannhardt et al., 2017; Ronaldson-
Bouchard et al., 2018).

As a platform technology for high-throughput screening,
iPSC-CMs have been assembled into EHTs on a 24-well
(Hansen et al., 2010) and 96-well formats (Mills et al., 2019)
that are amenable to rapid screening of drugs to test safety and
efficacy. For instance, EHTs derived from rat neonatal
cardiomyocytes when treated with gefitinib (10 µM), lapatinib
(150 µM), sunitinib (10 µM), imatinib (100 µM) and sorafenib
(100 µM) showed significantly reduced tissue contractility;
whereas vandetanib and lestaurtinib showed a dose-dependent
decline in function (Jacob et al., 2016). In another study, EHTs
derived from human iPSC-CMs were fabricated around soft and
stiff posts to mimic pre-load and afterload conditions (Truitt
et al., 2018). These EHTs when exposed to clinically relevant
concentration (1–10 μmol/L) of sunitinib showed a significant
increase in caspase-induced cardiotoxicity due to afterload. Here
it is important to note that 3D platforms due to their higher tissue
organization and slower diffusion kinetics may impart higher
drug sensitivity thresholds similar to in vivo, unlike 2D culture
systems. Furthermore, for the assessment of potential drug-
induced toxicity, model systems that are relevant to human
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cardiac physiology and diseases may be more suitable over other
species due to inherent differences in function and drug
sensitivity. An overview of 2D and 3D stem cell derived
cardiomyocyte platforms used for chemotherapeutic testing on
cardiovascular cells is summarized in Table 1.

At a cellular level, decreased contractile function due to
mutational cardiac disorder or drug-induced toxicity is often
associated with cytoskeletal disarray and poor structural integrity.
These changes influence electromechanical coupling and
biomechanical properties both at the cellular as well as tissue
level. A combination of atomic force microscopy (AFM) coupled
with MEA platform could be used to measure sensitive biological
changes in topography and force (Caluori et al., 2019).

In an adult human heart, over 60% of the tissue comprises of
non-myocytes, namely endothelial cells, vascular stromal cells,
cardiac fibroblasts and a small fraction of immune cells (Pinto
et al., 2016). Crosstalk between myocytes and non-myocytes are
essential for maintaining a physiological balance and
cardiovascular tone. Endothelial cells support cardiac
metabolism, contractility and survival (Brutsaert, 2003; Sayed
et al., 2020); whereas fibroblast play a key role in metabolic,
structural, electrical and mechanical maturation (Giacomelli
et al., 2017; Giacomelli et al., 2020). Therefore, it is intuitive
that these major non-myocyte cell populations may play a
significant role in disease and drug-related toxicities.
Formation of multi-cell type scaffold-free cardiac clusters or
spheroids offer higher surface area to volume ratio, and
therefore have higher rates of diffusion and mass transport.
However, unlike EHTs due to lack of structural guidance,
cytoskeletal alignment is not observed. One of the benefits of
using cardiac spheroids is their smaller size would allow easy
integration into “tissue chips” or multi-well formats for high

content imaging and toxicity profiling. Cardiac spheroids
fabricated in 384-well format composed of iPSC-CMs, primary
endothelial cells and fibroblasts have been utilized to demonstrate
DOX-induced cytotoxicity at a concentration greater than 5 µM
and sunitinib-induced cytotoxicity at a concentration greater
than 10 µM (Archer et al., 2018). Similar studies have been
performed to demonstrate DOX-mediated cytotoxicity in
multicellular cardiac spheroids (Amano et al., 2016; Polonchuk
et al., 2017; Beauchamp et al., 2020). These 3D in vitro cardiac
models although offer very valuable insights in mimicking tissue
complexities and multicellular interaction, they do not fully
capture the dynamic pharmacokinetics and pharmacodynamics
in volved in drugmetabolism and absorption. Hence scaled-down
models of interconnected multi-organ systems may provide
additional insights that are not currently offered by static 3D
in vitro models.

Microphysiological Devices: A New Age of
Cardiotoxicity Testing
For research purposes, several ECM substrates are commercially
available. Once a 3D framework is established, it is imperative to
consider incorporation of modular interconnected multi-organ
tissue assemblies on a single platform. 3D printing technologies
and microfabrication of tissue chip devices are aimed toward
engineering of scaffolds in spatially defined chambers for cell
seeding and tissue assembly. Moreover, incorporation of channels
in these devices provide essential nutrients and growth factors
that help recreate a dynamic microenvironment that is far
superior than static organotypic in vitro models. Furthermore,
integrated platforms such as these combined with biosensors can
enable continuous monitoring over long period of time. A fully

FIGURE 2 | Toward multi-dimensional iPSC-based model platform to access Cardiotoxicity in Cancer therapies.
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TABLE 1 | A summary of in vitro stem cell-based cardiac models for cancer drug testing.

Format Drug class Drug Concentration Cell
type

Cell number Cardiomyo-
cyte age

Effect Ref

2D Anthracycline Doxorubicin 1–10 μM hiPSC-CM (mixture ventricular and
atrial)

0.004–0.33×10

6/cm2
3–4.5 weeks Lower amplitude, beat frequency and

decreased FPD
Burridge et al.
(2016), Maillet
et al. (2016)

2D Anthracycline/TKI Doxorubicin/
sunitinib/crizotinib

0.1–100 μM hiPSC-CMs/iCell® 0.08×10 6/cm2 - Reduced cell viability, mitochondrial
integrity, Increased cAMP formation
and lower beat frequency

Grimm et al.
(2015)

2D Anthracycline Doxorubicin 1–10 μmol/L hiPSC-CM 0.26×10 6/cm2 3.5–8 weeks Dose and cell-age dependent
apoptosis and ROS production. DNA
damage via TOP2A

Cui et al. (2019)

2D Anthracycline Doxorubicin 0.05–0.45 μM Cellartis
®
Pure hES-CM 0.2×10 6/cm2 - Increased cardiac Troponin T release at

day 2, Increased expression of
apoptosis and p53 signalling pathways

Holmgren et al.
(2015)

2D TKI Vandetanib 0.1–1 μM hiPSC-CM (mixture ventricular,
atrial and nodal)

0.003×10 6/cm2 4.5 weeks Prolongation of repolarization and
arrhythmia

Blinova et al.
(2018)

2D TKI Sunitinib 0.3–10 μM hiPSC-CM (mixture ventricular,
atrialand nodal)

0.002×10 6/cm2 4.5 weeks FPD Prolongation and early
afterdepolarization (EAD)

Nozaki et al.
(2017)

2D TKI *niolotinib,
Vandetanib (*21
TKIs tested)

0.1–100 μM hiPSC-CM, hiPSC-ECs,
hiPSC-CFs

0.44×10 6/cm2 4–5 weeks Prolonged FPD, alterations in CM
contractility and calcium handling

Sharma et al.
(2017)

2D TKI Lapatinib,
Sorafenib, Erlotinib
and Sunitinib

0.01–10 μM Cor.4U hiPSCCMs 0.07×10 6/cm2 - Reduced mitochondrial potential and
respiration, decreased troponin
expression

Wang H. et al.
(2019)

2D Her2
monoclonalantibody/TKI

Trastuzumab/
Lapatinib

100 μg/ml/2 μM hiPSC-CMs/iCell
®

0.06×10 6/cm2 - Downregulation of ERBB2 with
reduced media glucose levels after
trastuzumab treatment. Both
trastuzumab and lapatinib
downregulated expression of PDK and
upregulated PHLDA1

Necela et al.
(2017)

2D Her2 monoclonal
antibody/Anthracycline

Trastuzumab -
Doxorubicin co-
treatment

1 μM hiPSC-CMs/iCell
®

0.06×10 6/cm2 - Concentration dependent reduction in
cell impedance and ATP

Eldridge et al.
(2014)

2D Her2 monoclonal
antibody/Anthracycline

Trastuzumab/
Doxorubicin

0.1–1μM/
0.05–0.1 μM

hiPSC-CMs 0.12×10 6/cm2 ∼2.5–3 weeks Dose-dependent reduction in
contractility, calcium handing and
mitochondrial stress

Kitani et al. (2019)

2D Her2 monoclonal
antibody/Anthracycline

Trastuzumab/
Doxorubicin

1 μM/10 μM hiPSC-CMs and primary ECs 0.16×10 6/cm2 ∼4–5 weeks Increased LDH release in doxorubicin
only treatment compared to
doxorubicin, trastuzumab and
neuregulin-1

Kurokawa et al.
(2018)

2D Anthracycline Doxorubicin 5 μM Multi-organ on a chip in monolayer
(hiPSC-CMs/iCell

®
,human HepG2

hepatocellular carcinoma cells ,
human skeletal muscle, hiPSC
cortical neurons

0.1–0.16×10

6/cm2
- Concurrent dose-dependent toxicity in

hepatocytes and cardiomyocytes, no
action potential changes in neurons

Oleaga et al.
(2016)

3D Anthracycline Doxorubicin 3.5–100 μM hiPSC-derived cardiac bodies on a
chip

- - Dose-dependent decline in beating
frequency

Bergström et al.
(2015)

3D Anthracycline Doxorubicin 1–40 μM Cardiac spheroids composed of
iPSC-CMs, iPSC-CFs and
primary ECs

3,000–6,000/
construct

- Dose-dependent reduction in cell
viability and increase in endothelial nitric
oxide

Polonchuk et al.
(2017)

(Continued on following page)
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TABLE 1 | (Continued) A summary of in vitro stem cell-based cardiac models for cancer drug testing.

Format Drug class Drug Concentration Cell
type

Cell number Cardiomyo-
cyte age

Effect Ref

3D Anthracycline Doxorubicin 0.5–20 μM Cardiac spheroids composed of
iPSC-CMs and fetal CFs

5,000/construct - Contractile dysfunction and irregular
contractions with pacing

Beaucham p
et al., 2020

3D Anthracycline/TKI Doxorubicin/
sunitinib

30μM/100 μM Cardiac spheroids composed of
hiPSC-CMs/iCellR , primary human
microvascular ECs, and human
primary CFs

500/construct - Reduced mitochondrial membrane
potential and ATP. Elevated cTnI, CK-
MB and FABP-3 after treatment.
Reduced expression of cTnI, vimentin
and α-actinin

Archer et al.
(2018)

3D TKI Sunitinib 1.10 μM Engineered Heart Tissue
composed of hiPSC-CM and
hMSC

- 2.5–4 weeks Load induced increase in caspase3/7 Truitt et al. (2018)

3D Anthracycline Doxorubicin 1–1000 nM Cardiac spheroids composed of
hiPSC-CMs, primary CFs and
primary microvascular ECs

100,000–5 ×
106/construct

- Decline in beat rate with increase in
concentration and reduction vascular
capilaries

Amano et al.
(2016)

3D Anthracycline Doxorubicin 0.1–10 μM Cardiac spheroids composed of
hiPSC-CMs

5 × 105/construct - Concentration-dependent reduction in
cell viability

Takeda et al.
(2018)

3D Anthracycline/Alkylating
agent

Doxorubicin/
Oxaliplatin

0.1–10 μM/
0.1–50 μM

Colon carcinoma SW620,
hiPSCCM and hiPSCECs on a chip

0.3–1 × 108/
ml gel

4–6.5 weeks Dose-dependent decline in viability,
beat rate, conduction velocity

Weng et al.
(2020)

3D Anthracycline Doxorubicin 5, 25 μM Human HepG2 hepatocellular
carcinoma cells and hiPSC-CM
organoids on a chip

1 × 107/ml gel - Reduced viability, decrease in albumin
secretion, increase in alpha glutathione
s-transferase from hepatocytes,
increase in creatine kinase MB in
cardiomyocytes and decline in beat
rate

Zhang et al.
(2017)
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integrated multi-organ platform developed by Zhang et al.
demonstrated drug-induced organ toxicity using a liver-and-
heart-on-a-chip comprising of human iPSC-derived cardiac
spheroids and human primary hepatocyte-derived liver
organoids (Zhang et al., 2017). The authors were able to
model the conversion of capecitabine by the liver organoids to
5-fluorouracil (5-FU), a well-known cardiotoxic
chemotherapeutic, which caused pronounced toxicity in
cardiac spheroids. On the same platform, by replacing the
lung organoids with hepatocellular carcinoma cells (HepG2/
C3A), the authors demonstrated cytotoxic effect of DOX on
cancer cells at 5 and 10 µM. The consequent toxicity-induced
cell death in cardiac spheroids was measured using release of
cardiac creatine kinase (CK-MB). A similar approach using
human primary cardiomyocytes and HepG2 cells was
demonstrated using DOX as a model drug (Kamei et al.,
2017). In this study, liver cells were shown to generate
doxorubicinol, a DOX metabolite, that is responsible for
cytotoxicity rather than DOX itself in primary human
cardiomyocytes.

Tissue chips with robust in situ monitoring of metabolic and
functional parameters can be used to model both acute and
chronic toxicity to drugs. Currently, there are several
limitations with regard to the variability in cell sources used in
these devices, such as the use of biopsies or immortalized cell
lines. In order to achieve higher resemblance to patient
phenotype, the organ specific cells used on the chips should be
derived from patient’s iPSCs. Secondly, assembly of cells into
more organized hierarchical structures over random cell clusters
may provide a deeper understanding of the tissue
microenvironment (Thomas et al., 2018). Finally, significant
efforts must be directed toward development of universal
culture medium, which can be perfused through
microchannels to support optimal function and maturation of
tissues in these devices. The challenge of developing a universal
medium can be overcome by segregated organ specific media
reservoirs with an external loop for exchange of media
metabolites. In the future, modular organ systems can be
further simplified by adopting cartridge-based assemblies for
testing synergistic effects of drug toxicity on a multi-organ
platform.

INTEGRATIVE PANOMIC TECHNOLOGIES
FOR MECHANISTIC INSIGHTS INTO
CARDIOVASCULAR TOXICITY
High-throughput quantitative multiplex assays provide a
comprehensive understanding of signal transduction networks
and molecular signatures that emanate from oncogenes.
Similarly, they can detect potential pathways that are activated
in other somatic cells that contribute toward organ-specific or
systemic toxicity. In situ integration of tissue chip devices with
online analytical tools for quantitative gene expression or
proteomic profiling can be powerful in deciphering intra and
inter-cellular communications. Drug metabolism studies in liver
slices on a chip, infused with substrates or inhibitors have been

coupled with high-performance liquid chromatography with UV
detection (HPLC-UV) for metabolite analyses. This on-line rapid
detection of drug metabolites and inhibitors can be utilized to
identify new biomarkers that can predict cardiotoxicities (van
Midwoud et al., 2011). A key advantage of these platforms is their
data acquisition and interpretation, which can be integrated
within the system to allow feedback-dependent real-time
changes in control parameters. In contrast, traditional
approaches for transcriptomic profiling limits the
understanding of cellular heterogeneity.

Advances in the latest single-cell analyses tools allow profiling
of transcriptomic changes at a higher resolution (Tang et al.,
2009). The technology since its inception has further evolved with
a combination of spatial information, wherein tissue sections
attached to a transcriptomic slide with barcoded primers bind
and capture mRNAs from the adjacent cells or tissues (Ståhl et al.,
2016). For example, using single-cell RNA sequencing (scRNA-
seq), a recent study identified a novel gene expression signature
(matrix Gla protein) in breast cancer patients treated with
trastuzumab that can serve as a prognostic marker for long-
term survival. Furthermore, the study revealed expression of 48
genes specifically associated with cardiotoxicity, which can serve
as potential biomarkers for trastuzumab-induced cardiotoxicity
(Wang J. et al., 2019). scRNA-seq has also been implicated in
understanding the effects of novel immune based checkpoint
inhibitors. A recent study employed a computational approach to
identify interactions based on putative ligand-receptor expression
in breast cancer tumor and immune cells. The study showed that
radiosensitivity of the tumor played a key role in increased PDL-1
expression, resulting in immune cell inactivation due to their
interaction via programmed cell death protein 1 (PD-1) (Jang
et al., 2020). Such key findings in a clinical setting can be
extremely valuable to devise combined therapeutic strategies
followed by subsequent monitoring for cardiac immune-
related adverse events (irAEs). On a 3D level, single cell
transcriptomics can be applied to help resolve spatial
transcriptomics while maintaining structural resolution at a
tissue-level. Indeed, in a seminal study by Wang et al., the
authors used STARmap approach to identify 23 distinct cell
clusters from over 30,000 cells across six layers of mouse
visual cortex (Wang et al., 2018). Most recently, a
spatiotemporal transcriptomic atlas of a developing human
heart was established to reveal developmental dynamics during
cardiogenesis (Asp et al., 2019). Furthermore, power trajectory
inference analyses can be applied to such large-scale
transcriptomic data to understand the progression of each cell
as a function of time (Saelens et al., 2019). Lastly, large-scale
patient multi-omics data can be integrated into a systems
pharmacogenomics approach to identify actionable biomarkers
that can reduce cardiovascular risks in cancer patients and
survivors (Menche et al., 2015).

CONCLUSION

Cardiovascular diseases and several types of cancers have
common risk factors and share intricately related
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pathogenesis that are linked via common cellular pathways.
Therefore, the negative consequences of cancer drugs on the
cardiovascular system is inevitable. Although conventional
toxicology studies in animal models have translational value,
they can be cost ineffective and time intensive. As an
alternative, iPSC technology can be harnessed to provide a
comprehensive phenotypic and genotypic trait that can be
used clinically to make therapeutic decisions. Derivation of
cardiovascular cells from cancer patients can be utilized to
characterize unique functional and genomic signatures that
may influence potential adverse reactions to clinically
approved drugs. However, with regard to cell maturity
there are several milestones that still needs to be reached
for minimizing the batch-to-batch variability and the time
taken to generate cell or tissue models for a timely and
accurate pharmacological prediction. Creation of multiple
tissue types using iPSCs can be tested alongside tumors from
the same patient in a microphysiological tissue chip devices
to tease the mechanistic effects of onocotherapeutics on the
body. Such “patient-on-a-chip” models will aid in
stratification of cancer patients based on the sensitivity
and efficacy of oncotherapeutics (Low et al., 2020).
Currently, there are several challenges associated with
using multi-organ tissue systems routinely. These are
mainly due to complex fabrication process, inadequate
physiological fluid flow, unavailability of universal medium
for different organ types. Concerted efforts between academic
and industry partners to solve these challenges, and further

reduce the cost and increase availability will ensure reliability
and readiness for clinical use. Finally, integration of analytical
techniques with multi-dimensional platforms to obtain high-
resolution genomic and proteomic biomarkers can further
validate clinical signs of cancer drug-induced cardiotoxicity
(Mandawat et al., 2017). Therefore, a multi-dimensional
in vitro disease modeling approach that ensures
reproducibility whilst capturing both acute and chronic
effects will offer a boost in the predictive power and
development of effective personalized cancer therapies.
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