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Abstract

Background: We have previously explored a therapeutic strategy for specifically targeting the profibrotic activity of IL-13
during experimental pulmonary fibrosis using a fusion protein comprised of human IL-13 and a mutated form of
Pseudomonas aeruginosa exotoxin A (IL13-PE) and observed that the intranasal delivery of IL13-PE reduced bleomycin-
induced pulmonary fibrosis through its elimination of IL-13-responsive cells in the lung. The aim of the present study was to
determine whether the presence of an immune response to P. aeruginosa and/or its exotoxin A (PE) would diminish the anti-
fibrotic properties of IL13-PE.

Methodology/Principal Findings: Fourteen days after P. aeruginosa infection, C57BL/6 mice were injected with bleomycin
via the intratracheal route. Other groups of mice received 4 doses of saline or IL13-PE by either intranasal or intraperitoneal
application, and were challenged i.t. with bleomycin 28 days later. At day 21 after bleomycin, all mice received either saline
vehicle or IL13-PE by the intranasal route and histopatological analyses of whole lung samples were performed at day 28
after bleomycin. Intrapulmonary P. aeruginosa infection promoted a neutralizing IgG2A and IgA antibody response in BALF
and serum. Surprisingly, histological analysis showed that a prior P. aeruginosa infection attenuated the development of
bleomycin-induced pulmonary fibrosis, which was modestly further attenuated by the intranasal administration of IL13-PE.
Although prior intranasal administration of IL13-PE failed to elicit an antibody response, the systemic administration of IL13-
PE induced a strong neutralizing antibody response. However, the prior systemic sensitization of mice with IL13-PE did not
inhibit the anti-fibrotic effect of IL13-PE in fibrotic mice.

Conclusions: Thus, IL13-PE therapy in pulmonary fibrosis works regardless of the presence of a humoral immune response
to Pseudomonas exotoxin A. Interestingly, a prior infection with P. aeruginosa markedly attenuated the pulmonary fibrotic
response suggesting that the immune elicitation by this pathogen exerts anti-fibrotic effects.
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Introduction

Idiopathic pulmonary fibrosis (IPF) is a fatal, interstitial lung

disease characterized by persistent tissue scarring for which there is

no effective therapy. The diagnostic lesion of IPF is the fibroblastic

foci comprised of a heterogeneous mix of epithelial cells and

fibroblasts, which, it is postulated, forms as a result of an

inappropriate wound healing response to an unknown injurious

agent [1]. Since the overall cytokine pattern in biopsies and

alveolar macrophages from patients with interstitial pneumonia

appears to be more Th2-type (i.e., IL-4 and IL-13) than Th1-type

(i.e., IL-12 and IFN-c) [2,3,4,5], a highly anticipated antifibrotic

strategy within the lung entails the targeted inhibition of both IL-4

and IL-13. Although transgenic over-expression of IL-13 alone in

the lung leads to the development of pulmonary fibrosis [6,7], both

IL-4 and IL-13 appear to contribute to the development of

pulmonary fibrosis [8,9], presumably due to their ability to act

directly on pulmonary fibroblasts [10] and mononuclear cells/

macrophages [11]. IL-4Ra and IL-13Ra1 form a functional

receptor complex that binds both ligands [12,13]. IL-13, but

not IL-4 [14], also binds with 100-fold higher affinity for IL-

13Ra2 than IL-13Ra1 [15]. IL-13R subunits are expressed on a
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variety of immune and nonimmune cells, including B cells, NK

cells, monocytes, mast cells, endothelial cells, and fibroblasts

[10,12,16,17,18].

A therapeutic strategy for specifically targeting the profibrotic

activity of IL-13 in the lung involves a fusion protein comprised of

human IL-13, which binds to mouse receptors and a mutated form

of Pseudomonas aeruginosa exotoxin A (Cintredekin Besudotox, IL-

13-PE38QQR, or IL13-PE) [19]. IL13-PE was initially developed

to selectively target and kill tumor cells with abnormal responses to

IL-13 due to markedly up-regulated expression of IL-4R and IL-

13R [19,20]. We demonstrated that the intranasal delivery of

IL13-PE significantly reduced Aspergillus fumigatus-induced peri-

bronchial [21,22], Schistosoma mansoni-induced granulomatous [23],

and bleomycin-induced [24] fibrosis in vivo through its reduction in

the number of IL-13-responsive immune and resident lung cells

such as macrophages, eosinophils, NK cells, and fibroblasts.

Previous studies have documented that IL-13 is also elevated

during the pulmonary response to an intrapulmonary bleomycin

sulfate challenge [11,25], inducing alveolar interstitial inflamma-

tion that precedes an exuberant and inappropriate tissue repair

response in the lung [26,27].

Because the existence of neutralizing antibodies directed against

Pseudomonas exotoxin A could potentially reduce the therapeutic

effects of IL13-PE in the fibrotic lung, we examined whether the

existence of an immune response due to prior Pseudomonas aeruginosa

infection or sensitization to IL13-PE might diminish or abolish the

anti-fibrotic effects of IL13-PE. To this end, we addressed the

following three questions: 1. Does an intrapulmonary P. aeruginosa

infection promote a neutralizing antibody response in the lung? 2.

Does prior pulmonary exposure to P. aeruginosa infection modulate

the therapeutic effects of IL13-PE? 3. Do circulating IL13-PE-

specific antibodies neutralize the therapeutic effects of intranasally

delivered IL13-PE during pulmonary fibrosis? Overall, we found

that despite the strong immunogencity of an active infection with

P. aeruginosa or systemic sensitization with IL13-PE, the intranasal

delivery of IL13-PE robustly inhibited bleomycin-induced pulmo-

nary fibrosis. Taken together, our results suggest that prior patient

exposure to Pseudomonas or immunity directed against its exotoxin

does not diminish the therapeutic potential of IL13-PE in the

treatment of pulmonary fibrosis.

Results

Pseudomonas aeruginosa Infection Induces both IgA and
IgG2a Antibodies Directed against Pseudomonas
aeruginosa Exotoxin A

To evaluate the amount of bacilli necessary to provoke specific

antibody production against PE, we infected mice with one of

three non-lethal P. aeruginosa doses: the lowest of 0.756105 bacilli/

mouse, an intermediate dose of 1.56105 bacilli/mouse and the

highest does of 36105 bacilli/mouse. As shown in Figure 1, all

three bacilli doses elicited detectable increases in IgA and IgG2a

antibody titers 14 days after infection in BAL samples (Panels A
& B, respectively) and IgA in serum (Panel C). The increases in

both IgA and IgG2a were observed in ELISA plates coated either

with purified PE toxin from P. aeruginosa extracts or coated with

intact IL13-PE. Therefore, P. aeruginosa infection elicited strong

humoral responses as evidenced by increased IgA and IgG2a.

A Prior P. aeruginosa Infection Modulates the Subsequent
Development of Pulmonary Fibrosis

Having shown that P. aeruginosa infection induces a specific

antibody against PE, we next determined whether this prior

infection altered the efficacy of IL13-PE therapy in a pulmonary

fibrosis model induced by the intratracheal introduction of

bleomycin sulfate. As we have observed previously [24], mice

that received bleomycin developed severe pulmonary fibrosis

(Figure 2) but the introduction of four intranasal doses of IL13-

PE (1000 ng/dose between days 21 and 28 after bleomycin

ameliorated this fibrotic response (Figure 2). We observed that

the pulmonary fibrotic response elicited by bleomycin in mice

challenged with P. aeruginosa prior to bleomycin instillation was

markedly diminished compared with the uninfected control group.

Figure 1. P. aeruginosa infection induced an antibody response
against PE and IL13-PE. A: IgA levels in BAL; B: IgG2a in BAL; C: IgA
in serum. C57Bl/6 mice were infected by oropharingeal route with one
of a range of bacterial doses and their bronchoalveolar fluid (BAL) and
blood were collected at 14 days post infection. Antibody levels were
evaluated by ELISA using plates coated with PE (open bars) or IL13-PE
(closed bars). Statistical comparisons were determined between
infected and non-infected groups with the same coating on the ELISA
plate. *p#0.05 compared with biologic sample added to PE-coated
wells. #p#0.05 compared with biologic sample added to IL13-PE-
coated wells.
doi:10.1371/journal.pone.0008721.g001
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This protective effect was more dramatic in the group of mice that

received 1.56105 bacilli compared with the group of mice that

received 36105 bacilli (Figure 2). While the intranasal adminis-

tration of IL13-PE appeared to reduce the extent of the fibrosis

observed in these previously infected mice, the improvement was

minor given their diminished fibrotic response to bleomycin. Thus,

prior pulmonary exposure to live Pseudomonas bacilli appeared to

protect mice from the fibrotic effects of bleomycin sulfate through

as yet to be defined mechanism. IL13-PE therapy in these groups

of mice further reduced the minor fibrotic response indicating that

its activity was not diminished by the presence of neutralizing

antibodies against PE.

Systemic Sensitization to IL13-PE Generates Neutralizing
Antibodies in Mice That Block the In Vitro Toxicity of IL13-
PE Directed toward Tumor Cells

The infection with live pathogen addressed, in part, our concern

regarding its impact on the therapeutic effectiveness of IL13-PE in

pulmonary fibrosis. We next addressed the concern that local or

systemic sensitization to IL13-PE would negate the therapeutic

efficacy of IL13-PE in the fibrotic lung. Neutralizing antibody

generation following sensitization was assessed using a well-

described in vitro cytotoxicity assay [28] in which serum from our

various treatment groups were added. We found that delivery of 4

doses of IL13-PE into the lungs of mice failed to elicit a

neutralizing antibody response (not shown), but as shown in

Table 1 systemic sensitization with PE lead to the appearance of

neutralizing antibodies in serum, which markedly inhibited the

cytotoxicity of IL13-PE in this in vitro assay (i.e. the IC50 values

were . 10 ng/ml). Thus, the systemic but not local delivery of

IL13-PE led to the development of a neutralizing antibody

response, which inhibited the in vitro toxicity of IL13-PE in IL-13-

responsive tumor cells.

Systemic Sensitization to IL13-PE Did Not Alter the
Therapeutic Efficacy of IL13-PE in Experimental
Pulmonary Fibrosis

Given that the systemic sensitization to IL13-PE resulted in

appearance of neutralizing antibodies in the serum, we next

evaluated the influence of these antibodies on the therapeutic

effect of IL13-PE against pulmonary fibrosis. In this experiment,

all of the mice receiving bleomycin alone were dead by the day 28

timepoint due to an aggressive pulmonary fibrotic response. Prior

sensitization to IL13-PE protected bleomycin-challenged mice

from mortality but not from pulmonary fibrosis (Figure 3, panel
A, saline + PE group). More importantly, regardless of the

Figure 2. IL13-PE treatment reduced the histological appearance of pulmonary fibrosis regardless of the prior P. aeruginosa
infection status of the mouse. C57Bl/6 mice were infected by oropharingeal route with two bacterial doses (1.56105 or 36105 bacilli/mouse),
fourteen days after infection mice were injected with bleomycin to exacerbate fibrosis and at days 21, 23, 25 and 27 after bleomycin mice received
intranasal IL13-PE treatments (1000 ng/dose). At day 28 after bleomycin, lungs were collected and processed using routine histological techniques
and stained with Masson’s trichrome for histopathological analysis. Magnification 1006.
doi:10.1371/journal.pone.0008721.g002
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IL13-PE sensitization status of the mouse prior to bleomycin

challenge, IL13-PE therapy markedly reduced the histological

appearance of fibrosis (Figure 3, Panel A). Specifically, lungs

from mice that received saline showed a marked reduction in lung

fibrosis after intranasal treatment with either 200 or 1000 ng/dose

of IL13-PE (Figure 3, Panel A, left side of Figure). Likewise, the

intranasal administration of either dose of IL13-PE markedly

suppressed the interstitial fibrosis in PE-sensitized mice (Figure 3,

Panel A, right side of Figure). These histological findings were

confirmed with the quantitative assessment of hydroxyproline

content (Figure 3, panel B). Thus, these findings demonstrate

that the systemic sensitization to IL13-PE does not predispose

mice to the development of a more aggressive form of fibrosis nor

does it prevent the intranasal delivery of IL13-PE from exerting a

prominent anti-fibrotic effect.

Discussion

The bleomycin model is one of the best-characterized models of

fibrosis since this chemotherapeutic invokes a highly reproducible

inflammatory response that ultimately leads to fibroblast prolifer-

ation and collagen deposition [29,30]. IL-13 is one of the

dominant pro-fibrotic cytokines produced during the development

of fibrosis in the bleomycin model since it directly activates

fibroblasts [30]. Puri and colleagues [31,32] have previously

shown that tumor cells expressing IL-13Ra2 are susceptible to the

cytotoxic effects of IL13-PE making this chimeric protein a highly

effective anti-tumor agent, and we have extended these findings to

show that targeting IL-13 responsive cells such as fibroblasts is also

highly effective in treating established fibrotic responses in the lung

[24]. Prior to further development of IL13-PE as a therapeutic in

clinical disease we undertook the present study in order to evaluate

whether prior exposure to P. aeruginosa pathogen or IL13-PE

altered the therapeutic potential of IL-13 immunotoxin. Our study

highlighted two important findings: 1) immune responses to

Pseudomonas and/or its exotoxin actually protect mice from

bleomycin-induced pulmonary fibrosis; 2) neutralizing antibodies

against Pseudomonas and/or its exotoxin do not hamper the

therapeutic effect of IL13-PE delivered into the fibrotic lung.

P. aeruginosa is a pathogen of significant clinical importance

because it can elicit a severe pneumonia in affected individuals. No

prior association between this pathogen and fibrosis was apparent

in our literature searches so we undertook experiments to better

understand how this micro-organism might affect the lung

subsequently exposed to bleomycin sulfate. While antibody

responses to live Pseudomonas infections in the lung have been

described previously [33,34], little was known about the specificity

of these antibody responses against Pseudomonas exotoxin. From the

Table 1. IL13-PE cytotoxicity toward an IL-13Ra2-expressing
tumor cell line in the presence of mouse sera from various
groups of treated micea.

Treatment (IC50 ng/ml)b

Saline IL13-PE Sensitized

Saline 0.85 .10/.10/.10

IL13-PE (200 ng/dose) 0.6/0.4 .10/.10

IL13-PE (500 ng/dose) 0.5 .10/.10

IL13-PE (1000 ng/dose) 0.4/0.5 .10/.10/.10

Pre-bleomycin sample 0.5 .10

aMice were systemically sensitized to IL13-PE as described in the Materials and
Methods section. Prior to bleomycin challenge, blood samples were removed
from the control (saline) and IL13-PE-treated groups (ie. the pre-bleomyin
sample). Mice received bleomycin and 21 days later they were randomized to
treatment groups, which received one of saline alone, 200 ng/dose of IL13-PE,
500 ng/dose of IL13-PE, or 1000 ng/dose of IL13-PE. Sera was removed from
each group at day 28 after 4 treatments of saline or IL13-PE. For this
cytotoxicity assay, 16104 tumor cells were cultured with IL13-PE and serum
sample for 20 hr at 37uC, pulsed with 1 mCi of [3H]-leucine and further
incubated for 4 hr. Cells were harvested and counted as described in the
Materials and Methods section.

bIC50 is the concentration of IL13-PE at which a 50% inhibition of protein
synthesis occurs in IL13-PE treated tumor cells compared with untreated
tumor cells.

doi:10.1371/journal.pone.0008721.t001

Figure 3. Effect of systemic IL13-PE sensitization on the
development of pulmonary fibrosis and the subsequent
intranasal IL13-PE therapy. Mice were sensitized with IL13-PE via
an intraperitoneal immunization protocol. Controls received saline
alone. One week after last dose of IL13-PE or saline, all mice were
injected i.t. with bleomycin. Twenty-one days after the induction of
pulmonary fibrosis, treatment started with saline or IL13-PE intranasal
instillation. At day 28 after bleomycin, lungs were collected for
histopathological or biochemical assessment of pulmonary fibrosis.
Magnification 1006 (A). Hydroxyproline content in lung homogenate
from saline (closed bars) or IL13-PE (hatched bars) sensitized animals are
shown (B).
doi:10.1371/journal.pone.0008721.g003
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present study it was apparent that relatively small intrapulmonary

inoculations of live Pseudomonas bacilli evoked strong IgA and

IgG2a anti-exotoxin antibody systemic (in serum) and local (in

lung) responses. When we next examined the impact of a prior P.

aeruginosa infection on the susceptibility of the lung to fibrosis, we

were surprised to observe that prior infection protected mice from

severe pulmonary fibrosis. Protection from fibrosis did not

correlate with the retention of bacilli in the lungs of these mice

as no bacteria were recovered from these mice prior to bleomycin

injection day (data not show). These findings were surprising in

light of several studies that have shown that repeated exposure or

chronic infections with pathogens such as Paracoccidioides brasiliensis

[35,36], Saccharopolyspora rectivirgula [37] and many others [38] leads

to the development of pulmonary fibrosis. The divergence

observed between the present and previous studies might be

explained by the rapid clearance of P. aeruginosa in the present

study prior to the induction of pulmonary fibrosis with bleomycin.

It is possible that acute bacterial infection drives a protective

immune response that tempers bleomycin-induced fibrosis. We are

presently addressing the hypothesis that this protective effect

observed in acutely infected mice involves pathogen-associated

molecular pattern (PAMP) activation of toll like receptors (TLRs).

Specifically, we have observed that PAMPS such as bacterial

hypomethylated DNA or CpG motifs inhibit the development and

progression of bleomcyin-induced pulmonary fibrosis (CMH,

unpublished findings). When these CpG motifs bind TLR9 in

lung immune cells, this leads to the generation of type 1

interferons, which have potent anti-fibrotic effects. Further studies

will address the possibility that CpG and TLR9 activation in

immune cells accounts, at least in part, for the protective effects of

a prior P. aeruginosa infection.

Systemic but not local IL13-PE dosing led to the development of

neutralizing antibodies against this chimeric protein, which

effectively blocked the cytotoxic action of IL13-PE in vitro toward

tumor cells. Using a well-characterized tumor toxicity assay

[28,39], we analyzed the ability of various serum samples from

mice systemically sensitized to IL13-PE to block the cytotoxicity of

IL13-PE against IL-13Ra2-expressing tumor cells. We observed

that serum from IL13-PE-sensitized mice markedly dampened the

IL13-PE-induced toxicity against target tumor cells suggesting the

presence of neutralizing antibodies directed against IL13-PE in

serum. Accordingly, the development of neutralizing antibodies to

IL13-PE was a concern given that these neutralizing antibodies

might interfere with IL13-PE therapy in pulmonary fibrosis.

However, despite the presence of the neutralizing antibodies in

sensitized mice, intranasal IL13-PE therapy worked effectively as a

therapeutic in the bleomycin-induced pulmonary fibrosis model.

The manner in which IL13-PE continues to work in the lung

despite the presence of these neutralizing antibodies is not

presently clear but we have observed that the numbers of IL-

13Ra2-positive cells during pulmonary fibrosis are markedly

increased ([24] and unpublished findings). Under these conditions

it is possible that the neutralizing titers of antibody are not

sufficient to prevent IL13-PE from binding to this high affinity

IL-13 receptor. Further studies will address this possibility in the

lung.

Thus, using a well-established bleomycin pulmonary fibrosis

model, we have observed that prior Pseudmonas infection or

systemic sensitization to IL13-PE does not impair the therapeutic

anti-fibrotic properties of IL13-PE. Surprisingly, both of these

events provide protective effects either by reducing the fibrotic

response (as in the case of infection) or sparing mice from the lethal

effects of pulmonary fibrosis (as in the case of systemic IL13-PE

sensitization). Together, these findings further bolster the prospects

of IL13-PE as a clinically useful therapeutic in the treatment of

pulmonary fibrosis.

Materials and Methods

Animals
Female C57Bl/6 mice (6- to 8-week-old) were purchased from

Taconic Farms (Germantown, NY). All mice were maintained in

specific pathogen-free conditions and provided with food and

water ad libitum. Prior approval to conduct these studies was

obtained from an University Committee on the Use and Care of

Animals at the University of Michigan Medical School.

Pulmonary P. aeruginosa Infection
P. aeruginosa was grown as previously described [40]. Briefly, a

1:1,000 dilution of P. aeruginosa stock was grown in tryptic soy

broth (TSB) (DIFCO, Detroit, MI) for 18 hr at 37uC. Bacterial

concentration was determined by measuring absorbance at

600 nm compared with a predetermined standard curve. Bacteria

were diluted to the desired concentration for inoculation. Mice

were anaesthetized by i.p. injection of mixture of 2.25 mg of

ketamine hydrochloric acid (Abbott Laboratories, Chicago, IL)

and 150 mg of xylazine (Lloyd Laboratories, Shenandoah, IA) and

30 ml of bacterial suspension was administered by oropharyngeal

aspiration into lungs, as described by Lakatos and colleagues [41],

at a range of bacterial doses: the lowest (0.756105 bacilli/mouse),

intermediate (1.56105 bacilli/mouse) and highest dose (36105 ba-

cilli/mouse).

Bronchoalveolar Lavage Fluid (BALF)
Animals were killed with ketamine/xylazine overdose at

appropriate times, the anterior chest cavity of each animal was

carefully opened, and the trachea was exposed and catheterized.

The catheter was tied in place and 0.5 ml of sterile PBS was

infused. Lavage fluid was recovered and frozen until the

determination of antibody titers.

Antibody Titers Determination
Antibody titers in serum and BAL fluid were determined using

an enzyme-linked immunosorbent assay (ELISA) using 96-well

plates coated with purified PE toxin from P. aeruginosa extracts or

with IL13-PE, both at a concentration of 5 mg/mL (50 ml/well,

overnight incubations at 4uC). Then, wells were treated with

blocking buffer, washed and samples were serially diluted in

blocking buffer and incubated 2 hours at 37uC. Bound antibodies

were detected using rabbit anti-mouse immunoglobulin A (IgA) or

G (IgG2a) diluted appropriately in blocking buffer. A secondary

biotinilated antibody was added and after avidin-peroxidase

ligation, we added 100 ml of Substrate Solution (BD Pharmin-

genTM TMB SubstrateReagent Set) to each well and incubated the

plates for 5 minutes at room temperature in the dark. The reaction

was stopped by the addition of 50 ml of Stop Solution (2 N H2SO4)

to each well and the optical density was measured at 450 nm

within 30 minutes of stopping reaction.

Bleomycin Model
Interstitial pulmonary fibrosis was induced in anaesthetized

mice (2.25 mg of ketamine and 150 mg of xylazine) by the i.t.

injection of 1.7 U/kg of mouse body weight of bleomycin

(Blenoxane, sterile bleomycin sulfate; Bristol-Meyers Pharmaceu-

ticals, Evansville, IN) dissolved in 60 ml of PBS as previously

described in detail [26,27]. Controls received 60 ml of PBS by the

same route. All procedures were conducted in a sterile

Pseudomonas and Lung Fibrosis
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environment and were approved by the institutional animal care

and use committee.

Intranasal IL13-PE Therapy after Bleomycin Challenge in
Mice

Fourteen days after P. aeruginosa infection mice were injected via

the i.t. route with bleomycin to exacerbate fibrosis and at days 21,

23, 25 and 27 after bleomycin injection each mouse received

1000 ng/dose of IL13-PE in 30 ml of PBS by the intranasal route.

At day 28, lungs were collected and analyzed as described below.

Systemic Sensitization with IL13-PE and Subsequent
Fibrosis Treatment with IL13-PE

Mice received either saline alone or saline with 50 mg/kg of

IL13-PE by i.p. injection on 4 consecutive days. One week after

the last injection, the appropriate group of mice received either

saline or 50 mg/kg of IL13-PE by i.p. injection. One week

following the boost, mice received the second boost of either saline

or IL13-PE (50 mg/kg). Within hours of the second boost, blood

was removed for the determination of the antibody titer in all mice

and bleomycin was then administered as described above. At day

21 after bleomycin challenge, mice in both sensitization groups

were divided into the following treatment groups: saline alone,

saline +200 ng/dose, 500 ng/dose, and 1000 ng/dose of IL13-PE.

Saline or IL13-PE was given by intranasal administration at days

21, 23, 25, and 27 after bleomycin challenge. All mice were killed

at day 28 after bleomycin and serum were collected for

neutralizing antibodies evaluation, and whole lungs were removed

for hydroxyproline and histological analysis.

Protein Synthesis Inhibition Assay
The cytotoxic activity of IL13-PE was tested as previously

described by determining inhibition of protein synthesis [42].

Briefly, 104 tumor cells were cultured in leucine-free medium with

or without serum samples and various concentrations of IL13-PE

for 20–22 hr at 37uC. Then, 1 mCi of [3H]-leucine (NEN

Research Products, Wilmington, DE) was added to each well

and cells were incubated for an additional 4 hr. Cells were

harvested and radioactivity incorporated into cells was measured

by a Beta plate counter (Wallac, Gaithersburg,MD).

Hydroxyproline Assay
Total lung hydroxyproline levels were determined in saline or

IL13-PE-treated mice following bleomycin challenge using a

previously described assay [43]. Briefly, lungs were homogenated

in 1 ml and 500 ml was collected and added to 1 ml of 6 N HCl for

8 hours at 120uC. To a 5-ml sample of the digested lung, 5 ml of

citrate/acetate buffer (5% citric acid, 7.2% sodium acetate, 3.4%

sodium hydroxide, and 1.2% glacial acetic acid, pH 6.0) and

100 ml of chloramine-T solution (282 mg chloramine-T, 2 ml of n-

propanol, 2 ml of distilled water, and 16 ml of citrate/acetate

buffer) were added. The resulting samples were then incubated at

room temperature for 20 minutes and 100 ml of Ehrlich’s solution

(Aldrich, Milwaukee, WI), 9.3 ml of n-propanol, and 3.9 ml of

70% perchloric acid were added (Aldrich). These samples were

incubated for 15 minutes at 65uC and cooled samples were read at

550 nm in a Beckman DU 640 spectrophotometer. Hydroxypro-

line concentrations were calculated from a hydroxyproline

standard curve (0 to 100 mg of hydroxyproline/ml).

Lung Histological Analysis
Whole left lobes of lungs were fully inflated with 10% formalin,

dissected, and placed in fresh formalin for an additional 24 hours.

Routine histological techniques were used to paraffin-embed the

entire lung, and 5-mm sections of whole lung were stained with

hematoxylin and eosin (H&E) or with Masson’s trichrome.

Statistical Analysis
All results are expressed as the mean 6 SD. Student’s t test were

used to detect statistical differences between the control and

treatment groups; p#0.05 was considered statistically significant.

GraphPad Prism version 5.0b was used for statistical analyses.
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