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Summary 
Tumor necrosis factor a (TNF-ce) has been shown to both stimulate and inhibit the proliferation 
of hematopoietic progenitor cells (HPCs) in vitro, but its mechanisms of action are not known. 
We demonstrate that the direct effects of TNF-o~ on murine bone marrow progenitors are only 
inhibitory and mediated at least in part through downmodulation of colony-stimulating factor 
receptor (CSF-R) expression. The stimulatory effects of TNF-c~ are indirectly mediated through 
production of hematopoietic growth factors, which subsequently results in increased granulo- 
cyte-macrophage CSF and interleukin 3 receptor expression. In addition, the effects of TNF-c~ 
(stimulatory or inhibitory) are strictly dependent on the particular CSF stimulating growth as 
well as the concentration of TNF-ot present in culture. A model is proposed to explain how 
TNF-ce might directly and indirectly regulate HPC growth through modulation of CSF-R 
expression. 

T he survival, proliferation, and differentiation of hema- 
topoietic progenitor cells (HPCs) t are controlled by 

positive and negative regulatory cytokines. Stimulatory he- 
matopoietic growth factors (HGFs) include the CSFs (1, 2), 
the interleukins (3), erythropoietin (4), and stem cell factor 
(SCF) (5, 6). The CSFs include granulocyte CSF (G-CSF), 
macrophage CSF (M-CSF or CSF-1), granulocyte-macrophage 
CSF (GM-CSF), and I1.-3 (2, 7). Presence of one or more 
of the CSFs is essential for the in vitro proliferation of bone 
marrow progenitor cells (2, 7). Biological actions of the CSFs 
are mediated through specific high-affanity cell surface receptors 
(2), and modulation of CSF-R expression has been proposed 
as a mechanism by which non-CSF HGFs can dicit inhibi- 
tory and/or stimulatory effects on CSF-stimulated hemato- 
poiesis (8, 9). 

In addition, a number of negative regulators of hemato- 
poietic cell growth have been identified such as TGF-fl (10), 
macrophage inflammatory protein-1 c~ (11), interferons (12), 
prostaglandins (13), and TNF-c~ (14, 15). 

'Abbreviations used in this paper: CM, conditioned medium; HGFs, 
hematopoietic growth factors; HPCs, hematopoietic progenitor cells; Hu, 
human; LDBM, light density bone marrow; Lin-, lineage negative; Mu, 
murine; PDGF, platelet-derived growth factor; SCF, stem cell factor. 

TNF-c~ is mainly a monocyte-derived cytokine (16), but 
its production can also be induced in other cell types such 
as T cells (17) and endothelial cells (18). TNF-c~ was origi- 
nally characterized by its cytotoxic and cytostatic activity on 
tumor cells in vitro and in vivo (19, 20). However, TNF-ot 
has subsequently been demonstrated to affect a wide range 
of biological activities of many normal cell types, including 
endothelium (21), fibroblasts (22), T cells (23), neutrophils 
(24), and monocytes (25). Conflicting results have been 
reported with regard to the effects of TNF-ot on the growth 
and proliferation of HPCs, from potent inhibition (14, 15, 
26-30) to stimulation (31-33). Furthermore, TNF-cr can pro- 
mote hematopoietic recovery from lethal radiation damage 
(34-36). It is not known whether the effects of TNF-c~ on 
HPCs are direct and/or indirect, or by which mechanism(s) 
TNF-ot exerts its effects. However, TNF-oe has been demon- 
strated to induce the production of a variety of HGFs, in- 
cluding IL-1, IIr M-CSF, G-CSF, and GM-CSF (37-42), 
and to modulate CSF-R expression on granulocytes, macro- 
phages, and leukemic cells (43-47). Therefore, we addressed 
whether the stimulatory and inhibitory effects of TNF-cr on 
hematopoietic cell growth were direct or indirect, and whether 
CSF-tL modulation might represent a mechanism of TNF-(x 
action. The present results demonstrate that TNF-cr directly 
inhibits CSF-stimulated proliferation of murine bone marrow 
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progenitor cells, which directly correlates with CSF-R down- 
modulation. In addition, TNF-ot has potent stimuhtory effects 
that are indirect and mediated, at least in part, through produc- 
tion of HGFs and subsequent induction of CSF-Rs. 

Materials and Methods 

Growth Factors 
Purified rMuGM-CSF and rHuman (rHuG-CSF) were gener- 

ously supplied by Ian K. McNiece and Thomas Boone (Amgen 
Corporation, Thousand Oaks, CA). Recombinant routine (rMu) 
IL-3 was purchased from R and D Systems (Minneapolis, MN). 
rHuCSF-1 was a generous gift from Dr. Michael Geier (Cetus Corp., 
Emeryville, CA). rMuTNF-ot was a gift from Mike Palladino 
(Genentech, San Francisco, CA). 

Cytokine Antibodies 
Rabbit anti-routine TNF-cr a polyvalent antiserum, was pur- 

chased from Genzyme Corp. (Boston, MA). It had a neutralizing 
activity of 10 ~ U/m1. Goat anti-murine Ib6 was from IL and D 
Systems, and, depending on the assay, 2-3/~g/ml of this antibody 
neutralizes 1 ng/ml of routine Ib6. Goat anti-routine IL-1/3 was 
purchased from R and D Systems. Rabbit anti-mouse IlAo~ poly- 
clonal antibody (Genzyme Corp.) neutralizes 10 U of routine IL-lc~ 
at a dilution of 1:50. Lyophilized rat anti-murine CSF-1 mAb was 
purchased from Oncogene Science (Manhasset, NY). 

Preparation of CM. Light density bone marrow (LDBM) cells 
were incubated at 5 x 10 s cells/ml in complete IMDM at 370C, 
5% CO2 in the absence or presence of 2 ng/ml of rMdrNF-c~. 
Cell-free superaatants were harvested after a 24-h incubation. To 
neutralize the effects of TNF-o~ in the CM, it was pretreated with 
a TNF-o~ antibody (Genzyme Corp.) at a concentration sufficient 
to neutralize 10 ng/ml of TNF-o, 

Bone Marrow Cells 
Normal murine bone marrow cells were obtained by aspirating 

femurs of normal BALB/c mice. LDBM cells were separated by 
centtifugation on lymphocyte separation medium (Organon Teknika 
Corp., Durham, NC). Cells were washed twice in IMDM and 
resuspended in IMDM supplemented with 10% FCS (Inovar, 
Gaithersburg, MD), 15 rag/liter gentamicin, and 3 rag/m1 ghta- 
mine (complete IMDM). 

Purification of Lin-  Bone Marrow Progenitors 
Lin- bone marrow progenitor cells were purified according to 

a previously described protocol (48). Briefly, LDBM cells were 
resuspended in complete IMDM and incubated at 4oc for 30 rain 
with a cocktail of antibodies, RA3-6B2 (B220 antigen) and R.B6- 
8C5 (GR-1 antigen) (gifts of R. Coffman, DNAX Corp., Palo 
Alto, CA); MAC-1 (purchased from Boehringer-Mannheim, Indi- 
anapolis, IN); Lyt-2 (CD8) and L3T4 (CD4) (purchased from Becton 
Dickinson & Co., Sunnyvale, CA). Cells were washed twice and 
resuspended in complete IMDM. Magnetic beads (Dynal, Great 
Neck, NY) were added at a ratio of 40:1 (beads/cells), and the mix- 
ture was incubated for 30 min at 4~ Labeled (Lin+) cells were 
removed by a magnetic particle concentrator (Dynal), and Lin- 
cells were recovered from the supernatant. 

Purification and FACS Sorting of Lin-Thy-1 + Progenitors. Lin- 
cells were indirectly labeled with the mAbs anti-Thy-l.2 (Becton 
Dickinson) or an isotype-matched control purchased from Phar- 

mingen (San Diego, CA). Then, anti-rat Ig-HTC (Cappel Labora- 
tories, Malvern, PA) were added at 1:20 dilution and incubated for 
30 min at 4"C, and Thy-l+ cells were separated by FACS | (Becton 
Dickinson & Co.) as previously described (49). 

Cell Lines 
The 32DC13 progenitor cell line (50) was maintained in com- 

plete RPMI 1640 supplemented with 20% WEHI-3 conditioned 
medium. The NPS/N1.M6 (MC-6) mast cell line (51), a generous 
gift from Dr. Doughs E. Williams (Immunex Corp., Seattle, WA), 
was grown in complete R.PMI 1640 with 20% WEHI-3 condi- 
tioned medium. 

Soft Agar Colony Formation 
A modification of the method of Stanley et al. (52) was used 

to measure colony formation of murine bone marrow progenitor 
cells in vitro. Briefly, 5 x 104 LDBM cells or 104 Lin- cells in 
1 ml of complete IMDM and 0.3% seaplaque agarose were plated 
in 35-ram Lux petri dishes (Miles Scientific, Naperville, IL) and 
incubated at 37~ in 5% COz for 7 d and scored for colony 
growth (>50 cells). 

[~H]Thymidine Incorporation Assays. LDBM cells were in- 
cubated in the presence of CSFs at 37~ 5% CO2 or TNF- 
a-conditioned medium (CM) in 96-well microtiter plates at a den- 
sity of 5 x 104 cells in 100/~1 of complete IMDM. DNA syn- 
thesis was assessed with a pulse of 1/~Ci of [3H]thymidine (6.7 
Ci/mmol; New England Nuclear, Boston, MA) for the last 6 h 
of the incubation period. Radioactivity was determined by liquid 
scintillation. 

Single-Cell Proliferation Assay. Lin- or Lin-Thy-l+ were seeded 
in Terasaki plates (Nunc, Kamstrup, Denmark) at a concentration 
of 1 cell per well in 20/A of complete IMDM. Wells were scored 
for proliferation (>10 cells) after 6-8-d incubation at 37~ 5% 
CO2. 

Radioiodination of CSFs 
The radioiodination of IL-3 was performed by a chloramine-T 

method as previously described (53), while G-CSF, CSF-1, and GM- 
CSF were labeled by a modified chloramine-T method. Briefly, 5-10 
/zg ofrMuGM-CSF, recombinant human (rHu)G-CSF, or rHuCSF- 
I in 10/zl of 0.1 tool/liter sodium phosphate buffer (pH 7.0), 10 
p.l of 10% DMSO with 100/~g//zl of polyethylene glycol, and 1 
mCi of 1~I (Amersham, Arlington Heights, IL) were incubated 
at 4*C for 5 rain in the presence of 10/11 of 0.1 mg/ral chlora- 
mine-T. Then, 10/~l of 0.3 mg/ml sodium metabisulfite and 10 
/zl of 0.1 tool/liter potassium iodide was added. Iodinated CSFs 
were separated on a Sephadex G-10 or G-25 column equilibrated 
with PBS. The specific radioactivity was 7.2-10.2 x 106, 0.9-2.0 
x l& 1.7-2.8 x 10% and 6.4-7.8 x 106 cpm/pmol for radio- 
iodinated GM-CSF, G-CSF, IL-3, and CSF-1, respectively. The bi- 
ological activity of all CSFs were retained for at least 3--4 wk after 
radiolabeling, as determined by their ability to induce bone marrow 
proliferation. 

Radioligand Binning Experirnentl [ml]CSF binding experiments 
were performed by a previously described phthalate oil separation 
method (54). LDBM cells or Lin- cells were resuspended in 1 ml 
of 50 mM glycin~HCl (PH 3.0) for 1 re_in to release bound ligands. 
Cells were then washed twice in RPMI 1640 containing 1% BSA, 
20 retool/liter Hepes, and 0.1% sodium azide (binding medium). 
Cells were incubated with 1~I-cytokines in 200/~l of binding 
medium. Spedfic binding of radiolabeled CSFs (20-300 pM) was 
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determined as the difference in CSF binding in the absence and 
presence of a 50-fold excess of unlabeled CSF following a 90-rain 
incubation at 22~ (GM-CSF) or 37~ (G-CSF, CSF-1, and ID3). 
Cell-bound [12slJCSF was separated from unbound ligands by cen- 
trifugation through a 0.2-ml mixture of dibutylphthalate and 1 
isis (2 ethyl-hexyl) phthahte oil (ratio, 1.5:1) (Eastman Kodak, Roch- 
ester, NY). Radioactivity was measured in a Biogamma 2 counter 
(Beckman Instruments, Fullerton, CA). Equilibrium binding data 
were analyzed according to Scatchard (55) and by computerized 
linear regression analysis. 

Cell Surface Phenotyping 
LDBM cells were labeled with and-LFA-1, anti-MAC-I, and 

anti-Ly-5 (Boehringer-Mannheim), anti-Ly-17 (Dr. Margareth L 
Hibbs, Melbourne, Australh), or RB6-8C5 (gift from Dr. Coffman), 
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and a goat anti-rat-FI~2 (Cappel Laboratories) as previously de- 
scribed (9). Cells were analyzed by FACS ~ on a EPIC-753 (Coulter 
Electronics, Hialeah, FL). 

Results 
Effects of TNF~ on CSlZinduced Clonal Growth of Murine 

Bone Marrow Progenitor Cells In Vitra Previous studies had 
demonstrated considerable variability in the effects of  TNF-c~ 
on the growth of  HPCs in vitro, ranging from potent inhi- 
bition to stimulation (14, 15, 26-33). Because many of  these 
studies used CM as a source of  colony stimulating activity 
(CSA) as well as unfractionated bone marrow, we first as- 
sessed the effects of  rMuTNF-ce over a broad dose range on 
the growth of CFU cells (CFU-C) induced by purified rCSFs. 

G-CSF 

I~'/~ CSF-1 

GM-CSF  

II]]]]]l IL-3 

0.02 0.2 2.0 20 200 

0.02 0.2 2.0 20 200 

Figure 1. Effects of TNF-c, on CSF- 
stimulated colony formation of LDBM 
cells and Lin- progenitors. LDBM (A) 
and Lin- cells (B), separated as de- 
scribed in Materials and Methods, were 
plated at 5 x 104 and 2 x 104 cells, 
respectively, in 1 ml of IMDM with 
10% FCS and 0.35% seaphque agaros~ 
Cultures were supplemented with pre- 
determined optimal concentrations of 
purified rMuGM-CSF (20 ng/ml), 
rHuG-CSF (20 ng/ml), rMull.-3 (20 
ng/ml), or rHuCSF-1 (50 ng/ml), and 
incubated at 37~ 5% CO2 for 7 d 
before being scored for colony forma- 
tion (>50 cells). Results are presented 
as the mean +SD of duplicate deter- 
minations and are representative of at 
least four separate experiments. 



In addition, we compared the effects of TNF-ol on normal 
LDBM cells versus a highly enriched bone marrow progen- 
itor cell population, designated lineage negative (Lin-) due 
to its absence of cell surface antigens characteristic of B and 
T lymphocytes, monocytes, and granulocytes (48). 

Although TNF-o~ alone did not promote colony forma- 
tion of LDBM cells (data not shown), it had a bidirectional 
effect on G-CSr'-induced colony formation (Fig. 1 A). 
Specifically, concentrations of TNF-c~ at 2 ng/ml or below 
enhanced the number of G-CSF--stimulated CFU-C, with 
a 44% increase at 0.02 ng/ml and maximum enhancement 
of 75% at 2 ng/ml. In contrast, TNF-cr at 20 and 200 ng/ml 
inhibited G-CSF-stimulated colony formation by 72% and 
83%, respectively. A similar bidirectional response to TNF-c~ 
was observed on Lin- progenitors, in that G-CSr,-stimu- 
lated CFU-C formation was maximally enhanced by 58% 
at 2 ng/ml, whereas a 70% and 80% inhibition was observed 
at 20 and 200 ng/ml, respectively (Fig. 1 B). 

TNF-cz also stimulated CSP-l-induced CFU-C formation 
of LDBM cells (Fig. 1 A). TNF-a increased the number of 
CSF-l-induced CFU-C by 37% at 0.02 ng/ml, and a max- 
imum stimulation of 92% was observed at 2 ng/ml of TNr,-cx. 
In contrast to the effects observed on G-CSF-induced colony 
growth, higher concentrations of TNF-o~ did not inhibit CSF- 
1-induced colony formation, with a marginal increase in 
colony formation of 28% and 17% observed at 20 and 200 

ng/ml, respectively. The same response profile to TNF-ol was 
observed on CSF-l-stimulated Lin- progenitors (Fig. 1 B). 

Similar to the results with CSF-I, IL-3-stimulated colony 
formation was enhanced at low concentrations of TNF-cr 
(0.02-2.0 ng/ml), with a maximum of 43% and 33% for 
LDBM (Fig. 1, A) and Lin- cells (Fig. 1, B), respectively, 
whereas 20-200 ng/ml had less or no stimulatory effect. 

Finally, and in contrast to the colony formation induced 
by the other three CSFs, GM-CSF-induced CFU-C in soft 
agar was increased at all concentrations of TNF-o~ tested 
(0.02-200 ng/ml). Maximum enhancement of 83% for 
LDBM (Fig. 1 A) and 74% for Lin- cells (Fig. 1 B) was 
observed at 20 ng/ml. Furthermore, the TNF-cc-induced en- 
hancement of GM-CSF-stimulated colony formation was 
specific and not due to contaminants such as LPS, since an 
antibody to TNF-ol neutralized its stirnulatory activity (data 
not shown). 

Thus, TNF-o~ has bidirectional effects on routine bone 
marrow colony formation induced by purified rCSFs that is 
dependent on the particular CSF stimulating growth as well 
as the concentration of TNF-ol in culture. 

TNF-cr Is a Bidirectional Modulator of CSF-R Expression on 
HPCs. Because TNF-ot had been shown to downmodulate 
G-CSF and GM-CSF-Rs on human granulocytes (44, 45) and 
CSF-11k expression on routine monocytes (43, 47), we ex- 
amined whether modulation of CSF-R expression could play 
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Figure 2. The effects of TNF-(x on 
CSF binding to LDBM cells. LDBM 
cells (5 x 105 cells/ml) were incubated 
at 37~ in the presence of TNF-c~ 20 
ng/ml. 12SI-G-CSF (A), t2sI-CSF'-I (B), 
t2SI-GM-CSF (C), and t2sI-ID3 (D) 
specific binding were determined fol- 
lowing various incubation periods as tie- 
scribed in Materials and Methods. 
Results are presented as the mean • 
of duplicate determinations and are rep- 
resentative of at least four separate ex- 
perirnents. 
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a role in the bidirectional effects of TNF-c~ on bone marrow 
progenitor cell proliferation. TNF-ol (20 ng/ml) reduced 
lzSI-G-CSF-specific binding to LDBM cells in a time- 
dependent manner (Fig. 2 A). Maximum downmodulation 
of G-CSF binding of 86% was observed by 15 min, which 
was sustained for at least 24 h (Fig. 2 A) and was reversed 
after removal of TNF-c~ (data not shown). CSF-1 binding 
was maximally reduced 87% by 15 min, remained suppressed 
for 12 h, but unlike G-CSF binding, recovered to 73% of 
control binding by 24 h (Fig. 2 B). GM-CSF (Fig. 2 C) and 
Ib3 binding (Fig. 2 D) were also rapidly downmodulated 
by TNF-c~, with a maximum reduction by 1 h of 54% and 
52%, respectively. However, in contrast to G-CSF and CSF-1 
binding, both GM-CSF and II-3 binding recovered to con- 
trol levels within 12 h, and by 24 h an increase in GM-CSF 

and II:3 binding of 91% and 47%, respectively, was observed. 
This upregulation was prolonged for at least 48 h (data not 
shown). Furthermore, the specific binding of all four CSFs, 
were not significantly affected after a 24-h incubation in con- 
trol medium (data not shown). 

Equilibrium binding studies and subsequent Scatchard anal- 
ysis revealed that untreated LDBM cells had 253 high-affinity 
(KD -- 1.1 x 10 -l~ M) G-CSF binding sites per cell and 
that TNF-c~ at 20 ng/ml by 1 h reduced the number of 
G-CSF-Rs to 80 without significantly affecting the receptor 
affinity (Fig. 3 A). Similarly, TNF-o~ 20 ng/ml reduced the 
number of both high- and Iow-afflnity GM-CSF-Rs by 51% 
and 53%, respectively, after 1 h without affecting their affini- 
ties (Fig. 3 B). 

TNF-cz-induced modulation of CSF-Rs occurred in the 
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Figure 3. Scatchard analysis of TNF<x-induced 
downmodulation of G-CSF and GM-CSF-R expres- 
sion on LBDM cells. LDBM cells (5 x 105 cells/ml) 
were incubated at 37~ for 1 h in the presence (A) 
or absence (e)  of TNF-~ 20 ng/ml. Increasing con- 
centra~om of radioiodinated G-CSF (A) and GM-CSF 
(B) were added to 3.0 • 106 and 2.0 • 106 cells in 
200/zl of binding medium, and G-C, SF- and GM-CSF- 
specific binding was determined as described in 
Materials and Methods. Equilibrium binding data were 
analyzed according to Scatchard's method. Results are 
the mean of duplicate determinations and are repre- 
sentative of three separate experiments. 



Table 1. Modulation of CSF Binding to Lin-  Bone Marrow 
Progenitor Cells by TNF-oz 

Specific binding 
Incubation 

Ligand time - TNF-oe + TNF-oe 

h cpm 
G-CSF 1 494 + 42 85 • 23* 

G-CSF 24 549 + 78 123 + 59* 

CSF-1 1 2,348 • 213 389 + 671 

CSF-1 24 2,052 • 341 1,363 + 134" 

GM-CSF 1 1,980 + 102 1,073 + 48" 

GM-CSF 24 1,867 • 159 3,491 • 341" 

IL-3 1 1,468 _+ 84 809 • 91* 

IL-3 24 1,281 • 71 2,101 • 130~ 

Lin-  bone marrow cells were separated as described in Materials and 
Methods, and incubated at 5 x 105 cells/ml at 37~ 5% CO2 in the 
presence or absence of TNF-oe 20 ng/ml. CSF-specific binding was de- 
termined after a 1- and 24-h incubation as described in Materials and 
Methods. Data are presented as the mean of duplicate determinatiom + SD 
and are representative of at least three separate experiments. Results of 
three experiments were analyzed by t tests comparing -TNF-ot vs. 
+ TNF-a. 
"p .~0.01. 
* F 4g0.05. 

absence of changes in cell numbers and viability (data not 
shown), and was not due to TNF-ce binding to the CSF-Rs, 
because TNF-ce did not compete for CSF binding sites at 
4~ (data not shown). 

Because bone marrow progenitor cells are in low frequency 

in LDBM, the effect of TNF-ce on CSF-R expression was 
also investigated on Lin- bone marrow progenitor cells (Table 
1). Their high proliferative potential is underscored by the 
finding that up to one in five Lin- cells proliferate under 
optimal conditions in single-cell cultures supplemented with 
multiple HGFs (Keller, J. R., S. E. '07. Jacobsen, and F. W. 
Kuscetti, unpublished observations). As observed for LDBM 
cells, TNF-ce reduced the binding of all four CSFs to Lin- 
ceils by 1 h and upregulated GM-CSF and II.-3R expression 
by 187% and 64%, respectively, at 24 h (Table 1). 

To address the specifidty of TNF-ce-induced modulation 
of CSF-Rs, the expression of other ceil surface antigens on 
LDBM ceils detected by mAb were examined by FACS "~ anal- 
ysis after TNF-ot treatment. TNF-ce (20 ng/ml) did not affect 
the expression of LFA-1, MAC-l, Ly-5, Ly-17, or 8C5 by 1 h 
(Table 2) or 6 h (data not shown). 

Differential Regulation of G-CSF-R Expression Depends on 
TNF-oz Concentration. Because TNF-o~ optimally down- 
modulated the expression of all four CSF-Rs by 1 h, we chose 
to investigate the concentration-response relationship at this 
time point. TNF-ce-induced downmodulation of G-CSF- and 
CSF-l-specific binding (Fig. 4), as well as GM-CSF- and IL- 
3-specific binding (data not shown), occurred in a concen- 
tration-dependent manner, with maximum inhibition at 20 
ng/ml and an ED50 of 0.2-2.0 ng/ml. 

In seeming conflict, TNF-ce downmoduhted G-CSF specific 
binding at low concentrations (0.2 ng/ml) by 1 h (Fig. 3), 
whereas G-CSF-stimulated colony formation was enhanced 
at the same concentration (Fig. 1). However, because colony 
formation occurs only after several days of incubation (56), 
we examined whether high concentrations of TNF-oe (20-200 
ng/ml), which inhibit colony formation, might correhte with 
prolonged downmodulation of G-CSF binding, whereas low 

Table 2. Effect of TNF-oz on the Expression of Cell Su~ace 
Proteins on LDBM Cells 

Percent positive cells Mean ~uorescence 

mAb - TNF-tx + TNF-tx - TNF-o~ + TNF-ot 

Control  <5 <5 4 3 

LFA-t 46 41 7 8 

MAC-1 34 30 29 33 

Ly-5 82 79 43 37 

Ly-17 17 21 4 4 

8C5 47 53 43 42 

LDBM cells were incubated at 5 x 105 ceUs/ml at 37~ 5% CO2 for 
1 h in the presence or absence of TNF-ot 20 ng/ml. Cells were then in- 
cubated with primary mAbs and a secondary fluorescein conjugated Ab 
as described in Materials and Methods. An isotype-matched rat Ig was 
used as a control. Percent positive cells refers to the percentage of cells 
with a higher fluorescence intensity than 95% of the cells incubated with 
the control Ab. Results presented are representative for three separate 
experiments. 
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Figure 4. Dose-response of TNF-cc-induced downmodulation of G-CSF 
and CSF-1 binding to LDBM cells. LDBM cells (5 x 105 cells/ml) were 
incubated at 37~ in the presence of increasing concentrations of TNF-ce 
or in the absence of growth factors, lzsI-G-CSF (@) and 12sI-CSF-1 (A) 
specific binding was determined as described in Materials and Methods 
after a 1-h incubation. Results are presented as the mean of triplicate de- 
terminations _+ SD and are representative of three separate experiments. 
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T a b l e  3. Relaaonship between Dose- and Time-Dependence of 
TNF-ol-induced Downmodulation of G.CSF 
Binding on LDBM Cells 

I~I-G-CSF specific binding 

TNF-c~ 15 min 24 h 

ng/ral cpra 
0 2,384 + 182 2,104 + 167 
0.2 1,597 _+ 152" 2,013 _+ 87 
2.0 691 _+ 54* 1,906 _+ 192 

20 481 _+ 41" 452 _+ 103" 
200 439 + 79* 513 + 110" 

LDBM cells were incubated at 5 x 10 s cells/ml at 37~ 5% CO2 in 
the absence or presence of TNF-ot at indicated concentrations. G-CSF- 
specific binding was determined as described in Materials and Methods 
after 15-rain and 24-h incubation. Data presented are the mean of dupli- 
cate determinations _+ SD and are representative of at least three separate 
experiments. Results of three experiments were analyzed by analysis of 
variance followed by t tests comparing -TNF-~x vs. + TNF-ot. 
* p g0.01.  

concentrations (0.2-2 ng/ml), which enhance colony forma- 
tion, might correlate with recovery of G-CSF binding. In- 
terestingly, TNF-cz reduced G-CSF specific binding to LDBM 
ceUs by 33% at 0.2 ng/ml and by 71% at 2.0 ng/ml after 
15 min, whereas no significant effect was observed by 24 h 
at the same concentrations of TNF<x (Table 3). In compar- 
ison, TNF-ot at 20 and 200 ng/ml downmodulated G-CSF- 
specific binding by >75% at both 15 rain and 24 h (Table 
3). Thus, inhibition of G-CSF-stimulated colony formation 
as well as prolonged downmodulation of G-CSF-R expres- 
sion on LDBM cells occurs at high (20-200 ng/ml) concen- 
trations of TNF-ot, whereas low concentrations of TNF-ot 
induce both recovery of G-CSF-R expression and enhanced 
colony formation. 

TNF-~-induced Downmodulation of CSFR Expression Func- 
tionally Reduces Mitogenic CSF R e ~ s x  Because TNF-ot 
only transiently downmodulated the expression of receptors 
for all CSFs except G-CSF and because colony assays measure 
biological effects of cytokines after a 7-d incubation, a ki- 
netic study of [3H]TdR incorporation on LDBM cells was 
performed to better correlate CSF-R modulation to CSF- 
induced proliferation. Significant proliferation of LDBM cells 
was observed in response to all CSFs by 6 h, at which time 
20 ng/ml of TNF-ct inhibited G-CSF-, CSF-I-, GM-CSF-, 
and II,3-induced proliferation by 65%, 56%, 39%, and 44%, 
respectively (Fig. 5 A). This was correhted directly with down- 
modulation of all CSF-Rs at 6 h (Fig. 2). By 24 h (Fig. 5 
B), TNF-ct inhibited G-CSF--stimulated proliferation by 68%, 
whereas little or no effect was seen on [3H]TdR incorpora- 
tion induced by the three other CSFs (Fig. 5 B). By 72 h, 
when only G-CSF-Rs were downmodulated, G-CSF--induced 
proliferation was inhibited by 79% by TNF-ct, whereas 
CSF-I-, GM-CSF-, and II:3-stimulated proliferations were 
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Figure 5. The effect of TNF-~ on CSF-stimulated LDBM cell prolifer- 
ation. LDBM cells (5 x 10 4 cells/well) were incubated with optimal con- 
centrations of CSFs (as in Fig. 1) or without growth factors (medium). 
In the absence ( - )  or presence (+) of 20 ng/ml of TNF-c~. [3H]TdR in- 
corporation was determined as described in Materials and Methods after 
a 6-h (A), 24-h (B), and 72-h (C) incubation at 37~ 5% CO2. Data 
presented are the mean of triplicate determinations _+SD and are represen- 
tative of four separate experiments. 
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Table 4. Direct Effects of TNF~ on CSF-dependent Growth 
of Separated Bone Marrow Progenitor Populations 

G r o w t h  in 
Terasaki plates 

Percent  
Cells CSF TNF-ot Frequency-1 Inhibition 

Lin - 

Lin - 

Lin - 

Lin - 

Lin - 

Lin - 

Lin - 

Lin - 

Lin - 

Lin - 

Lin-Thy-1 + 

Lin-Thy-1 + 
Lin-Thy-1 + 
Lin-Thy-1 + 
Lin-Thy-1 + 
Lin-Thy-1 + 
Lin-Thy-1 + 
Lin-Thy-1 + 

- -  - -  0 - -  

- -  + 0 - -  

G - C S F  - 75 - 

G-CSF + 600 88" 
CSF-1 - 33 - 
CSF-1 + 60 45* 

GM-CSF - 22 - 
GM-CSF + 39 44* 

IL-3 - 21 - 
IL-3 + 32 34* 

G-CSF - 0 0 
G-CSF + 0 0 
CSF-1 - 75 - 
CSF-1 + 125 40 t 

GM-CSF - 30 - 
GM-CSF + 50 40* 

IL-3 - 8 - 
IL-3 + 15 47$ 

Lin - and Lin-Thy-1 + cells separated according to Materials and Methods 
were seeded as single cells in Terasaki plates as described. Cultures were 
incubated at 37~ 5% CO2 with predetermined optimal concentrations 
of  CSFs as described in Fig. 1, in the presence ( + )  or absence ( - )  of 
2 ng/ml of TNF-ot. The frequency of responding progenitors (>10 
cells/well) was determined after a 6-7-d incubation. Results presented 
are the mean of four separate experiments, with a minimum of 1,200 
wells scored per group. Results of three experiments were analyzed by 
paired t tests comparing -TNF-c~ vs. + TNF-o~. 
"p  ~0.01. 

p ~0.05. 

enhanced by 78%, 54%, and 35%, respectively (Fig. 5 C). 
Thus, transient downmodulation of CSF-Ks (GM-CSF-K, 
CSF-I-R, and IL-3-K) correlates with a transient inhibition 
of thymidine uptake, whereas prolonged downmodulation 
(G-CSF-K) is accompanied by sustained inlfibition. Conversely, 
TNF-ot-induced upregulation of GM-CSF and Ib3Ks (by 
24 h) and recovery of CSF-1Ks correlated with enhanced 
proliferative responsiveness. 

TNF-cr Directly Inhibits the Proliferation of Murine Bone Marrow 
Progenitors in Response to CSFs. Because indirect effects cannot 
be ruled out in soft agar colony assays, direct proliferative 
effects of TNF-ot were assessed by examining the growth of 
single Lin-  ceils in Terasaki plates. In agreement with previ- 
ously published data (57), the responding frequencies of Lin-  
ceils were 1:75 for G-CSF, 1:33 for CSF-1, 1:22 for GM-CSF, 

and 1:21 for IL-3 (Table 4). TNF-ot at 2.0 ng/ml, a concen- 
tration that enhanced colony formation in response to all four 
CSFs (Fig. 1), reduced the frequency of responding single 
cells to 1:600 for G-CSF, 1:60 for CSF-1, 1:39 for GM-CSF, 
and 1:32 for IL,3-treated cultures, respectively (Table 4). Similar 
degrees of inhibition were also observed adding TNF-ot at 
20 ng/ml (data not shown). TNF-ot was also examined for 
direct effects on a very primitive progenitor cell population 
within the Lin-  cells, characterized by cell surface expres- 
sion of the Thy-1 antigen (48). The proliferation of single 
Thy- l+ /Lin-  cells supplemented with CSF-1, GM-CSF, or 
IL-3 were also inhibited by TNF-c~ at 2.0 ng/ml (Table 4) 
and 20 ng/ml (data not shown). 

Thus, in striking contrast to the stimulatory effects ob- 
served on colony formation in soft agar, TNF-c~ directly in- 
hibits G-CSF-, CSF-I-, GM-CSF-, and IL-3-induced prolifer- 
ation of murine bone marrow progenitor cells in single cell 
assays. 

Indirect Stimulator), Effects of TNF-cr : Proposed Mechanism 
of Action. Because TNF-ot acted as a direct inhibitor of single 
bone marrow progenitors, it was possible that the stimula- 
tory effects of TNF-c~ on CSF-induced colony formation as 
well as increased GM-CSF and Ib3K expression were indirectly 
mediated through induction of other cytokines. TNF-ot has 
been demonstrated to induce the production of a number 
cytokines, including the CSFs, II--1, and Ib6 (37-42). Fur- 
thermore, synergistic effects on the growth of bone marrow 
progenitor cells have been shown to occur between different 
CSFs (58, 59) as well as between CSFs and IL-1 and IL-6 (8, 
60, 61). Therefore, we first examined the CM of bone marrow 
cells exposed to TNF-ot 2 ng/ml for 24 h (TNF-o~-CM) for 
synergistic activity on GM-CSF-induced proliferation as well 
as GM-CSF-K expression on LDBM progenitor cells. TNF-ol 
at 2 ng/ml stimulated GM-CSF-induced proliferation of 
LDBM cells by 57% after 48 h (Table 5). In comparison, 
TNF-o~-CM enhanced GM-CSF-stimulated proliferation of 
LDBM cells by 39%, and this enhancement was also seen 
in the presence of a TNF-a antibody (Table 5). In addition, 
TNF-ot-CM upregulated GM-CSF-spedfic binding after 24 h 
both in the presence (59%) and absence (70%) of anti- 
TNF-c~ (Table 5). Upregulation of the GM-CSF-K expres- 
sion was also observed at 0.2 ng/ml and 20 ng/ml of TNF-ot 
(data not shown). In contrast, the non-TNF-ot-treated con- 
trol CM had no such activity (Table 5). Thus, the stimula- 
tory effects of TNF-ot on GM-CSF-induced proliferation and 
on GM-CSF-K expression of murine bone marrow cells are 
indirect. 

To determine whether the indirect effects of TNF-ot were 
mediated through induction of other cytokines, mAbs against 
murine CSF-1, Ib3, Iblol, Iblfl,  and IL-6 were examined 
for neutralizing activity on colony formation stimulated by 
the combination of TNF-ol and GM-CSF (Table 6). The CSF-1 
antibody significantly (25-30%) inhibited the TNF-o~ stimula- 
tory effect on GM-CSF-induced CFU-C, whereas the other 
antibodies had no significant effect alone (Table 6) or in com- 
bination (data not shown). 

Because G-CSF has been demonstrated to possess potent 
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Tab le  5. Effect of CM of TNF-cr-treated Bone Marrow Cells on GM-CSF-induced Proliferation and GM-CSF-R Expression on 
LDBM Progenitors 

[3H]TdR lzSI-GM-CSF- 
Stimulator* Anti-TNF-oet incorporations specific binding" 

cpm clam 
GM-CSF - 16,540 _+ 1,781 2,352 +_ 145 

GM-CSF + 15,265 _+ 1,524 2,384 _+ 173 

GM-CSF + TNF-o~ - 25,927 + 2,4171 4,825 _+ 2871 

GM-CSF + TNF-oe + 15,627 _+ 1,739 2,194 _+ 149 

GM-CSF + control CM - 18,920 -+ 1,491 2,219 + 87 

GM-CSF + control CM + 16,793 _+ 1,034 2,109 -+ 107 

GM-CSF + TNF-c~-CM - 22,994 -+ 2,1391 3,994 _+ 2131 

GM-CSF + TNF-cz-CM + 23,739 -+ 1,8051 3,512 _+ 1691 

* LDBM cells were incubated in 2 ng/ml of GM-CSF, 2 ng/ml of TNF-~, or in 50% CM from TNF-oe-treated or -untreated (control) LDBM 
cells, prepared as described in Materials and Methods. 
* The cultures were supplemented with a rabbit anti-mouse TNF-oe antiserum ( + ) or a control serum ( - ) as described in Materials and Methods. 
$ [3H]TdR incorporation was determined as described in Materials and Methods, after a 48-h incubation at 37~ 5% CO2 in the presence of 2 
ng/ml of GM-CSF. Results are the mean of triplicate determinations • SD and representative of three separate experiments. 
II lzSI-GM-CSF-specific binding to 2.0 x 106 LDBM cells was determined as described in Materials and Methods after a 24-h incubation. Data are 
the mean of duplicate determinations • SD and representative of three experiments. Results of this experiment were analyzed by t test using a pooled 
estimate of error. 
�82 <0.01. 

T a b l e  6. Neutralizing Effects of Hematopoietic Growth Factor 
Antibodies on TNF-c~-induced Enhancement of GM-CSF-stimulated 
Colony Formation 

TNF-ol Antibody* Colony formation (CFU-C) 

- - 4 5 _ + 4  

+ - 81 _+ 5* 

+ TNF-c~ 48 _+ 7* 

- CSF-1 42 -+ 3 

+ CSF-1 69 -+ 3 

- I L - 3  40 _+ 7 

+ IL-3 87 _+ 9 

- I L - 6  39 _+ 5 

+ IL-6 76 _+ 6 

- IL- l c~  49 _+ 6 

+ IL-lc~ 73 _+ 8 

- IL-I~  51 _+ 2 

+ IL-1/3 92 _+ 10 

synergistic effects on CSFol-, GM-CSF-, and IL-3-induced 
colony formation (58) and because a mAb against murine 
G-CSF was not available, we examined the ability of TNF- 
oe-CM to stimulate the proliferation of the 32DC13 cell line. 
As previously demonstrated, this cell line proliferates in re- 
sponse to II.-3 and G-CSF (50), but not to other hematopoi- 
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Lin - bone marrow cells were plated at 2 x 104 cells in 1 ml of com- 
plete IMDM and 0.35% seaplaque agarose, supplemented with 20 ng/ml 
of rMuGM-CSF and incubated at 37~ 5% CO2 in the absence ( - )  
or presence of 2 ng/ml of TNF-a. Colony growth (>50 cells) was scored 
after a 7-d incubation. 
* Cultures were supplemented with optimal concentrations of anti-mouse 
cyrokine antibodies described in Materials and Methods before addition 
of TNF-ot. Results presented are the mean of duplicate determinations 
• SD and are representative of three separate experiments. Results of this 
experiment were analyzed by t tests using a pooled estimate of error. 

p < 0 . 0 1 .  

Figure 6. G-CSF activity in CM from TNF-oe-stimulated LDBM cells. 
The 32DG13 cell line (@) and NFS/N1.M6 cell line (A) were incubated 
at 104 cells/well at 37~ in the presence of increasing concentrations of 
CM from TNF-~v-stimulated LDBM cells (prepared as described in Materials 
and Methods). [3H]TdR incorporation was determined as described in 
Materials and Methods after a 24-h incubation. Data presented are the 
mean of triplicate determinations • and are representative of three ex- 
periments. 32DC13 cells stimulated by 20 ng/ml of G-CSF and 20 ng/ml 
of IL-3 incorporated 40,609 • 5,737 and 47,717 • 6,198 cpm, respec- 
tively, whereas SCF- and IL-3-stimulated MC-6 cells incorporated 7,900 
• 738 and 39,867 • 3,524 cpm, respectively. 
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etic growth factors such as SCF, CSF-1, GM-CSF, II.-1, Ib2, 
Ib4, Ib5, Ib6, and II.-7 (Keller, J. R., unpublished observa- 
tions). TNF-c~-CM stimulated the [3H]TdR incorporation 
of 32DC13 cells in a dose-dependent manner in the presence 
of a TNF-ol antibody (Fig. 6). 

The recently identified SCF is also a potent synergistic factor 
(5, 6), and because a SCF antibody was not available, the 
CM of TNF-c~-stimulated LDBM cells was treated for SCF 
activity on the NFS/N1.M6 (MC-6) mast cell line. This cell 
line proliferates in response to Ib3, Ib4, and SCF but not 
G-CSF (51). The TNF-ol-CM did not promote the growth 
of MC-6 cells, indicating that the supernatants did not con- 
tain Ib3, IL-4, or SCF (Fig. 6). 

G-CSF but Not CSF-1 Mimics TNF-cr-induced Upregulation 
of GM-CSF and IL.3R Expression. To investigate whether 
TNF-c~-induced upregulation of GM-CSF and IL-3R expres- 
sion could be mediated by CSF production, Lin-  progen- 
itor cells were incubated in the presence or absence of 20 ng/ml 
of G-CSF or 50 rig/m1 of CSF-1, and examined for GM-CSF 
and IL-3 binding after 24 h. G-CSF increased GM-CSF- and 
Ib3-specific binding by 137% and 49%, respectively (Table 
7), without significantly affecting cell number or viability 
(data not shown). In contrast, CSF-1 did not significantly 
affect GM-CSF- or Ib3-specific binding to Lin-  cells (Table 
7). Furthermore, in agreement with the inability of TNF-o~ 
to increase CSF-1R expression (Fig. 2), G-CSF did not 
signiticantly affect CSF-1R expression by 24 h (Table 7). 

Taken together, these data indicated that the stimulatory 
effects of TNF-c~ on GM-CSF- and IL-3-induced bone marrow 
progenitor cell proliferation are indirect and mediated, through 
HGF production, and subsequent upregulation of GM-CSF 
and II.-3R expression. 

Table 7. G.CSF but Not CSF-I Upregulates GM-CSF and 
IL-3R Expression on Lin- Progenitor Cells 

~zsI-CSF-spedfic binding 

Stimulator GM-CSF IL-3 CSF-1 

c~m 
Medium 2,135 + 132 1,678 -+ 89 2,397 _+ 219 
G-CSF 5,060 + 268" 2,501 + 192" 2,693 _+ 184 
CSF-1 2,468 ,+ 214 1,892 _+ 173 1,838 _+ 149" 

Lin- cells (5 x 10 s cells/ml) were incubated at 37~ 5% CO2 for 
24 h in the presence of 20 ng/ml of G-CSF or 50 ng/ml of CSF-1, or 
in the absence of growth factors. 12SI-GM-CSF-, tzsI-IL-3-, and 12sI- 
CSF-l-specific binding was determined as described in Materials and 
Methods. Results presented are the mean _+ SD of duplicate determina- 
tions and representative of four separate experiments. The results of three 
experiments were analyzed by analysis of variance followed by t tests com- 
paring stimulator vs. medium. 
* p ~0.01. 

Discussion 

.Although initial studies suggested that the effects of TNF-ce 
on bone marrow colony growth in ~tro were only inhibi- 
tory (14, 15, 26-33), more recent studies have proposed a 
stimulatory role for TNF-o~ in hematopoiesis (19-21). In the 
present study, we investigated the reason for this apparent 
discrepancy. 

The data presented here confirm that the TNF-c< is a bi- 
directional modulator of HPC proliferation, but demonstrate 
that direct effects of TNF-cx on murine bone marrow cells 
and highly enriched multipotential progenitors are only in- 
hibitory. These inhibitory effects of TNF-c~ were correlated 
with its ability to trans-downmodulate the receptor expres- 
sion for the CSFs stimulating growth. In addition, TNF-o~ 
indirectly stimulates CSF-stimulated bone marrow colony for- 
mation through at least the induction of G-CSF and CSF-1. 
Some TNF-o~-inducible cytokines, such as G-CSF, might 
mediate the observed synergistic response through upregula- 
tion of CSF-R expression. Fig. 7 is a schematic presentation 
of how these pathways might interact to mediate the 
pleiotropic effects of TNF-c~. 

TNF-c~ rapidly reduced the expression of all four CSF-Rs 

G-CSF receptor 

GM-CSF and 
IL-3 receptors 

~ TNF-a 
High or Low 

G'C'S',o .others ~. r A 

1 1 
Responsiveness 

~' G-CSF 
4' IL-3 + 

GM-CSF ~' 

Time 

0 

15 min 

24 h 

Figure 7. TNF-o< directly and indirectly modulates hematopoietic pro- 
genitor cell (HI>C) proli~ation through CSF-R modulation. Production 
of G-CSF and other HGFs by accessory cells (AC) is induced at both high 
and low concentrations of TNF-ot, resulting in increased expression of 
GM-CSF and IL-3Rs on HPC. Rapid ~ns-downmodulation of all CSF- 
Ra is observed at low and high concentrations of TNF-a. Only high con- 
centrations of TNF-cx results in prolonged downmodulation of G-CSF-Rs. 
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on LDBM cells as well as Lin-  progenitor cells. This cor- 
related to reduced responsiveness to all four CSFs in the short- 
term [3H]TdR incorporation assay, as well as inhibition in 
the single-cell cloning experiments. The magnitude of inhi- 
bition was closely correlated to the magnitude of receptor 
downregnhtion. Furthermore, the downmodnlation of CSF-Rs 
is specific since TNF-ot neither affected the expression of a 
number of other cell surface proteins nor the expression of 
c-kit, another growth factor receptor on HPCs (Dubois, 
C. M., F. W. Ruscetti, andJ. R. Keller, manuscript in prep- 
aration). 

Previous studies demonstrated that TNF-ot induced a tran- 
sient reduction in the expression of CSF-1Rs on murine mac- 
rophages (43, 47). Because this correlated with synergistic 
growth stimulation, it was proposed that TNF-ot might mimic 
the biological action of CSF-1 by downmodulating CSF-1Rs. 
However, in those studies, [3H]TdP-, incorporation was mea- 
sured only after a 48-h incubation, at which time CSF-1R 
expression had returned to initial or even greater levels (43, 
47). Here, we dearly demonstrate that the initial downmodu- 
lation of CSF-1Rs results in a transient inhibition of 
[3H]TdR incorporation. In addition, the effects of TNF-ot 
on CSF-l-stimulated single bone marrow progenitor cells 
are only inhibitory. Additional support for the concept that 
CSF-1R trans-downmodulation results in reduced rather than 
enhanced CSF-1 responsiveness comes from a study demon- 
strating that I/.-3- and GM-CSF-induced downmodulation 
of CSF-1K expression on a myeloid precursor cell line sup- 
presses the biological responsiveness to CSF-1 (62). 

In contrast to its direct inhibitory effects, the delayed 
stimulatory effects of TNF-ot on CSF-I-, GM-CSF-, and 
IL-3-induced proliferation are indirect and mediated at least 
partially through production of CSF-1 and G-CSF, as detected 
by neutralizing antibodies and the ability of TNF-cc-CM to 
induce proliferation of the G-CSF responsive 32DC13 cell 
line. This conclusion is also supported by previous work 
showing that TNF-ot is an inducer of G-CSF production (38) 
and that potent synergistic interactions occur between G-CSF 
and the three other CSFs (58, 63, 64). It was further sub- 
stantiated by the ability of G-CSF to mimic the delayed 
TNF-ot-induced upregnlation of GM-CSF and IL.3R expres- 
sion. Furthermore, G-CSF did not affect CSF-1R levels 
significantly, suggesting that the synergistic activity of G-CSF 
on IL-3- and GM-CSF-, but not on CSF-l-stimulated colony 
formation could partially be mediated through receptor in- 
duction. In further support of such a mechanism, we found 
that the increase in GM-CSF and IL-3R expression preceded 
the synergistic activity observed on [3H]TdR incorporation. 

Because TNF-c~ downmodulated G-CSF-K expression by 
86%, it could be argued that the low level of G-CSF-Rs might 
be insu~cient to mediate the G-CSF--induced upregulation 
of GM-CSF-Rs proposed in the present model. However, we 
have recently found that exogenously added G-CSF (20 ng/ml) 
can upregulate GM-CSF-R expression in the presence of high 
concentration of TNF-ct (20 ng/ml) (Jacobsen, S. E. W., et 
al., unpublished observations). This suggests that lower levels 
of G-CSF-R occupancy are required to induce expression of 

GM-CSF-Rs than to elicit proliferation of hematopoietic pro- 
genitor cells. 

The use of Lin- bone marrow cells was important to dem- 
onstrate that modulation of CSF-R expression occurred also 
on enriched progenitor cells. Lin- sdection of bone marrow 
progenitors removes T and B cells and macrophages; how- 
ever, no selection for bone marrow stromal cells such as fibro- 
blasts and endothdium was used. It was therefore not unex- 
pected that TNF-ot indirectly enhanced colony formation of 
Lin-  cells nearly as much as for LDBM cells, whereas they 
were directly inhibited in single cell assays. Adherence deple- 
tion can reduce but not eliminate these indirect effects 
(Jacobsen, S. E. W., unpublished observations). These findings 
underscore that negative selection of HPCs does not neces- 
sarily reduce the extent of indirect effects and that the ques- 
tion of indirect effects of biological modifiers on such pro- 
genitors can only be properly addressed by the use of single-cell 
cloning experiments. Although it is not possible to deter- 
mine receptor expression on single cells, the present data sug- 
gest that TNF-~x could directly induce prolonged downmodu- 
lation of all CSF-Rs. 

It was possible that the TNF-ot-induced downmodulation 
of CSF-Rs observed in the present study was mediated through 
induction of cytokines capable of reducing CSF-R expres- 
sion. However, we have not been able to detect such activity 
in the supernatants after a 15-60-min incubation with TNF-ot 
(S. E. W. Jacobsen, unpublished observations). It also seems 
unlikely that TNF-cz-induced cell death or changes in prolifer- 
ation could mediate the reduction in CSF binding. This is 
based on the observation that TNF-ot-induced downmodu- 
lation of CSF-Rs occurred within minutes and that TNF-ol 
alone did not affect the proliferation or viability of bone 
marrow progenitors as compared to untreated control cells, 
even after a 24-h incubation. 

It has recently been demonstrated that TNF-cz can stimu- 
late the proliferation and upregulate the expression of GM- 
CSF and Ib3Rs on human acute myeloid leukemia cells (46). 
The mechanism of action was not investigated; however, the 
present data suggest that the induction of other cytokines 
could mediate the observed GM-CSF and Ib3R upregula- 
tion and enhanced responsiveness to these cytokines. In sup- 
port of such an indirect mechanism, another study demon- 
strated that the synergistic activity of TNF-ot on GM-CSF- 
stimulated AML proliferation could be partially neutralized 
by an antibody to Ib l  (65). 

Bidirectional dose-dependent proliferative effects are not 
unique to TNF-ot. In parallel to what we have observed for 
TNF-ot, Battegay et al. (66) showed that TGF-~ induces au- 
tocrine platelet-derived growth factor (PDGF) secretion of 
connective tissue cells at low concentrations, whereas it down- 
modulates the ot-subunits of the PDGF-R at higher concen- 
trations. The physiological relevance of such bidirectional 
concentration-dependent effects on HPCs are hard to assess 
since the local concentrations of these modulators in the bone 
marrow microenvironment are unknown. 

The biological significance of growth factor receptor modu- 
lation as a mechanism for cell growth regulation has been 
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disputed, because it has been shown for hematopoietic (53, 
67) as well as nonhematopoietic cells (68) that only a frac- 
tion of growth factor receptors need their ligand bound to 
elicit a maximum proliferative response (the spare receptor 
concept). A more recent study did however show that as many 
as 50% of the CSF=ILs must be occupied to induce optimal 
proliferation of hematopoietic progenitors (69). In addition, 
the spare receptor concept was established on cell lines with 
high levels of growth factor receptors, whereas bone marrow 
progenitors display profound heterogeneity and express an 

average of only 100-300 of each CSF-R (2). In the present 
study, TNF=c~ reduced the number of G=CSF-Rs from 304 
to 96, which could put many progenitors below threshold 
receptor level needed to induce a proliferative response. 

Although it seems likely that also other pathways mediate 
the pleiotropic actions of TNF=ot in hematopoiesis (16), the 
data presented here implicate a role of CSF=R modulation 
in the direct inhibitory as well as the indirect stimulatory 
effects of TNF=ot on murine bone marrow progenitor cells 
(summarized in Fig. 7). 
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