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Background: Radiologists have difficulty distinguishing benign from malignant bone lesions because these
lesions may have similar imaging appearances. The purpose of this study was to develop a deep learning
algorithm that can differentiate benign and malignant bone lesions using routine magnetic resonance imag-
ing (MRI) and patient demographics.
Methods: 1,060 histologically confirmed bone lesions with T1- and T2-weighted pre-operative MRI were ret-
rospectively identified and included, with lesions from 4 institutions used for model development and inter-
nal validation, and data from a fifth institution used for external validation. Image-based models were
generated using the EfficientNet-B0 architecture and a logistic regression model was trained using patient
age, sex, and lesion location. A voting ensemble was created as the final model. The performance of the model
was compared to classification performance by radiology experts.
Findings: The cohort had a mean age of 30§23 years and was 58.3% male, with 582 benign lesions and 478
malignant. Compared to a contrived expert committee result, the ensemble deep learning model achieved
(ensemble vs. experts): similar accuracy (0¢76 vs. 0¢73, p=0¢7), sensitivity (0¢79 vs. 0¢81, p=1¢0) and specificity
(0¢75 vs. 0¢66, p=0¢48), with a ROC AUC of 0¢82. On external testing, the model achieved ROC AUC of 0¢79.
Interpretation: Deep learning can be used to distinguish benign and malignant bone lesions on par with
experts. These findings could aid in the development of computer-aided diagnostic tools to reduce unneces-
sary referrals to specialized centers from community clinics and limit unnecessary biopsies.
Funding: This work was funded by a Radiological Society of North America Research Medical Student Grant
(#RMS2013) and supported by the Amazon Web Services Diagnostic Development Initiative.

© 2021 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)
Keywords:

Deep learning
MRI
Bone tumor
Convolutional neural network
Bone lesion
Radiology, Children’s Hospital
67)425-7146; Fax: (267)425-

ospital of Central South Uni-

ging, Warren Alpert Medical
2912, USA. Phone: (401)793-

rrison_Bai@Brown.edu

pen access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
1. Introduction

Cancer of the bones and joints was the 3rd leading cause of cancer-
related deaths in people under the age of 20 in the United States in
2016, with approximately 3,500 new bone cancer diagnoses in 2019
[1]. Outside of bone metastases (secondary bone tumors) and plasma
cell myeloma, the most common bone malignancies are osteosar-
coma, chondrosarcoma, and Ewing sarcoma [2-4]. While the inci-
dence of benign bone tumors is more difficult to determine because
they are rarely fully evaluated or biopsied, osteochondroma, enchon-
droma and osteoid osteoma are among the most common benign
tumors [3].
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Research in context

Evidence before this study

Literature searches were conducted using the PubMed search
engine using the following search terms: (“machine learning”
OR “deep learning” OR “convolutional neural network”) AND
(“bone tumor” OR “bone lesion”) AND (“diagnosis” OR “benign
malignant”) AND (“imaging” OR “MRI”). Our search identified
one previous study that utilized neural networks to distinguish
benign and malignant bone tumors on radiographs, but this
study involved manually rather than automatically encoded
imaging features, did not study advanced imaging modalities,
and did not include external validation. Another study utilized
a Bayesian model for histological diagnosis of bone tumors, but
this study was also based on radiographic imaging and did not
include external validation. Both of these studies also suffered
from small sample sizes. We did not find any studies involving
deep learning techniques for characterization of bone lesions
on MRI.

Added value of this study

In this study, we demonstrate that convolutional neural net-
works trained with MRI studies in combination with a logistic
regression based upon clinical data are able to discern benign
and malignant bone lesions with performance equivalent to
that of expert musculoskeletal radiologists. Our study utilizes a
multi-institutional dataset and includes external validation to
ensure the generalizability of our findings.

Implications of all the available evidence

By providing a validated assessment of bone lesions on MRI, our
approach has the potential to aid in diagnostic evaluation of
bone lesions, particularly non-expert primary evaluation out-
side of specialist centers. Moreover, morbidity related to unnec-
essary biopsy of benign lesions can be reduced by enabling
radiologists to rule out malignancy with greater confidence.
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Radiographs are the recommended first line imaging modality for
the characterization of bone lesions, as it typically provides clear
assessment of lesion location, internal matrix, margins, and associ-
ated periosteal reaction [3]. These lesion characteristics in combina-
tion with patient age are often sufficient to provide differential
diagnoses of bone lesions [3,5]. However, radiographs have limita-
tions. Superimpositions, poorly-visualized partial cortex destruction,
and difficulties analyzing flat and short bones and soft tissues can
make radiographic diagnosis more challenging [6]. In addition, the
clinical symptoms and radiographic appearance of infections (osteo-
myelitis) often mimic those of bone tumors [5,7]. Image diagnosis of
primary bone lesions can be further complicated by the presence of
pathologic fractures, which can increase the amount of fluid, hemor-
rhage, or edema in and around a lesion; this is particularly relevant
for benign lesions such as non-ossifying fibroma, aneurysmal bone
cyst, and fibrous dysplasia [2]. Chondroblastoma, osteoid osteoma,
and Langerhans cell histiocytosis are among the benign bone lesions
that can present with extra-lesional edema-like signal even in the
absence of pathological fracture [8].

In cases with such complicating factors or any case in which a
lesion is indeterminate or potentially aggressive, advanced imaging
with MRI is warranted. MRI is highly sensitive for the detection of
bone abnormalities due to its ability to characterize bone marrow
involvement, soft tissue invasion, and fluid content of lesions [3,9].
The excellent tissue contrast provided by MR imaging can
occasionally yield sufficient information to allow a specific histologic
diagnosis to be made (e.g., intraosseous lipoma, enchondroma, hem-
angioma, or aneurysmal bone cyst) [3,9,10]. However, even when
combining plain radiograph with MRI, radiologists were 100% sensi-
tive but only 55% specific and 73% accurate in classifying bone malig-
nancy in a small dataset [11]. Upon considering the limitations of
advanced imaging and the rarity with which bone tumors are
encountered clinically, a clear need emerges for technologies to aid
in the diagnosis of bone tumors.

Artificial intelligence tools have been used to augment the ability
of radiologists to assess the malignancy of tumors, including fromMR
images. Previous studies have showcased the ability of convolutional
neural network (CNN) models to classify breast, prostate, kidney and
brain lesions on MRI with high sensitivity and specificity [12�16].
While the body of literature is limited, some studies have employed
such techniques for the classification of bone lesions. As early as
1994, rudimentary two-layer, feed-forward neural network models
were used to distinguish benign from malignant bone tumors with
85% accuracy, 76% specificity and 89% sensitivity. However, this out-
come was based upon a dataset of only 709 lesions, manually
encoded radiographic characteristics, and, critically, training rather
than validation performance [17]. In a more recent work, Do et al.
used a Naïve Bayesian model trained upon 18 demographic and
radiographic features to determine a top-3 histological differential
diagnosis of 710 bone tumors, capturing the true diagnosis with
60% accuracy [18]. Our research group has recently demonstrated
that convolutional neural networks can be used to achieve 3-class
discrimination of bone tumors on radiographs according to histo-
pathologic categories with 73% accuracy, comparable to expert
radiologists [19].

With current state-of-the-art machine learning methods, it may
be possible to achieve better performance in automated bone tumor
characterization through analysis of advanced imaging. In this study,
we utilized deep learning to develop a malignancy prediction algo-
rithm for bone lesions on routine MRI.

2. Methods

2.1. Study participants

1368 lesions with pre-operative MRI demonstrating single or
multiple lesions with apparent bone involvement and histologically
confirmed diagnosis following biopsy or surgery were retrospectively
identified from the 5 hospitals from 2006 to 2020 by consecutive
sampling. Lesions were identified according to the World Health
Organization (WHO) system for the classification of bone and soft tis-
sue tumors. The World Health Organization classifies bone tumors
into histological categories based upon the potential of the tumor to
cause local tissue destruction and metastasize to distant sites. In
order of disease severity, tumors can be classified as: 1) Benign, 2)
Intermediate, locally aggressive (possibility of destructive local recur-
rence). 3) Intermediate, rarely metastasizing (as above, with the addi-
tional possibility of metastasis) or 4) Malignant [4,20,21]. Tumors
classified as intermediate according to the WHO classification criteria
were grouped as benign, as each of the diagnoses present in this
group (osteoblastoma, desmoplastic fibroma, giant cell tumor, epi-
thelioid hemangioma, myofibromatosis, Langerhans cell histiocytosis,
and myoepithelioma) are in practice generally considered benign
(henceforth collectively refer to as benign).

Age at time of imaging, gender, and the skeletal location of the
lesion of interest were extracted from patients’ electronic medical
record. Exclusion criteria were incomplete imaging protocols lacking
a T1- or T2-weighted sequence (T1W or T2W, respectively), inconclu-
sive involvement of osseous structures, and insufficient image quality
for analysis. Inclusion and exclusion criteria are described in Supple-
mentary Figure 1.
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2.2. Image Segmentation and Preprocessing

The MR images were manually segmented by a radiologist with
3 years of experience reading musculoskeletal MRI using 3D Slicer
(version 4.10). N4 bias correction and intensity normalization were
performed upon each image using SimpleITK [22]. The intensity of
each image was normalized relative to a reference image, with all
images acquired using a given sequence (i.e. T1W or T2W) normalized
with a single, high-resolution reference of the same sequence. Each
image was cropped to a rectangular volume of interest delineated by
the widest and tallest non-zero valued pixels in the segmentation.
The largest sagittal, axial and coronal slices of each processed image
volume were selected as inputs for the classification model; this 2.5D
approach has been shown to have robust performance relative to 3D
image classification approaches but with significantly reduced
computational cost [23,24].

2.3. Model design

2.3.1. Imaging data models
Models for image classification were developed by adapting the

EfficientNet deep learning architecture. EfficientNet is a state-of-the-
art image classification network architecture that is an improvement
upon previously developed convolutional neural network designs as
it improves accuracy while significantly decreasing the number of
network parameters and thereby substantially improving computa-
tional efficiency. EfficientNet models initialized with weights pre-
trained on the ImageNet database were used for feature extraction
from imaging data. The EfficientNet classifying layer was replaced
with a series of fully connected layers of size 256, 128, 64, 32 and 16
nodes with interposing dropout layers and batch normalization
layers. A final classification layer with a single node and sigmoid acti-
vation was used to perform the binary classification task.

2.3.2. Clinical data model
A logistic regression model using clinical variables was separately

developed for the classification task. Inputs were patient age, sex,
and lesion location. 21 locations (clavicle, cranium, proximal femur,
distal femur, foot, proximal radius, distal radius, proximal ulna, distal
ulna, hand, hip, proximal humerus, distal humerus, proximal tibia,
distal tibia, proximal fibula, distal fibula, mandible, rib/chest wall,
scapula, or spine) were one-hot encoded such that the model
received 23 distinct quantified input variables.

2.3.3. Ensemble model
The imaging and clinical feature models were then combined

using a stacked ensemble approach in which a voting ensemble
received malignancy probabilities from the imaging and clinical fea-
ture models as inputs and created outputs based upon a summation
of the predicted probabilities. Each ensemble classification model
consisted of the outputs of an EfficientNet trained upon T1W imaging
studies, an EfficientNet trained upon T2W imaging studies, and a
logistic regression model based upon clinical features.

2.4. Model training and evaluation

2.4.1. Imaging data models
Binary classification models were trained to distinguish benign

from malignant bone lesions on T1W and T2W images. 4-fold cross
validation was used to evaluate the model building pipeline and
select hyperparameters for the final trained models. The data from
CHOP, HUP, RIH, and SXH were used for cross validation, as well as
training, validation, and internal testing for the final models by a
7:2:1 split. Data from XH was reserved for external testing to assess
generalizability of the created algorithms to data from separate insti-
tutions. Using the EfficientNet-B0 architecture, models were trained
with a batch size of 64 for 200 epochs during cross-validation and
200 epochs with early stopping after 100 epochs of no loss improve-
ments on the validation set during final model training. Models were
implemented in Python (version 3.8) and trained on a machine with
a NVIDIA Tesla V100 GPU.

During training, segmented images were scaled up or down to
200 £ 200 pixels using bilinear interpolation. The training set was
augmented with horizontal flip, vertical flip, shear, and zoom trans-
formations to add variability. A predetermined probability of 0¢5 was
assigned to the final sigmoid activation neuron as a threshold for
classification of malignancy. Loss on the validation set was monitored
over each epoch and the model with the minimum validation loss
was selected to represent a given training trial. The hyperparameters
that produced the best average test performance in cross-validation
were selected for training the final image classification models.

2.4.2. Clinical data model
The logistic regression model for clinical feature-based classifica-

tion was trained with L2 regularization and a stochastic averaged gra-
dient descent optimizer. Feature ranking with recursive feature
elimination and 4-fold cross-validated selection of the best feature
set was implemented for the creation of the clinical data model.
Training involved all features initially then the least predictive fea-
ture was removed with each iteration until the desired feature set
size was achieved. Feature set sizes from 1 to 23 (all features) were
trialed. The feature set with maximum cross validation test perfor-
mance was selected as the final feature set.

2.4.3. Ensemble model
To incorporate sensitivity bias in the voting ensemble, malignancy

thresholds for each of the constituent models were empirically deter-
mined via a grid search algorithm that maximized Youden’s index while
achieving at least 90% sensitivity on the validation set [25]. Figure 1 illus-
trates the data processing pipeline andmodel architecture.

2.5. Radiologist Interpretation

Three expert radiologists (Y.H., R.S., Y.L.) with 3, 8, and 7 years of
experience reading musculoskeletal MRI respectively, blind to histo-
pathologic data, evaluated unsegmented MRI images of the bone
lesions in the internal test set for malignancy. T1-weighted and T2-
weighted images were made available to the evaluators for each
lesion in the internal test set; T1 contrast-enhanced (T1C) images
were also provided to the evaluators when available but were not
used in the model training and evaluation due to limited availability
among samples in the dataset. The evaluators were also given demo-
graphic information (age and sex) for each patient. The model's
results were compared to these expert evaluations and a contrived
“expert committee” (expert decision by majority rule) to assess
model performance. Supplementary Table 1 shows information
regarding the previous experience of the radiologists who evaluated
the lesions in the internal test set in reading musculoskeletal MRI.

2.6. Statistics

The demographic and clinicopathologic features of the benign and
malignant groups were compared using a chi-squared test for cate-
gorical variables (lesion location, sex) and a T-test or single-factor
ANOVA for continuous variables (age). Post hoc chi-squared tests
pairing lesions of each location against a subset comprised of lesions
from all other locations were performed following indication of an
overall statistically significant difference in location between the
groups. These “one-vs-rest” comparisons were performed with Bon-
ferroni-corrected p-values for significance. The same analyses were
performed to compare the combined training and validation set to
the internal testing and external testing datasets.



Figure 1. Schematic of the bone tumor classification deep learning pipeline. Top: Image segmentation. Raw image volumes were manually segmented to a region of interest focused
upon the tumor. The largest axial, transverse, and coronal slices of the segmented volume were used as inputs for the imaging models (“2.5D” image representation). Middle: Train-
ing and evaluation scheme. Hyperparameters were selected based upon 4-fold cross validation scheme. Final models were trained using the training and validation data sets then
evaluated using the internal and external testing sets, where the external testing set was from an independent institution. Bottom: Model architecture. An EfficientNet-B0 took T1-
weighted images as an input and output a malignancy probability; another EfficientNet-B0 took T2-weight images as inputs. A logistic regression model accepted age, binary-
encoded sex, and one-hot encoded lesion location as inputs and output a malignancy probability. A voting ensemble model used classifications from the T1W, T2W, and clinical fea-
tures models as inputs and output a final classification by a soft, probability-based majority rule vote.
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Accuracy, sensitivity, specificity, and area under the Receiver-
Operator Characteristic curve (ROC AUC) were calculated for the
classification task with 95% confidence intervals determined by
the Wilson method [26]. ROC AUC on the validation set was used
to empirically select final training hyperparameters for the imag-
ing data models during cross validation. Fleiss’ k was used to
evaluate interrater reliability. Model binary classification perfor-
mance was compared to expert committee performance using the
McNemar test. Statistical significance was defined as P < 0¢05.
Statistical analyses were performed using Python (version 3.8)
statistical libraries.

2.7. Code Availability

The image classification models were deployed with an imple-
mentation of the EfficientNet architecture using the Python Keras
library (https://github.com/qubvel/efficientnet). The clinical feature-
based logistic regression model was implemented using the Python

https://github.com/qubvel/efficientnet


Table 1
Characteristics of patients included in the study. “One-vs-rest” tests for statistical
significance in location distribution (e.g. Foot vs. Rest) were performed with Bon-
ferroni-corrected p-values used for significance. ***Statistically significant
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scikit-learn library (version 0¢24.1). All code for image preprocessing
and malignancy prediction is publicly available at https://github.
com/sopeeweje/Bone-MRI.
Benign (N=582) Malignant (N=478) p-value

Age (years § SD) 27 § 20 34 § 25 <0¢001***
Sex (%) 0¢79
Male 342 (59%) 277 (58%)
Female 240 (41%) 201 (42%)
Location (%) <0¢001***
Clavicle 3 (0.7%) 5 (1.7%) 0.52
Cranium 12 (2.6%) 55 (18.3%) <0¢001***
Proximal femur 74 (16.1%) 35 (11.6%) 0.0055
Distal femur 80 (17.4%) 57 (18.9%) 0.43
Foot 89 (19.3%) 5 (1.7%) <0¢001***
Proximal radius 0 (0%) 1 (0.3%) 0.92
Distal radius 13 (2.8%) 0 (0%) 0.0026
2.8. Ethics Statement

Our study received a waiver of informed consent and exempt sta-
tus from the institutional review boards of the Hospital of the Univer-
sity of Pennsylvania (HUP) (protocol number 831582) and the
Children’s Hospital of Pennsylvania (CHOP) (protocol number 20-
017327) in Philadelphia, PA, and Rhode Island Hospital (RIH) (proto-
col number 1747284) in Providence, Rhode Island. The study was
also approved by the institutional review boards of the Xiangya Hos-
pital (XH) and Second Xiangya Hospital (SXH) of Central South Uni-
versity in Hunan, China.
Proximal ulna 4 (0.9%) 2 (0.7%) 0.87
Distal ulna 1 (0.2%) 0 (0%) 0.92
Hand 29 (6.3%) 1 (0.3%) <0¢001***
Hip 41 (8.9%) 62 (20.6%) 0.0017
Proximal humerus 34 (7.4%) 33 (11%) 0.56
Distal humerus 16 (3.5%) 8 (2.7%) 0.34
Proximal tibia 65 (14.1%) 37 (12.3%) 0.075
Distal tibia 11 (2.4%) 4 (1.3%) 0.24
2.9. Role of the funding source

The study sponsors did not have any role in the study design; the
collection, analysis and interpretation of data; in writing of the
report; or in the decision to submit the paper for publication.
Proximal fibula 6 (1.3%) 10 (3.3%) 0.24
Distal fibula 4 (0.9%) 1 (0.3%) 0.5
Mandible 3 (0.7%) 7 (2.3%) 0.2
Rib/Chest wall 6 (1.3%) 19 (6.3%) 0.0033
Scapula 10 (2.2%) 7 (2.3%) 0.93
Spine 81 (17.6%) 129 (42.9%) <0¢001***
3. Results

3.1. Study Participants

The final cohort consisted of 1060 lesions � 185 from HUP,
464 from CHOP, 208 from SXH, 111 from RIH, and 97 from XH.
Table 1 summarizes the clinical characteristics of the study par-
ticipants and Supplementary Table 2 shows the detailed histo-
pathological diagnoses. The sample had a mean age of 30§
23 years and comprised 619 males and 441 females. 582 lesions
(27§20 years, 342 males) were benign and 478 lesions (34§
25 years, 277 males) were malignant. Comparing the benign and
malignant lesion groups, there was a balanced gender distribution
(p = 0¢79) and significant differences in age (p < 0¢001) and
lesion location (p < 0¢001). Upon “one-vs-rest” comparison, there
was a statistically significant difference in malignancy distribution
for lesions located in the cranium, hand, foot, hip, and spine. 678,
192, 93, and 97 lesions were allocated to the training, validation,
internal testing, and external testing sets respectively. Supple-
mentary Table 3 summarizes the characteristics of the training,
validation, and internal test and external test sets.
Table 2
Performance of T1W, T2W, clinical features and ensemble models on the interna
test set (n = 97). p-value as calculated by theMcNemar test for each expert is for
- ROC AUC, area under ROC curve; PPV, positive predictive value; NPV, negative

Internal Test Set
Modality F1 Score ROC AUC Accuracy (95% CI) Sen

Clinical 0¢58 0¢71 0¢62 (0¢52-0¢72) 0¢5
T1W 0¢59 0¢64 0¢66 (0¢55-0¢74) 0¢5
T2W 0¢67 0¢74 0¢74 (0¢64-0¢82) 0¢5
Ensemble 0¢75 0¢82 0¢76 (0¢67-0¢84) 0¢7
Expert 1 0¢77 - 0¢76 (0¢66-0¢84) 0¢8
Expert 2 0¢74 - 0¢73 (0¢63-0¢81) 0¢8
Expert 3 0¢52 - 0¢60 (0¢50-0¢69) 0¢4
Expert Committee 0¢73 - 0¢73 (0¢63-0¢81) 0¢8
External Testing Set
Modality F1 Score ROC AUC Accuracy (95% CI) Sen

Clinical 0¢52 0¢69 0¢64 (0¢54-0¢73) 0¢4
T1W 0¢51 0¢66 0¢66 (0¢56-0¢75) 0¢4
T2W 0¢65 0¢73 0¢72 (0¢62-0¢80) 0¢6
Ensemble 0¢70 0¢79 0¢73 (0¢64-0¢81) 0¢7
3.2. Model training and evaluation

Performance of the imaging data training algorithms in cross-vali-
dation is shown in Supplementary Figure 2. Results of the grid search
for thresholds in the voting ensemble are shown in Supplementary
Figure 3. Performance of the final T1W, T2W, clinical features and
ensemble models on the internal test set in comparison to expert
evaluations and the external test set is described in Table 2 and per-
formance of the models on the training and validation sets is summa-
rized in Supplementary Table 4.

On internal testing, the clinical variable logistic regression
achieved an accuracy of 0¢62 (95% CI: 0¢52-0¢72), F1 score of 0¢58,
sensitivity of 0¢57 (95% CI: 0¢42-0¢71), and specificity of 0¢67 (95% CI:
0¢53-0¢78). On external testing, the logistic regression model based
on clinical variables achieved an accuracy of 0¢64 (95% CI: 0¢54-0¢73),
l test set (n = 93) compared with expert evaluation, as well as the external
accuracy relative to the performance of the ensemblemodel. Abbreviations
predictive value; 95% CI, 95% confidence interval.

sitivity (95% CI) Specificity (95% CI) PPV NPV p-value

7 (0¢42-0¢71) 0¢67 (0¢53-0¢78) 0¢59 0¢65 -
5 (0¢40-0¢69) 0¢75 (0¢61-0¢85) 0¢64 0¢67 -
7 (0¢42-0¢71) 0¢88 (0¢76-0¢95) 0¢80 0¢71 -
9 (0¢64-0¢89) 0¢66 (0¢53-0¢78) 0¢72 0¢81 -
6 (0¢72-0¢94) 0¢68 (0¢54-0¢79) 0¢69 0¢85 1.0
3 (0¢69-0¢92) 0¢64 (0¢50-0¢76) 0¢66 0¢82 0.66
8 (0¢33-0¢62) 0¢70 (0¢56-0¢81) 0¢57 0¢61 0¢02
1 (0¢67-0¢90) 0¢66 (0¢52-0¢78) 0¢67 0¢81 0.7

sitivity (95% CI) Specificity (95% CI) PPV NPV

9 (0¢34-0¢64) 0¢74 (0¢62-0¢84) 0¢56 0¢68
4 (0¢29-0¢59) 0¢81 (0¢69-0¢89) 0¢61 0¢68
4 (0¢48-0¢77) 0¢78 (0¢65-0¢87) 0¢66 0¢76
7 (0¢61-0¢88) 0¢71 (0¢58-0¢81) 0¢63 0¢82

https://github.com/sopeeweje/Bone-MRI
https://github.com/sopeeweje/Bone-MRI


Figure 2. Receiver-Operator Characteristic (ROC) curves for all models on internal test data set (n = 93) compared to expert performance and on the external test data set (n = 97).
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F1 score of 0¢52, sensitivity of 0¢49 (95% CI: 0¢34-0¢64), and specificity
of 0¢74 (95% CI: 0¢62-0¢84). The generated regression equation was:

0.566Age + 0.955 Cranium + 0.705Hip + 0.588Spine + 0.438RibChest +
0.438DistalFemur + 0.398ProximalTibia

Location in the hand (-0¢505) and foot (-0¢815) were the most
heavily weighted determinants towards benign classification and
location in the hip (+0¢705) and cranium (+0¢955) were the most
heavily weighted determinants towards malignant classification.

The final T1W model was trained with stochastic gradient descent
optimization with Nesterov momentum, learning rate of 0¢001, and
dropout rate of 0¢2 in the classifier. On the internal test set, the T1W
model achieved a test accuracy of 0¢66 (95% CI: 0¢55-0¢74), F1 score
of 0¢59, sensitivity of 0¢55 (95% CI: 0¢40-0¢69), and specificity of 0¢75
(95% CI: 0¢61-0¢85). On the external test set, the T1W trained model
achieved a test accuracy of 0¢66 (95% CI: 0¢56-0¢75), F1 score of 0¢51,
sensitivity of 0¢44 (95% CI: 0¢29-0¢59), and specificity of 0¢81 (95% CI:
0¢69-0¢89).

The final T2W model was trained with Adam optimization and
dropout rate of 0¢4 in the classifier. On the internal test set, the T2W
model achieved a test accuracy of 0¢72 (95% CI: 0¢62-0¢80), F1 score
of 0¢75, sensitivity of 0¢64 (95% CI: 0¢48-0¢77), and specificity of 0¢78
(95% CI: 0¢65-0¢87). On the external test set, the T2W model achieved
a test accuracy of 0¢74 (95% CI: 0¢62-0¢80), F1 score of 0¢65, sensitivity
of 0¢64 (95% CI: 0¢48-0¢77), and specificity of 0¢78 (95% CI: 0¢65-0¢87).

On the internal test set, the ensemble model achieved a test
accuracy 0¢76 (95% CI: 0¢67-0¢84), F1 score of 0¢75, and sensitivity
of 0¢79 (95% CI: 0¢64-0¢89), and specificity of 0¢75 (95% CI: 0¢61-
0¢85). On the external test set, the ensemble model achieved a
test accuracy of 0¢73 (95% CI: 0¢64-0¢81), F1 score of 0¢70, sensi-
tivity of 0¢77 (95% CI: 0¢61-0¢88), and specificity of 0¢71 (95% CI:
0¢58-0¢81). Adding an optimized T1C-trained model to the ensem-
ble model neither supplemented nor decremented internal test
set performance (Supplementary Table 5).
3.3. Radiologist Interpretation

In evaluating the internal test set, expert 1 achieved a test accu-
racy of 0¢76 (95% CI: 0¢66-0¢84), F1 score of 0¢77, and sensitivity of
0¢86 (95% CI: 0¢72-0¢94), and specificity of 0¢68 (95% CI: 0¢54-0¢79).
Expert 2 achieved a test accuracy of 0¢73 (95% CI: 0¢63-0¢81), F1 score
of 0¢74, and sensitivity of 0¢83 (95% CI: 0¢69-0¢92), and specificity of
0¢64 (95% CI: 0¢50-0¢76). Expert 3 achieved a test accuracy of 0¢60
(95% CI: 0¢50-0¢69), F1 score of 0¢52, and sensitivity of 0¢48 (95% CI:
0¢33-0¢62), and specificity of 0¢70 (95% CI: 0¢56-0¢81). Interrater reli-
ability as calculated with Fleiss’ kwas 0¢02.

The expert committee assembled by majority-rule achieved a test
accuracy of 0¢73 (95% CI: 0¢63-0¢81), F1 score of 0¢73, and sensitivity
of 0¢81 (95% CI: 0¢67-0¢90), and specificity of 0¢67 (95% CI: 0¢53-0¢78).
Compared to the expert committee, the ensemble deep learning
model achieved similar accuracy (0¢76 vs. 0¢73, p=0¢7 [McNemar
test]), sensitivity (0¢79 vs. 0¢81, p=1¢0 [McNemar test]) and specificity
(0¢75 vs. 0¢66, p=0¢48 [McNemar test]). Figure 2 shows the ROC curve
for each model overlaid with expert performance on the internal test
set and the ROC curve for the models’ performance on the external
test set.

There were 7 tumors out of the 92 cases in the test set that were
classified incorrectly by all 3 evaluators. These cases are depicted in
Figure 3. 4 out of these 7 cases were benign entities incorrectly
assessed as malignant by all 3 raters and the remaining 3 were malig-
nant entities incorrectly assessed as benign. The model was correctly
able to assess malignancy in 4 out of these 7 cases. Table 3 shows the
performance of the expert evaluators and the model in classifying
the benign and malignant lesion types that were most frequent in
the test set. No statistically significant differences in performance by
lesion were observed.

4. Discussion

MRI is the go-to advanced imaging modality for the evaluation of
potentially suspicious bone lesions prior to biopsy or intervention.
The diagnosis of bone lesions on imaging is complicated by the rarity
with which they are encountered in clinical practice and the non-spe-
cific presentations of various benign and malignant entities. In this
study, we utilized a deep learning method combining routine MRI
images and clinical characteristics to develop a model to classify the
malignancy of bone lesions. The model was a voting ensemble com-
prised of EfficientNets trained upon T1-weighted and T2-weighted
images and a logistic regression trained upon patient age, sex, and
tumor location. Generalizability was effectively demonstrated by
showing a lack of significant decrement in performance on validation
with an external data set. As shown in Table 3, the model was able to
classify benign entities such as giant cell tumor and malignant enti-
ties such as Ewing sarcoma and multiple myeloma with higher accu-
racy than the experts. The analysis was not sufficiently powered to
observe statistically significance differences in classification perfor-
mance by lesion but expanding the test set may have allowed for
such differences to be determined.

There is significant value in a model that can recapitulate the
assessment of bone lesions on MRI by expert musculoskeletal radiol-
ogists. In one review of patients with equivocal findings on initial



Figure 3. Cases in the test set that were misclassified by all experts. Model classifications are displayed with the probability of malignancy determined by the model.

Table 3
Performance of the experts and the ensemble model in classifying high frequency benign and malignant lesions in the internal test set.

Malignant Tumors N Expert 1 accuracy Expert 2 accuracy Expert 3 accuracy Expert committee Model accuracy

Osteosarcoma 11 90�9% 100�0% 81�8% 100% 90.9%
Ewing sarcoma 12 83�3% 91�7% 41�7% 83�3% 91�7%
Multiple Myeloma 8 87�5% 62�5% 62�5% 75�0% 75.0%
Chondrosarcoma 5 60�0% 80�0% 20�0% 60�0% 60�0%

Benign Lesions N Expert 1 accuracy Expert 2 accuracy Expert 3 accuracy Expert committee Model accuracy

Giant cell tumor of the bone 9 44�4% 44�4% 77�8% 44�4% 77�8%
Chondroblastoma 7 100�0% 85�7% 42�9% 85�7% 85�7%
Enchondroma 6 83�3% 83�3% 100�0% 83�3% 100%
Aneurysmal Bone Cyst 6 50�0% 33�3% 66�7% 50�0% 50�0%
Osteomyelitis 5 100�0% 100�0% 80�0% 100�0% 100%
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MRI that were subsequently referred to an orthopedic oncology
clinic, radiologists at the clinic found that one-third of 390 referred
patients had images that were clearly characteristic of non-neoplastic
entities or benign tumors that did not in fact require follow-up with
an orthopedic oncologist [27]. These unnecessary referrals compli-
cate the task of identifying malignancy for specialist radiologists. In
this context, a sensitive validated model for the characterization of
suspicious bone lesions could perhaps reduce the rate of unnecessary
referrals to higher levels of care and reduce patient anxiety regarding
a potential cancer diagnosis. Both the experts and the model were
highly sensitive, the former due to an inherent bias towards avoiding
false negative diagnoses and the latter due to an encoded bias
designed to mimic the expert approach. However, specific assess-
ment of bone lesions would have also proven valuable. Unnecessary
biopsy of benign lesions falsely considered malignant can create
undue patient stress and leave patients at risk of post-operative com-
plications, especially when managed outside of specialist multidisci-
plinary centers [28]. In addition, biopsy can be non-diagnostic in up
to 30% of cases, subjecting patients to repeat biopsy procedures and a
higher risk of complication [28,29]. A computer-aided diagnostic tool
that can identify benign lesions with high specificity would be valu-
able in reducing the rate of unnecessary biopsies, by aiding
radiologists in ruling in malignancy with greater certainty. By adjust-
ing our thresholding approaches, we could easily create additional
models that are biased towards high specificity performance to be
used for this purpose.

Explainability is a significant barrier to the utilization of machine
learning methods to support clinical practice. Our clinical features
model represents a step towards a more explicit understanding of
artificial decision-making for clinical diagnostics. The clinical model
was correctly able to predict hand and foot locations as negative pre-
dictors of malignancy and cranial and spinal locations as positive pre-
dictors of malignancy. The majority of tumors affecting the hand,
cranium and spine are enchondromas; chordomas and chondrosarco-
mas; and bone metastases and multiple myeloma, respectively
[30�33]. While the majority of bone tumors of the foot are benign,
our clinical features model likely associated foot location with
benign nature because the majority of foot-located lesions in our
cohort were osteomyelitis, a bone tumor-mimicker that com-
monly affects the lower extremity. The clinical model also pre-
dicted increased probability of malignancy with increased age
which is consistent with the epidemiology of benign bone
tumors, most of which occur in the first two decades of life. Sex
had no predictive value for the model, which is consistent with
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the observation that most bone lesions show no particular gender
predilection [34].

There were select tumors that were misclassified by all expert
evaluators but correctly assessed by the model (Figure 3). Ewing sar-
coma (Figure 3d) has a heterogenous appearance on MRI and can be
difficult to clinically diagnose in its earliest stages prior to the signifi-
cant cortical destruction that occurs following spread beyond the
bone marrow [35,36]. Osteoid osteoma (Figure 3g) frequently dem-
onstrates an abnormally high peritumoral signal intensity on MRI
due to hyperemia and consequent bone marrow edema, resulting in
frequent misinterpretation [11,37]. There were also cases that were
misclassified by all expert evaluators as well as the model. Osteoblas-
toma (Figure 3c) is an uncommon benign bone tumor with rib
involvement in less than 5% of cases. The expansile growth pattern
with well-defined margins exhibited by both of the present tumors is
consistent with previously documented observations of rib osteo-
blastomas; however, these are somewhat aggressive features that are
frequently considered to be on the borderline of osteoblastoma and
low-grade osteosarcoma [38,39]. Aneurysmal bone cyst (Figure 3f)
shares several clinical and imaging features with telangiectatic osteo-
sarcoma, such as young age at presentation, large size, and heteroge-
neous to high T2 signal intensity corresponding to fluid levels [40].
The “black-box” nature of deep neural networks makes it challenging
to explain why our model was able to achieve the correct classifica-
tion in some of these cases but was similarly misled in others.

It is noteworthy that our model was able to achieve performance
on par with the experts without the use of data from T1-weighted
contrast-enhanced studies, which were available to the experts in 81
out of 93 lesions in the test set. This may have introduced a bias
towards the experts. There is also a question of the utility of contrast-
enhanced MRI imaging in bone tumor diagnosis. Review of the litera-
ture showed that in a one study, MR scans with gadolinium did not
contribute to differential diagnosis or management in 89% of a cohort
of 242 patients with musculoskeletal tumors and tumor mimickers
[41]. Contrast imaging did however aid in guiding biopsy of bulky
lesions and evaluating tumor beds for possible recurrence [41].
Another author which reviewed the use of gadolinium in MR imaging
of solitary bone tumors found that the role of contrast imaging is lim-
ited outside of directing biopsy and planning tumor resection [42]. By
maintaining diagnostic performance without the need for contrast
imaging, our model is of utility in contexts where contrast imaging is
not readily available to the radiologist (e.g., incidentally discovered
lesions). Moreover, for intentional evaluation of suspicious bone
lesions, protocols that are sufficiently informative without the use of
contrast enhancement would be of significant benefit to the pediatric
radiology community. Given the pain-related anxiety that can be pro-
voked by IV placement and the unknown risks of gadolinium deposi-
tion in children, elimination of contrast imaging for bone lesion
assessment could be valuable [43,44]. The present study represents a
first step towards a validated computational method for this purpose.

The rarity of bone tumors presented a challenge in compiling a
dataset that could effectively power the training of a deep neural net-
work for this task. While the size of our dataset is larger than many
others that have been used for tumor classification tasks, it is still
orders of magnitude smaller than datasets that have been used for
other medical image characterization tasks. A larger dataset could
also allow for granular classification beyond binary, such as differen-
tiating between types of bone sarcomas or other histopathological
diagnoses.

The study was limited by the need to perform manual lesion seg-
mentation prior to analysis using our deep learning method. Manual
segmentation precludes the creation of a fully automated lesion char-
acterization pipeline. Given the variability in bone lesion location and
the non-uniform shape of bones based on anatomical location, auto-
mated bone lesion segmentation would ostensibly be a much more
challenging task than, for example, automated segmentation of the
breast or brain tumors on MRI, both of which have been previously
demonstrated [45,46]. While automated segmentation of specific
osseous structures has been demonstrated, such as the proximal and
distal femur and the proximal tibia, fully automated segmentation of
bone lesions has not been reported [47,48]. One study employed a
semiautomatic segmentation technique for bone sarcomas on MRI
that involved manual segmentation of slices at the extremes and the
middle of the volume, followed by an interpolation to create the final
segmented volume [49]. Achieving automated bone lesion segmenta-
tion will likely be critical to wide-spread adoption of deep learning
techniques for lesion classification in clinical practice.

In summary, we have developed a deep learning model that can
evaluate the malignancy of bone lesions with similar accuracy and
improved specificity in comparison to expert evaluators. Future stud-
ies will seek to combine radiograph and MRI findings in the develop-
ment of classification models using deep learning and accompanying
radiologist interpretation, as this is the clinical standard of care for
suspicious bone lesions. In addition, a future study with a larger
cohort may allow for classification of bone lesions by specific diagno-
sis. Finally, the development of a fully automated bone lesion classifi-
cation tool would be facilitated by establishing an automated
segmentation technique and utilizing a tool to automatically query
for and extract relevant imaging studies from hospitals’ picture
archive and communication systems (PACS), such as the DICOM
Image Analysis and Archive (DIANA) system previously developed by
our group [50]. At present, this work demonstrates the promise of
deep learning to aid radiologists in characterizing the malignancy of
bone lesions with improved certainty.
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