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A novel risk score model based on eight
genes and a nomogram for predicting
overall survival of patients with
osteosarcoma
Guangzhi Wu1 and Minglei Zhang2*

Abstract

Background: This study aims to identify a predictive model to predict survival outcomes of osteosarcoma (OS)
patients.

Methods: A RNA sequencing dataset (the training set) and a microarray dataset (the validation set) were obtained
from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database, respectively. Differentially
expressed genes (DEGs) between metastatic and non-metastatic OS samples were identified in training set.
Prognosis-related DEGs were screened and optimized by support vector machine (SVM) recursive feature
elimination. A SVM classifier was built to classify metastatic and non-metastatic OS samples. Independent prognosic
genes were extracted by multivariate regression analysis to build a risk score model followed by performance
evaluation in two datasets by Kaplan-Meier (KM) analysis. Independent clinical prognostic indicators were identified
followed by nomogram analysis. Finally, functional analyses of survival-related genes were conducted.

Result: Totally, 345 DEGs and 45 prognosis-related genes were screened. A SVM classifier could distinguish
metastatic and non-metastatic OS samples. An eight-gene signature was an independent prognostic marker and
used for constructing a risk score model. The risk score model could separate OS samples into high and low risk
groups in two datasets (training set: log-rank p < 0.01, C-index = 0.805; validation set: log-rank p < 0.01, C-index =
0.797). Tumor metastasis and RS model status were independent prognostic factors and nomogram model
exhibited accurate survival prediction for OS. Additionally, functional analyses of survival-related genes indicated
they were closely associated with immune responses and cytokine-cytokine receptor interaction pathway.

Conclusion: An eight-gene predictive model and nomogram were developed to predict OS prognosis.
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Background
Osteosarcoma (OS) is a common malignant bone cancer
in adolescents around the whole world and has a high ten-
dency of metastasis [1]. The considerable progress in OS
prevention and treatment has been made by introducing
promising therapeutic strategies such as postoperative
neo-adjuvant chemotherapy and multi-agent systemic
chemotherapy over the past decades [2, 3]. However, the
statistical evidence suggested that the incidence and mor-
tality rates of OS have been continuously growing by ap-
proximately 1.4% each year [4]. The recent studies
demonstrated that the 5-year survival rate of OS remains
about 65% and more than half of OS patients die from
OS metastasis [5, 6]. Therefore, the identification of novel
prognostic gene markers for metastasis of OS is impera-
tive for improving the overall survival of OS patients.
The advent of next sequencing technologies allows

rapid disease detection and diagnosis in recent decades.
Accordingly, extensive studies based on the microarray
data and transcriptome sequencing data were carried
out to identify potential gene drivers involved in the oc-
currence, metastasis and recurrence of tumors. Notably,
existing evidence has showed that numerous gene signa-
tures had significant prognostic values for OS. Wang
et al argued that OS patients with a high ALDH1B1 level
had an unfavorable clinical outcome compared to those
OS patients with low ALDH1B1 level, implying that this
gene might be a potential prognostic marker for patients
with OS [7]. Shi et al examined the expression difference
and prognostic power of DDX10 based on a dataset from
Gene Expression Omnibus (GEO) database. They found
that there was a higher expression level of DDX10 in OS
tissues than normal tissues and increased DDX10 level
was related to a poor prognosis [8]. Furthermore, a pre-
vious research analyzed three miRNA expression profiles
and constructed a support vetor mechine (SVM) classi-
fier with 15 differentially expressed miRNAs (DEmiR-
NAs). The results showed that this classifier had a
relatively high accuracy to predict OS recurrence, sug-
gesting that these DEmiRNAs were possibly associated
with OS prognosis [9]. Liu et al recently screened a four-
pseudogene signature for OS survival prediction based
on the RNA sequencing data and this pseudogene panel
could clearly differentiate high and low risk patients with
OS [10]. Although previous studies have identified many
gene makers in the development and recurrence, a dee-
per understanding of the influence of gene signatures on
the survival prognosis of OS needs further investigating.
In the present research, the differentially expressed

genes (DEGs) between metastatic and non-metastatic OS
samples were identified from the training dataset obtained
from The Cancer Genome Atlas (TCGA) database. Then,
the prognostic genes were screened followed by optimized
selection based on SVM recursive feature elimination

(SVM-RFE) algorithm. The optimal prognostic genes were
used to construct a SVM classifier to separate OS meta-
static and non-metastatic OS samples. Additionally, a ma-
chine learning analysis (univariate and multivariate cox
regression) was used to extract independent OS prognos-
tic genes to construct a risk score (RS) model. The inde-
pendent clinical prognostic indicator was identified
followed by a predictive nomogram construction. Finally,
the functional analyses of prognosis-related genes were
also performed. Our findings will promote the under-
standing of clinical prognostic outcomes of OS patients.

Methods
Data source
The level 3 mRNA sequencing data of OS patients was
firstly downloaded from TCGA (https://gdc-portal.nci.nih.
gov/) database, which was generated by Illumina HiSeq
2000 RNA sequencing platform and concluded 265 sam-
ples. Subsequently, we mapped these samples into their
clinical characteristics obtained and removed those
samples without metastasis information. Finally, a total of
176 OS samples (58 metastatic samples and 118 non-
metastatic samples) were included in this study. Accord-
ingly, the mRNA sequencing data from these samples and
corresponding clinical information were retained and con-
sidered as the training dataset in following analysis. In
addition, the OS gene expression matrix from GSE21257
dataset provided by Buddingh et al [11] was acquired from
GEO [12] repository (http://www.ncbi.nlm.nih.gov/geo/).
This dataset was based on Illumina human-6 v2.0 expres-
sion beadchip platform and comprised of 53 OS samples
(34 samples with OS metastasis and 19 samples without
OS metastasis). Moreover, these samples all had the rele-
vant clinical prognosis information, and therefore, we
regarded this dataset as the validation dataset.

Identification of differentially expressed genes (DEGs)
For the training dataset, all samples were divided into two
groups (metastatic and non-metastatic group). Then, we
employed the limma [13] package (version 3.34.7; https://
bioconductor.org/packages/release/bioc/html/limma.html)
in R 3.4.1 to identify the significantly DEGs between OS
metastasis samples and OS without metastasis samples ac-
cording to the thresholds of false discovery rate (FDR) <
0.05 and the |log2 fold change (FC)| > 0.5. Furthermore,
the bidirectional hierarchical clustering analysis of DEGs
in training dataset was carried out based on the centered
pearson correlation algorithm using the pheatmap [14]
package (version 1.0.8; https://cran.r-project.org/web/
packages/pheatmap/index.html) in R 3.4.1.

Screening of prognostic genes for OS
Firstly, the univariate cox regression analysis was per-
formed to extract key genes associated with overall

Wu and Zhang BMC Cancer          (2020) 20:456 Page 2 of 12

https://gdc-portal.nci.nih.gov/
https://gdc-portal.nci.nih.gov/
http://www.ncbi.nlm.nih.gov/geo/
https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html
https://cran.r-project.org/web/packages/pheatmap/index.html
https://cran.r-project.org/web/packages/pheatmap/index.html


survival using the survival [15] package (version 2.41.1;
http://bioconductor.org/packages/survivalr/) in R 3.4.1.
The log-rank p value < 0.05 was thought of as the cutoff
for the significant correlation. Afterwards, the e1071 [16]
package (version 1.7.1; https://cran.r-project.org/web/
packages/e1071) and caret [17] package (version 6.0.76;
https://cran.r-project.org/web/packages/caret) in R 3.4.1
were utilized to further screen the optimal prognostic
gene set (OPGS) for OS on the basis of SVM-RFE
method, which is an iterative backward selection algo-
rithm and can recursively remove one feature gene with
the smallest ranking score until the optimal feature gene
set was remained [18]. Following this, the SVM classifier
was constructed for predicting OS metastasis based on
the expression levels of OPGS. Moreover, the external
GSE21257 dataset was used to verify the results of SVM
classification analysis. The partial receiver operating
characteristic (pROC) [19] package (version 1.15.0;
https://cran.r-project.org/web/packages/pROC/index.
html) was utilized to conduct performance evaluation of
SVM classifier in training and validation dataset in R
3.4.1. Accordingly, the multiple quantization parameters
in classification assessment task were computed, includ-
ing sensitivity, specificity, area under curve (AUC), posi-
tive predictive value (PPV) and negative predictive value
(NPV).

Construction of prognostic model for OS and
performance evaluation
The multivariate cox regression analysis was carried out
to extract independent prognostic genes for OS using
survival package in R 3.4.1 according to the cutoff criter-
ion of the log-rank p value < 0.05. Afterwards, a risk
score model of the prognostic mRNA makers was estab-
lished according to following formula: Risk score (RS) =
∑βDEGs × ExpDEGs. The βDEGs represented the estimated
contribution coefficient of independent prognostic
mRNAs in the multivariate Cox regression analysis and
ExpDEGs denoted the level of independent prognostic
genes. According to this formula, the RS of each OS pa-
tient was computed. Then, all patients in training dataset
were divided into high and low risk groups with the me-
dian of the RS as the cut-off criterion. Furthermore, the
survival differences between these two risk groups were
evaluated by a Kaplan-Meier (KM) survival curve using
the survival package in R 3.4.1. Meanwhile, the expression
values of independent prognostic genes were also ex-
tracted from validation set and the RS for each sample
was then calculated. Accordingly, the samples in valid-
ation dataset were also divided into two groups (high-risk
and low-risk groups) based on the same strategy above
mentioned. Finally, the difference in survival prognosis be-
tween the high-and low-risk group was also assessed ac-
cording to three indicators (Harrell C-index, Brier score

and log-rank p value of cox proportional hazards regres-
sion) [20–22]. Specifically, Harrell C-index, and Brier
score were computed by the survcomp [23] package (ver-
sion 1.30.0; http://www.bioconductor.org/packages/re-
lease/bioc/html/survcomp.html) in R 3.4.1. The R survival
package was used to undertake the KM estimates of sur-
vival probability and calculate the corresponding log-rank
p values [15].

Screening of independent prognostic factors
The univariate and multivariate cox regression analyses
were employed to identify the independent clinical prog-
nostic factors using the survival package in R 3.4.1 with
log-rank p value < 0.05 as the threshold for significance
[15]. Following this, we further explored the relation-
ships between independent prognostic factors and sur-
vival prognosis. A nomogram was constructed based on
independent prognosis-related genes and prognostic fac-
tors to predict survival rates of patients at 3 and 5 years
via the rms package (version 5.1.2; https://cran.r-project.
org/web/packages/rms/index.html) in R 3.4.1 [22, 24].

Functional analyses of key genes in high and low risk
groups
The samples from training dataset were divided into
high-risk and low-risk groups according to the RS in
prognostic model. We then used R limma package to
identify the DEGs between these two groups according
to FDR < 0.05 and |log2FC| > 0.5 [13]. Subsequently, the
Gene Ontology (GO)-biological process (BP) analysis
and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis of these genes
were carried out using the clusterProfiler [25] package
(version 3.6.0; http://bioconductor.org/packages/release/
bioc/html/clusterProfiler.html) in R 3.4.1. The FDR <
0.05 was considered as the threshold for significant
enrichment.

Results
DEGs identification
This study was carried out as showed in Fig. 1. In total,
345 DEGs were identified between metastatic and non-
metastatic OS samples in training group, which con-
tained 48 up-regulated genes and 297 down-regulated
genes (Table S1). The volcano plot of these DEGs was
displayed in Fig. 2a. In addition, the bidirectional hier-
archical clustering analysis was carried out based on the
expression profiles of these DEGs. All samples were di-
vided into two groups (metastasis and non-metastasis).
We found that 58 metastatic OS samples were all
grouped into metastatic cluster. Meanwhile, most of
non-metastatic OS samples (111/118) were clustered
and seven non-metastatic OS samples were misclassified
into metastatic cluster. The accuracy of metastasis
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Fig. 1 The flow chart of the whole analysis in this study

Fig. 2 Volcano plot and heatmap clustering of differentially expressed genes (DEGs). a: Volcano plot of DEGs. The green nodes represent DEGs;
the red horizontal dashed lines show the false discovery rate (FDR) value is less than 0.05 and the red vertical dashed lines indicate the value of
|log2 fold change (FC)| is more than 0.5. b: Heatmap clustering of DEGs. The white bars represent metastatic osteosarcoma samples and black
bars represent non-metastatic osteosarcoma samples
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identification was 96%, suggesting that these DEGs ex-
hibited a good discriminative ability for differentiating
the metastatic and non-metastatic OS samples (Fig. 2b).

Screening of prognostic feature genes for OS
The univariate cox regression analysis was performed to
identify prognostic genes, and the results revealed that 56
DEGs were significantly correlated with overall survival of
patients with OS. To obtain the most representative prog-
nostic genes for metastatic OS, the SVM-RFE method was
used to extract the OPGS. Consequently, a total of 45
DEGs were representatively prognosis-related genes with
maximum accuracy of 0.901 as showed in Fig. 3a. Further-
more, a SVM-based classifier was constructed on the basis
of these 45 DEGs according to the strategy described in
method. The performance assessment analysis of the SVM
classifier indicated that it could effectively distinguish meta-
static OS from non-metastatic OS samples in training

dataset with multiple evaluation indicators (the AUC of
0.969, the sensitivity of 0.915, the specificity of 0.884, the
PPV of 0.741 and the NPV of 0.966; Table 1; Fig. 3a and b).
Similarly, this classifier also exhibited a good discrimination
between metastatic and non-metastatic OS samples in val-
idation dataset based on the relatively high values of evalu-
ation index (the AUC of 0.907, the sensitivity of 0.857, the
specificity of 0.778, the PPV of 0.882 and the NPV of 0.737;
Table 1; Fig. 3a and b). These results suggested that this
OPGS was predominately associated with the survival out-
comes for OS patients and the SVM classifier based on
OPGS had a clinical implication for OS metastasis
diagnosis.

Screening of independent prognostic feature DEGs and
risk model construction
The multivariate cox regression analysis was conducted
to obtain the independent prognostic feature genes. As

Fig. 3 Screening of the optimal prognostic gene set for osteosarcoma and the receiver operating characteristic (ROC) curve of SVM classification.
a: The identification of optimal prognostic gene set for osteosarcoma based on the recursive feature elimination algorithm. The horizontal axis
shows the number of differentially expressed genes and the vertical axis represents the cross-validation accuracy. b: The ROC curve of SVM
classification in training dataset. c: The ROC curve of SVM classification in validation dataset
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shown in Table 2, eight genes were found to be inde-
pendently related to OS prognosis, including KCNJ15
(potassium voltage-gated channel subfamily J member
15), SLC24A4 (solute carrier family 24 member 4), ASPA
(aspartoacylase), REM1 (RRAD and GEM like GTPase
1), SCARA5 (scavenger receptor class A member 5),
LANCL3 (LanC like 3), CPA6 (carboxypeptidase A6) and
TRH (thyrotropin releasing hormone). Afterwards, the
expression levels of these genes in training dataset were
computed and RS prediction model was constructed as
follows: RS = (0.0501) × ExpKCNJ15 + (− 0.392) ×
ExpSLC24A4 + (0.0661) × ExpASPA + (− 0.0633) ×
ExpREM1 + (− 0.024) × ExpSCARA5 + (0.143) × ExpLANCL3+
(0.0522) × ExpCPA6 + (0.0592) × ExpTRH. The RS for each
sample was then calculated in training set. All samples
(n = 176) were classified into high risk group (n = 88)
and low risk group (n = 88) in the light of the median
value of RS. The survival analysis revealed that there was
a significant correlation between two different risk
groups and survival outcomes (Hazard Ratio [HR] =
3.130, 95% Confidence intervals [CI]: 1.824–5.370, log-
rank p = 1.275e-0.5, Harrell C-index = 0.805 and Brier
score = 0.049; Fig. 4a). Meanwhile, the samples (n = 53)
in validation set were also stratified into high-risk group
(n = 27) and low-risk group (n = 26) using the same
method. The dramatic relationship was observed be-
tween these risk groups and clinical survival in validation
set (HR = 2.524, 95% CI: 1.058–6.020, log-rank p =
3.101e-02, Harrell C-index = 0.797 and Brier score =
0.078; Fig. 4b). Notably, we found that the patients from
low risk group had higher survival probabilities than

those patients from high risk group in both training and
validation set (Fig. 4).

Predictive nomogram model of independent prognostic
factors
To identify the independent prognostic indicators for
OS survival, the univariate and multivariate regression
analysis was performed based on the clinical features
from of patients in training set. As indicated in Table 3,
two independent prognostic parameters (tumor metasta-
sis and RS model status) were remarkably linked with
the OS clinical outcomes. Moreover, survival analysis
showed that tumor metastasis was markedly related to
overall survival (log-rank p = 1.36e-05 and HR = 2.898,
95% CI: 1.754–4.789) and patients with OS metastasis
had a worse prognosis than those with OS non-
metastasis, which was in accordance with clinical prac-
tice (Fig. 5a). Besides, there were also strong correlations
between tumor metastasis and overall survival time in
high and low risk groups (for high risk group: log-rank
p = 2.455e-02 and HR = 2.398, 95% CI: 1.092–5.268; for
low risk group: log-rank p = 2.189e-03 and HR = 2.761,
95% CI: 1.410–5.405; Fig. 5b and c). Subsequently, the
tumor metastasis and RS model status were incorporated
into a nomogram model for predicting the rates of over-
all survival at the 3- and 5-year in OS patients. The
score of every indicator can be found by points scale lo-
cated at the top of nomogram. Then, the points of each
indicator were summed, thereby estimating survival
probability at 3- and 5-year (Fig. 5d). Furthermore, we
constructed a calibration curve to evaluate the perform-
ance of nomogram model. Notably, the C-index was re-
spectively 0.695 and 0.683 for OS prediction at the 3-
and 5-year, suggesting that the nomogram prediction for
survival rates was in line with the actual observation for
OS patients (Fig. 5e). These results demonstrated that
the nomogram based on OS metastasis and RS model
status exhibited a good predictive accuracy for survival
prognosis of OS patients.

Screening of prognosis risk-related genes and functional
analyses
The samples from training set were separated into high
and low risk groups on the basis of RS model. The 614
DEGs were extracted between these two groups using
the limma package in R 3.4.1, which comprised of 117

Table 1 The performance evaluation of a SVM classifier in training and validation dataset

ROC

Datasets AUROC Sensitivity Specificity PPV NPV

Training set (TCGA, N = 176) 0.969 0.915 0.884 0.741 0.966

Validation set (GSE21257, N = 53) 0.907 0.857 0.778 0.882 0.737

SVM Support vector machine, ROC Receiver operating characteristic, AUROC Area under the receiver operating characteristic curve, PPV Positive predictive value,
NPV Negative predictive value

Table 2 The list of independent prognostic feature genes

Gene coef P value Hazard Ratio 95%CI

KCNJ15 0.0501 2.220E-03 1.0513 1.0182–1.0856

SLC24A4 − 0.392 4.840E-03 0.6757 0.5145–0.8875

ASPA 0.0661 7.220E-03 1.0683 1.0180–1.1211

REM1 −0.0633 2.152E-02 0.9386 0.8893–0.9907

SCARA5 −0.024 2.287E-02 0.9763 0.9564–0.9967

LANCL3 0.143 3.370E-02 1.1533 1.0111–1.3155

CPA6 0.0522 3.787E-02 1.0536 1.0029–1.1067

TRH 0.0592 4.298E-02 1.0610 1.0019–1.1236

Coef Coefficient derived from multiivariate cox regression analysis, 95%CI 95%
confidence interval
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significantly up-regulated genes and 497 significantly
down-regulated genes (Table S2). The volcano plot and
heatmap of gene expression were showed in Fig. 6 a and
b. Furthermore, the GO-BP annotation analysis and
KEGG pathway analysis were undertaken for these
DEGs. Our results indicated that these genes primarily
played essential roles in 23 GO-BP terms including im-
mune responses. Meanwhile, they were enriched in 8

KEGG pathways such as cytokine-cytokine receptor
interaction pathway (Table 4).

Discussion
Existing evidence has demonstrated that it is crucial to
identify several key gene makers related to OS survival
prognosis, which provides important theoretical refer-
ences for developing promising therapeutic strategies for

Fig. 4 Kaplan–Meier survival analysis in training and validation sets. a: The KM curve based on RS and survival outcomes in training dataset. b:
The KM curve based on RS and survival outcomes in validation dataset. HR: hazard ratio; C-index: Harrell concordance index; B-score: Brier score.
The red and blue lines respectively represent high risk samples and low risk samples

Table 3 The univariables and multi-variables cox regression of clinical parameters and survival outcomes of patients with
osteosarcoma

Clinical characteristics TCGA(N = 176) Uni-variables cox Multi-variables cox

HR 95%CI P HR 95%CI P

Age(years, mean ± sd) 61.01 ± 15.23 1.018 0.999–1.036 5.19E-02 – – –

Gender(Male/Female) 72/104 1.102 0.666–1.827 7.05E-01 – – –

Pathologic tumor depth(years, mean ± sd) 6.35 ± 3.69 1.136 0.951–1.227 9.05E-02 – – –

Pathologic tumor length(years, mean ± sd) 11.76 ± 7.25 1.061 0.993–1.092 5.91E-02 – – –

Pathologic tumor width(years, mean ± sd) 8.78 ± 5.51 1.091 0.940–1.143 2.17E-01 – – –

Tumor multifocal(Yes/No/−) 34/132/10 1.685 0.949–2.991 7.13E-02 – – –

Tumor recurrence(Yes/No/−) 28/141/7 2.692 1.581–4.585 1.48E-04 1.626 0.914–2.893 9.80E-02

Tumor metastatic(Yes/No/−) 58/118 2.898 1.754–4.789 1.36E-05 1.879 1.079–3.274 2.58E-02

Radiotherapy(Yes/No/−) 64/110/2 0.799 0.474–1.347 3.99E-01 – – –

Tumor necrosis(No/Slight/Moderate/Severe/−) 61/35/59/10/11 1.191 0.925–1.530 1.75E-01 – – –

RS model status(High/ Low) 88/88 3.13 1.824–5.370 1.28E-05 2.288 1.291–4.057 4.60E-03

Dead(Death/Alive/−) 63/113 – – – – – –

Overall survival time(months, mean ± sd) 39.76 ± 32.24 – – – – – –

SD Standard deviation, HR Hazard ratio, 95%CI 95% confidence interval, TCGAThe Cancer Genome Atlas
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OS treatment. Herein, we established a SVM-based
classifier to distinguish metastatic OS samples and non-
metastatic OS samples. Moreover, eight independent
prognostic genes were identified to construct a RS
model. Meanwhile, tumor metastasis and RS model
status were found to serve as independent prognostic
factors for OS survival. Additionally, the functional
analyses of prognosis-related genes reveled that they
were significantly enriched in the GO-BP term of
immune responses and cytokine-cytokine receptor inter-
action pathway.
Tumor metastasis is a leading cause of high mortality

rates of various tumors. In recent decades, the high-
throughput sequencing technologies have greatly facili-
tated the understanding of metastasis-related genes
function by decoding the genome of cancer patients

[26]. An increasing number of researchers have also con-
centrated on exploring the underlying pathogenesis of
OS metastasis [27, 28]. Moreover, building a prediction
model of OS metastasis was growingly important for
prognostication and clinical decision-making. A SVM,
which could effectively distinguish entities into different
classes in analyzing microarray data, was frequently used
in constructing sample classification model due to its
high accuracy and flexibility for modeling multisource
data [29]. He et al established a SVM classifier using 64
feature genes for OS and this classifier differentiated
metastatic OS samples from non-metastatic OS samples
in the dataset GSE21257 with a prediction accuracy of
100% [30]. Herein, we constructed a SVM classifier
based on 45 prognosis-related genes to discriminate OS
metastasis samples and non-metastasis samples. The

Fig. 5 Kaplan–Meier survival analysis and prognostic nomogram model. a: Kaplan-Meier curve comparing the survival rate between patients with
and without osteosarcoma metastasis in TCGA cohort. b: Kaplan-Meier curve comparing the survival rate between patients with and without
tumor metastasis from high risk group in TCGA cohort. c: Kaplan-Meier curve comparing the survival rate between patients with and without
tumor metastasis from low risk group in TCGA cohort. The blue and red curves respectively represent metastatic osteosarcoma and non-
metastatic osteosarcoma samples. d: The nomogram prediction for overall survival probability at 3- and 5-year for osteosarcoma patients in TCGA
cohort. e: The calibration curve of nomogram to predict the probability of overall survival at 3, and 5 years for osteosarcoma patients in TCGA
cohort; the X axis represents the predicted actual overall survival while the Y axis represents the actual overall survival. TCGA The Cancer
Genome Atlas
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performance evaluation analysis revealed that this classi-
fier had high precision with AUC of 0.969, sensitivity of
0.915 and specificity of 0.884. Moreover, these results
generated in training set were also verified by a SVM
classification in validation set GSE21257. The SVM clas-
sifier also exhibited a good performance with AUC of
0.907, sensitivity of 0.857 and specificity of 0.778. These
findings implied that 45 prognostic genes might be key
biomarkers to identify metastatic and non-metastatic OS
patients.
The correlations between these prognosis-related

genes and clinical survival were investigated by a multi-
variate logistic regression analysis. The results showed
that there were eight independent prognostic risk genes
for OS, which consisted of KCNJ15, SLC24A4, ASPA,
REM1, SCARA5, LANCL3, CPA6 and TRH. A RS model
was also constructed to divide OS patients into high and
low-risk groups. Consequently, this eight-gene signature
exhibited a good performance to differentiate metastatic
OS patients from non-metastatic OS patients. KCNJ15
(also known as KIR4.2), belongs to a member of the
KIR4 subfamily and encodes the potassium channel. Liu
et al recently reported the silencing of KCNJ15 played
key roles in tumor malignance and was related to un-
favourable prognosis renal carcinoma [31]. However,
whether KCNJ15 directly involves in OS progression has
not been clarified. Notably, multiple investigations have
demonstrated that some potassium ion channels such as
hSlo potassium channel in OS cells were implicated with
the carcinogenesis [32, 33]. Therefore, the potential roles
of KCNJ15 in pathogenesis of OS need to be investigated

in future. SLC24A4/NCKX4 is located at on chromo-
some region 14q32 and a member of potassium-
dependent sodium-calcium exchanger gene family [34].
No reports are concerned about the relationship of this
gene and OS development. REM1 encodes a GTPase
and participates regulating the activity of voltage-
dependent Ca2+ channels. Numerous studies have sug-
gested that SCARA5, a member of the scavenger recep-
tor family, is involved in the molecular mechanisms of
various cancers such as hepatocellular carcinoma [35].
You et al previously found that SCARA5 served as a key
biomarker for the development and metastasis of breast
cancer [36]. An early research reported that CPA6 was
remarkably up-regulated in early stage samples with oral
squamous cell carcinoma (OSCC) compared with those
in late stage, suggesting that this gene might have crucial
diagnostic values for OSCC [37]. Another study empha-
sized that the methylation of TRH could classify OSCC
and oropharyngeal SCC patients from healthy individ-
uals with a high accuracy [38]. Unfortunately, the associ-
ation of eight independent prognostic genes and OS has
not been unraveled until now. Further investigations are
essential to understand the underlying role of these
genes for the diagnosis and prediction of OS.
Additionally, the DEGs between high and low risk

groups in training dataset were further extracted to
understand the influence of this eight-gene signature on
OS prognosis prediction. There were 614 significantly
DEGs (117 up-regulated and 497 down-regulated genes).
The GO-BP analysis indicated that these genes were
mainly responsible for immune responses. Mori et al

Fig. 6 The differentially expressed genes (DEGs) between high and low risk groups in TCGA cohort. a: Volcano plot of DEGs. The green nodes
represent DEGs and black color showed non-DEGs. b: The heatmap of DEGs. The expression changes from low to high expression levels with risk
score. TCGA The Cancer Genome Atlas
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argued that up-regulation of the immune response was a
critical characteristic in patients with tumors and several
immunotherapies were potent approaches for those
patients undergoing OS metastasis [39]. Moreover, a
wealth of evidence has suggested that the involvement of
immunotherapies could regulate the tumor microenvir-
onment and re-activate prolonged immune responses
[40, 41]. The results of KEGG enrichment analysis
showed that these genes were predominately associated
with cytokine-cytokine receptor interaction pathway.
Similarly, Chen et al performed a bioinformatics analysis
based on a circRNA microarray dataset and three gene
expression profiles of OS cell lines. They found that
those down-regulated DEGs from three gene profiles

mainly played prominent roles in cytokine-cytokine re-
ceptor interaction pathway [42]. These findings revealed
that the initiation of immune responses and cytokine-
cytokine receptor interaction possibly contributed to the
OS progression.
In the current study, we also found tumor metastasis

and RS model status acted as independent prognostic
factors for OS survival by the cox regression model ana-
lysis. Then, these two survival-related factors as variables
were incorporated into the nomogram and the results
indicated that RS model status showed the biggest influ-
ence on OS survival prognosis. The nomogram is a
powerful risk assessment tool for a wide variety of dis-
eases including OS, which provides important guidance

Table 4 The functional analyses of survival-related genes

Category Term Count P value FDR

GO-BP GO:0002250~adaptive immune response 28 6.430E-13 1.560E-09

GO:0050776~regulation of immune response 28 5.700E-11 6.900E-08

GO:0070098~chemokine-mediated signaling pathway 18 1.450E-10 1.170E-07

GO:0006955~immune response 41 3.820E-09 1.850E-06

GO:0042110~T cell activation 14 3.170E-09 1.920E-06

GO:0006935~chemotaxis 19 1.430E-07 5.750E-05

GO:0006954~inflammatory response 35 2.300E-07 7.950E-05

GO:0006968~cellular defense response 13 9.040E-07 2.730E-04

GO:0007267~cell-cell signaling 26 1.760E-06 4.740E-04

GO:0007166~cell surface receptor signaling pathway 27 2.180E-06 5.280E-04

GO:0071346~cellular response to interferon-gamma 11 1.840E-05 4.037E-03

GO:0042102~positive regulation of T cell proliferation 11 2.930E-05 5.894E-03

GO:0007204~positive regulation of cytosolic calcium ion concentration 16 4.730E-05 8.769E-03

GO:0035589~G-protein coupled purinergic nucleotide receptor signaling pathway 6 6.700E-05 1.152E-02

GO:0043547~positive regulation of GTPase activity 38 9.630E-05 1.446E-02

GO:0070374~positive regulation of ERK1 and ERK2 cascade 18 9.260E-05 1.484E-02

GO:0007155~cell adhesion 32 2.060E-04 2.894E-02

GO:0007165~signal transduction 63 2.210E-04 2.926E-02

GO:0048247~lymphocyte chemotaxis 7 2.880E-04 3.606E-02

GO:0042472~inner ear morphogenesis 9 3.260E-04 3.873E-02

GO:0050850~positive regulation of calcium-mediated signaling 6 4.390E-04 4.712E-02

GO:0006508~proteolysis 33 4.240E-04 4.774E-02

GO:0002548~monocyte chemotaxis 8 4.660E-04 4.781E-02

KEGG Pathway hsa04060:Cytokine-cytokine receptor interaction 38 4.250E-12 9.690E-10

hsa04080:Neuroactive ligand-receptor interaction 34 4.100E-08 4.680E-06

hsa04640:Hematopoietic cell lineage 17 4.960E-07 3.770E-05

hsa04514:Cell adhesion molecules (CAMs) 19 2.440E-05 1.389E-03

hsa04062:Chemokine signaling pathway 21 9.560E-05 4.350E-03

hsa04660:T cell receptor signaling pathway 13 9.200E-04 2.590E-02

hsa05033:Nicotine addiction 8 1.213E-03 3.028E-02

hsa04650:Natural killer cell mediated cytotoxicity 14 1.739E-03 3.543E-02

KEGG Kyoto Encyclopedia of Genes and Genomes, FDR false discovery rate, GO-BP Gene Ontology-Biology Process
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for clinical outcomes prediction, therapy selection and
follow-up care [43]. We noted that overall survival rates
the 3- and 5-year for OS patients were similar to the ac-
tual observation for OS patients, implying that tumor
metastasis and RS model status were vital clinical char-
acteristics for survival prediction of OS patients.
Although an eight-gene panel and two independent

prognostic factors have been identified to be associated
with OS prognosis, the detailed pathologic mechanisms
have not been elucidated. For example, whether these
gene signatures are involved in several molecular path-
ways such as cytokine-cytokine receptor interaction path-
way still needs to be illuminated. Moreover, a further
accurate classification with a large sample size and clinical
information is necessary to distinguish OS metastasis and
non-metastasis patients. In addition, the external valid-
ation is not carried out to check the reliability of our
nomogram. Meanwhile, the performance evaluation of
nomogram established here also requires to be performed.
Finally, the corresponding experimental research is also
needed to verify the biological functions of key gene.
In conclusion, we constructed a SVM-based classifier

to separate metastatic and non-metastatic patients.
Moreover, the eight-gene signature and two independent
prognostic factors (tumor metastasis and RS model sta-
tus) were closely related to OS survival. These findings
greatly improved the understandings of OS metastasis
and prognosis. However, relevant validation studies and
optimization of prognostic model for OS will be consid-
ered in future.

Conclusion
An eight-gene predictive model and nomogram were de-
veloped to predict OS prognosis.
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