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Abstract

Engineered microbial cells present a sustainable alternative to fossil-based synthesis of

chemicals and fuels. Cellular synthesis routes are readily assembled and introduced into

microbial strains using state-of-the-art synthetic biology tools. However, the optimization of

the strains required to reach industrially feasible production levels is far less efficient. It typi-

cally relies on trial-and-error leading into high uncertainty in total duration and cost. New

techniques that can cope with the complexity and limited mechanistic knowledge of the cel-

lular regulation are called for guiding the strain optimization.

In this paper, we put forward a multi-agent reinforcement learning (MARL) approach that

learns from experiments to tune the metabolic enzyme levels so that the production is

improved. Our method is model-free and does not assume prior knowledge of the microbe’s

metabolic network or its regulation. The multi-agent approach is well-suited to make use of

parallel experiments such as multi-well plates commonly used for screening microbial

strains.

We demonstrate the method’s capabilities using the genome-scale kinetic model of

Escherichia coli, k-ecoli457, as a surrogate for an in vivo cell behaviour in cultivation experi-

ments. We investigate the method’s performance relevant for practical applicability in strain

engineering i.e. the speed of convergence towards the optimum response, noise tolerance,

and the statistical stability of the solutions found. We further evaluate the proposed MARL

approach in improving L-tryptophan production by yeast Saccharomyces cerevisiae, using

publicly available experimental data on the performance of a combinatorial strain library.

Overall, our results show that multi-agent reinforcement learning is a promising approach

for guiding the strain optimization beyond mechanistic knowledge, with the goal of faster

and more reliably obtaining industrially attractive production levels.

Author summary

Engineered microbial cells offer a sustainable alternative solution to chemical production

from fossil resources. However, to make the chemical production using microbial cells
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economically feasible, they need to be substantially optimized. Due to the biological com-

plexity, this optimization to reach sufficiently high production is typically a costly trial

and error process.
This paper presents an Artificial Intelligence (AI) approach to guide this task. Our tool

learns a model from previous experiments and uses the model to suggest improvements

to the engineering design, until a satisfactory production performance is reached. This

paper evaluates the behaviour of the proposed AI method from several angles, including

the amount of experiments needed, the tolerance to noise as well as the stability of the pro-

posed designs.

This is a PLOS Computational BiologyMethods paper.

Introduction

Engineered microbial cells present a sustainable alternative to fossil-based chemical and fuel

production [1]. Assembling and introducing the production routes into microbial strains is

enabled by the state-of-the-art synthetic biology tools. However, to improve the initial labora-

tory demonstrated production to industrially feasible level requires substantial optimization of

the cells. This strain optimization is typically challenging since the complex and insufficiently

known cellular regulation has to be overcome to divert resources to production. Predictive

models have been sought for guidance of the strain optimization process. Genome-scale meta-

bolic models have already shown useful. Several strain design approaches using genome-scale

metabolic models have been derived [2–4] but they are inherently limited to accounting for

mass conservation and thermodynamic constraints to metabolism. They cannot account for

instance kinetic constraints, allosteric regulation and regulatory interactions beyond metabo-

lism, all playing important roles in metabolic flux distribution in cells.

Due to the limitations in the predictive models of cellular regulation the optimization of

microbial cells commonly follows the Design, Build, Test, Learn cycle (DBTL). In this cycle,

the strain is designed (D), built in a laboratory (B), measured, and tested (T) to learn (L) a

model on the current strain to be exploited for the next cycle design phase (D) again. While

efficient engineering solutions already exist for the build and testing phases, the design and

learn phases of the DBTL cycle relies still strongly on manual evaluation by domain experts.

This hinders the development of new industrially relevant productions strains [5].

In recent years, artificial intelligence and machine learning have emerged as approaches to

facilitate the microbial strain design by being able to account for cellular regulation beyond

established mechanistic knowledge [6–12]. For example, Hamerirad et al. (2019) [6] propose a

Bayesian optimization approach using Gaussian Processes to tune the gene expression levels of

three promoter of the lycopene production pathway of E. coli to maximize lycopene produc-

tion. In another recent study a method called ART (Automated Recommendation Tool) [7],

was proposed which leverages on a Bayesian ensemble approach to learn a mapping from the

omics profiles of the strains to the outputs of interest.

In this study we propose a Reinforcement Learning (RL) [13] approach for automating the

design and learn phases of the DBTL cycle for strain optimization. Our method facilitates the

strain optimization by analysing the response (e.g. product yield) from the previous rounds
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and by suggesting most promising modifications to the strain for the next round. Our method

is a model-free RL approach [13–15], that is, it does not rely on prior knowledge on the struc-

ture and dynamics of the metabolic system. Instead, the method learns to predict the responses

of given strain modifications and based on the predictions, recommends the most promising

strain modifications to try out next. We further propose a Multi-Agent RL (MARL) approach

[16], which is a good match of the parallel experimentation in the laboratory, such as using

multi-well plates or multiple bioreactors running simultaneously [17–19].

In our case, we cannot assume a stationary model which allows to estimate the value func-

tion in a reliable way, therefore, in the implementation of the model-free RL our learning

approach closely follows the scheme of the multi-armed bandit problem with associative tasks,

also called as contextual bandit [13, 20]. In the contextual bandit framework only the current

value of the reward is used with the combination of the history of the context, the earlier

observed states and the modifications executed until the current observation. To support these

kind of learning approaches several theoretical models [20, 21] and practical realizations [22,

23], have already been developed.

The main contributions of this paper are summarized in the following:

• We present a model-free reinforcement learning method that proposes modifications to

enzyme levels based on the previous experiments.

• A Multi-agent extension is presented that is able to take advantage of parallel experiments,

such as screening using multi-well plates or other parallelized cultivation systems.

• A comprehensive empirical evaluation is presented on the genome-scale kinetic model of E.
coli (k-ecoli457), evaluating the sample complexity, noise tolerance, and stability of the

designs.

• The proposed MARL method is assessed in improving L-tryptophan production with yeast

Saccharomyces cerevisiae, using publicly available experimental data on performance of a

library of yeast strains.

• An open source implementation of the algorithm is provided at https://github.com/

maryamsabzevari-ai/strain-optimization

Materials and methods

Reinforcement learning for optimising strain designs

Reinforcement learning (RL) refers to a goal-oriented learning approach via interacting with

an environment. In RL, an agent x aims to maximize a reward r by making iterative decisions,

or actions a, based on the observations of the states s of the environment. The decision are

guided by a policy π that gives suitable actions in a given state.

Our overall DBTL cycle using multi-agent reinforcement learning (MARL) is shown in

Fig 1. We assume that each round of the cycle corresponds to a set of cultivations run in paral-

lel, and for each cycle a new set of strains is generated, based on the recommendations of the

agents. In each round the system is observed in a pseudo steady-state (e.g. corresponding to

cells in exponential growth phase), which is estimated by the observable variables. The observ-

able variables correspond here to metabolite concentration and enzyme expression level vari-

ables, whose values are assessed at appropriate state of the cultivations. Actions correspond to

genetic engineering steps that increase or decrease the levels of the metabolic enzymes that

have been chosen as the controllable variables. Rewards correspond to improvement of a target
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variable such as the product yield or a product of the specific production and growth rates.

The policy corresponds to mapping the state of the system (estimated by the observations) to a

set of changes of the enzyme levels.

The components of the framework are summarized below:

Actions a 2 A ¼ Rna , real valued vectors containing the changes of the enzyme levels (dimen-

sion na)

States s 2 S ¼ Rns , vectors of the steady state concentrations of metabolites and enzymes

(dimension ns).

Rewards rt 2 R: the change of the target variable y (e.g. product yield) between two consequ-

tive rounds rt = yt − yt−1

Policy p : S 7!A: mapping from the states to actions, learned from data

A heatmap illustrating the changes of the enzyme levels throughout the optimization pro-

cess for a particular product (succinic acid), using the proposed MARL algorithm is presented

in Fig 2.

Learning algorithm

In constructing the learning algorithm, we aim to find an optimal policy π� which maps the

observed states to the promising actions. The basic task for an agent at round t is to find an

action at−1, to likely improve the reward rt−1, based on the observed state st−1 of the system.

To implement this, we maintain a history Ht ¼ fSt;At;Rtg, of the state-action-reward tri-

ples (s, a, r) obtained in the previous rounds, stored in matrices St, At and Rt, which will be

used to learn the policy πt for the next round.

To realize the prediction of next action, the policy function, we construct an optimization

problem which aims to learn the relationship between the states and the actions.

We apply the Maximum Margin Regression (MMR) framework [24], which builds on the

Support Vector Machine (SVM) and is able to predict not only binary outputs but arbitrary

responses given by vectors of a Hilbert space. As a heritage from the SVM, the MMR can also

use kernel represented input vectors to express potentially nonlinear relations as well. Since

the MMR allows to learn vector outputs with internal structure, therefore the potential

Fig 1. Strain design optimization loop using reinforcement learning. Enzyme levels corresponding to the strain i are

denoted as ei, and yi and si, correspond to the response (used in reward) and output concentrations (used as state),

respectively. The action (ai), corresponding to the difference of the enzyme levels in the two consecutive iterations, is

given by the policy learned with MMR.

https://doi.org/10.1371/journal.pcbi.1010177.g001
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interdependence between the output components can be expressed. The MMR is the simplest

known approach to implement these kind of regression problems. The alternatives, e.g. Struc-

tured SVM, see several implementations in [25], and the Input Output Kernel Regression,

[26], have significantly higher computational complexity, thus their use in an iterative, Rein-

forcement Learning framework could be too expensive. The computational complexity of solv-

ing the optimization problem realizing an MMR based learner is the same as the complexity of

the SVM applied to binary classification.

MMR learns the policy through a linear operator W:HS!HA, whereHS andHA are fea-

ture spaces (Hilbert spaces) corresponding to the states and actions, respectively. Feature maps

ϕ: S!HS, and ψ: A!HA are used to map the states and actions to their respective feature

spaces.

The predicted action by the learned policy in state s is given by

pðsÞ ¼ arg max
a2A

hψðaÞ;WϕðsÞi;

where the inner product hψ(a), W ϕ(s)i can be interpreted as a predicted reward of action a in

state s. When the feature map ψ is a surjection, the above maximization has the alternative

solution π(s) = ψ−1(W ϕ(s)), where ψ−1:HA! A is the pre-image of ψ.

The learning is guided by a constraint calling for all triplets (si, ai, ri) in training data the

predicted reward to be lower bounded by a margin, a strictly monotonically increasing func-

tionM : R! of the observed reward:

hψðaiÞ;WϕðsiÞi � MðriÞ

The type of constraint encourages the model to use the triplets with a high reward as sup-

port vectors and thus improves the model’s performance in the high-reward regime.

Fig 2. Illustration of strain design optimization using the MARL approach for succinic acid. The first 6 rows

correspond to the enzyme levels and in the last row the response (product exchange flux � growth) is presented. Each

column represents the enzyme levels design and the corresponding response which has been found in the iteration

mentioned at the bottom.

https://doi.org/10.1371/journal.pcbi.1010177.g002
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The full optimization problem is formulated in the following way:

min
1

2
kWk2

F þ Cx

X

i
xi

w:r:t: W ðlinear operatorÞ : S! A;

ξ 2 Rt� 1

s:t: hai;WϕðsiÞi � MðriÞ � xi;

xi � 0; i ¼ 1; . . . ; t � 1:

ð1Þ

The objective minimizes a sum of a regularizer (squared Frobenius norm of W) and an

error term consisting of sum of slack variables for the training data. The slacks allow outliers,

triplets that fail to achieve a required margin. For the margin, we applied log-transformed

rewards:M(r) = log2(r + 1). The hyper-parameter Cξ controls the trade-off between regulariza-

tion and error.

Like with SVM, efficient non-linear modelling can be achieved by the use of non-linear ker-

nel functions, which circumvent the need for constructing the potentially high-dimensional

feature maps explicitly. We apply Gaussian kernels KSðs; s0Þ ¼ expðks � s0k2
=s2

SÞ and

KAða; a0Þ ¼ expðka � a0Þk2
=s2
AÞ for the state and action spaces, as well as a joint kernel KSA(s,

a; s0, a0) = KS(s, s0)KA(a, a0).

Using the above kernels, a Lagrangian dual problem of (1) can be derived, where the pre-

dicted action in state s is expressed as

pðsÞ ¼
X

i

biaiKSðs; siÞ; ð2Þ

as an approximate pre-image solution of Gaussian prediction over actions.

The solution to the above problem is computed by solving the the dual optimization prob-

lem [24]:

β� ¼ DbðKSA;M;CxÞ ¼ arg

min
1

2
β0KSAβ � MTβ

w:r:t: β 2 Rt� 1
;

s:t: 0 � β � Cx1

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

ð3Þ

where KS A = KS � KA is the element-wise product of the kernels matrices of the states and the

actions.

Multi-agent algorithm

The learning algorithm described above learns sequentially, from one experiment per DBTL

round. However, modern wet-lab arrangements typically allow parallel execution of experi-

ments either by using multi-well plates or micro-bioreactors. In general, the parallel execution

of experiments have a lower overhead, due to the lower human labour cost. However, from

machine learning point of view, fully parallel execution does not yield optimal results as most

learning happens between the DBTL rounds. MARL employs several co-operating agents that

learn from each other and together explore the solution space.

MARL setups can be generally defined using centralized or decentralized schemes in either/

both of training and execution phases [16]. A centralized training scheme enables the agents to
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learn from each other, which can improve sample efficiency [27, 28], critical in the applications

where environment interaction (e.g. Build and Test phases in DBTL) is expensive. However,

decentralized learning allows the agents to adapt to specific regimes of the state space, and

thus, obtains better overall performance through diversity among the agents [29]. Various

structures for mixing centralized and decentralized schemes have been studied, due to their

diverse advantages which can be helpful in complex real-world tasks [30–32].

In the following, we show how the strain optimization task can be tackled with MARL

approach, where several agents provide strain recommendations to be executed in parallel

within a single DBTL round.

Our MARL algorithm (Algorithm 1) uses a mixture of centralized and decentralized train-

ing, realized by grouping the agents so that within group g the agents are learning a joint policy

πg based on the historyHg of the group (centralized part). Across groups the agents learn inde-

pendently, which allows each agent group to specialize to a specific region of the state space

(decentralized part). All agents share the same actions space A and state space S. However,

each agents occupies its own state at any given iteration.

The algorithm begins with an initialization phase where an initial data set is generated as a

warm-up to the MARL algorithm and initial enzyme levels are chosen (see section below for

details).

In each iteration of the MARL algorithm t, an agent xi in group g observes the state sit , and

executes an action ait based on the group policy πg, which transitions the system to the next

state sitþ1
, and the reward rit is obtained.

The parameters βg of the joint policy πg for each group g, are updated in each iteration

using the Eq (3), using the groups history Hg ¼ fS
g
t ;A

g
t ;R

g
tg as the training data, where the

matrices of states, actions and rewards are built by concatenating the individual matrices of

the agents in the group.

To avoid the the agents of each group to become too homogeneous, the actions are per-

turbed to increase their diversity before their execution (see below for details). In addition,

every few iterations, the worst performing agent is replaced with a copy of randomly selected

other agent.

Initialization. Since the algorithm uses the experiments that have been collected previ-

ously as training examples, an empty memory in the beginning produces arbitrary actions that

can be avoided by including the warming up phase to initiate the memory. The warm-up

period and controllable factors initialization is implemented as described below:

• Warm-up: In this study, as in [7], we have used Latin hyper-cube sampling (LHS) [33] to

ensure having diverse initial experiments representing the input space variability. In LHS,

each dimension’s range is divided into non-overlapping, equally probable intervals. Hence

the input space is divided into equiprobable subspaces. Each sample should be taken from a

hyper-row and hyper-column, which does not contain any of the previous samples. We

build up a history of the data obtained from τ performed interactions with the environment

for each agent xi, which will be later used to predict the future actions.

• Choosing initial enzyme levels: For the first round (t = τ + 1), the enzyme levels of the first

agent are initiated using the median of the the enzyme levels corresponding to the upper

quantile of the observed responses in the warm-up. Enzyme levels of the other agents are ini-

tialized randomly to ensure exploration of different sub-spaces.

Algorithm 1 Multi agent Max-Margin Strain Design Optimization Algorithm

Input: τ: warm-up iterations, X: agents, G ¼ fgjg
ng
j¼1: agent groups, S:

state space, A: action space
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Output: e: enzyme levels
ðfHj

t
g
ng
j¼1; fsitg

nx
i¼1
; fei

t
Þg
nx
i¼1
Þ ¼ InitializeðS;A; tÞ

t = τ + 1
Repeat:
For j = 1. . .ng: # loop over the groups of agents
ðsit; y

i
tÞ  EðeitÞ 8xi 2 gj # each agent makes an experiment

Hjt ¼ H
j
t [ ðsit; ait; rit ¼ yit � yit� 1

Þ 8xi 2 gj # update group history
πj = MMR(Hjt) # update group policy using MMR (3)
ait ¼ pjðs

i
tÞ 8 xi 2 gj # predict actions:

½~a it�i2gj = Perturb_agents ð½ait�xi2gjÞ # diversify the actions of the group

eitþ1
¼ eit þ ~a it, 8 xi 2 X # compute new enzyme levels for each agent

If t mod k = 0 # every k iterations
iworst ¼ argmini mediant yit #worst agent
eiworstt ¼ eirandomt # substitute with a random agent

t = t+1
Until convergence

Perturbation scheme. One of the main purpose of applying multi-agents in the learning

procedure is to increase the explorative capacity of the learner. This requires an algorithm in

which the divergence of the actions among the agents is sufficiently large. The basic idea is to

increase the volume of the parallelotope spanned by the action vectors. That volume can be

expressed by the determinant of the Gram matrix, ½Gij�
N
i;j¼1
¼ hai:aji consisting of the inner

product between the action vectors, and the greater determinant implies greater volume. The

maximum volume corresponds to case where those actions are orthogonal, and the minimum

is achieved when they point into the same direction. In the presented algorithm the perturba-

tion vectors for each group (gj) of the agents are created by the Gram-Schmidt orthogonaliza-

tion of the actions, then those perturbations are scaled by a fixed perturbation coefficient

(c = 0.8) and added to the original action vectors. Finally the length of the actions are restored

to the original one. It can be proved that the volume corresponding to the Gram matrix of the

actions increases by this algorithm. A summary of this procedure in presented in algorithm 2.

Algorithm 2 Perturb_agents
Input: actions: a1, . . ., asz, perturbation coefficient c
Output: Perturbed actions: ~a1; . . . ; ~asz

½vi�szi¼1
¼ Gram � Schmidtð½ai�szi¼1

Þ

For i = 1. . .sz:
~a i ¼ ð1 � cÞai þ cvi #action perturbation

~a i ¼
kaik~a i

k~a ik
#Normalizing to the original length

Enzyme level tuning in k-ecoli457

In this work, we have used simulations from k-ecoli457 [34] genome-scale kinetic model of E.
colimetabolism as a surrogate for wet-lab experimentation. The k-ecoli457 model has been

validated on fluxomic data corresponding to wild-type and 25 mutant strains (21 genetically

perturbed strains with glucose as the carbon substrate and four with different carbon sub-

strates under aerobic conditions) growing under different conditions on various substrates. As

the authors of this model reported in their study, the Pearson correlation coefficient between

the experimental data and the product yield predicted using this model for 320 engineered

strains is notably higher than using flux balance analysis [2] or minimization of metabolic

adjustment [35] for predicting the product yield. This comprehensive kinetic model with 457

reactions, 337 metabolites, and 295 substrate-level regulatory interactions seems to be an

appropriate candidate for strain optimization simulation.
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In k-ecoli457 model, change of the enzyme levels is implemented by varying the total pool

of the normalized enzymes from wild-type (êtot ¼ 1) down to 10-fold down-regulation

(0:1 � êtot < 1) and up to 10-fold up-regulation (1 < êtot � 10).

For the purpose of the MARL algorithm, enzyme levels are transformed via f ¼ � 1þê tot
ê totþ1

,

which induces nearly symmetric ranges for of (−1, 0), (1, 0.82], −1 and 0 for down-regulation,

up-regulation, knock-out and no regulation, respectively. Inverse of the transformation func-

tion f (f � 1 ¼
� y� 1Þ

y� 1
), is used to transform back the enzyme level for interacting with the simula-

tor (environment).

Choice of controllable variables and products

In Table 1, the list of the perturbed enzymes for three investigated products acetate, ethanol
and succinic acid is presented, chosen according to [34] and [36]. The strain designs for

improved production are sought for using a target quantity [production x growth] similar to

[37], and referred to as response from here on, to avoid solutions severely compromising the

viability of cells. The response for each product on the carbon source glucose is computed as

rrtarget-reaction � rrgrowth-reaction, where the first term denotes the specific production rate of the

target compound and the second term denotes the growth. All the simulations were performed

under aerobic conditions with glucose as a non-depleting carbon source (i.e. external concen-

tration independent of utilization) [34]. Enzyme level perturbation has been performed by

varying (increasing or decreasing) the enzyme levels within the range [0.1, 10], in which [0.1,

1] corresponds to 10-fold down-regulation up to wild-type level range and [1, 10] corresponds

to wild-type level up to 10-fold up-regulation (more information in [34]). We have discarded

gene deletion due to causing abrupt (non-continuous) changes in the yield space. The modi-

fied enzyme levels set in each iteration of the algorithm is queried in the simulator, to check

for the obtained response improvement over the best found response yet. In addition of the

response improvement, we are interested to evaluate the stability of the obtained response in

the response region. This is mainly crucial, as in the real-world scenario the error-prone mea-

surements might land the experiment in a close neighborhood of the computed enzyme levels

rather than in a exact point of in vivo optimality in the enzyme level space.

In this study, we assume running 20 parallel experiments (4 technical replicates times 5 bio-

logical replicates) and 40 sequential iterations search performed in the enzyme level space.

Compared strain optimization methods

To asses the proposed MARL method for strain design optimization, we carried out a compar-

ison against Bayesian Optimization with Gaussian process as surrogate function (BO-GP) [38,

39] and also random search (RAND), which has been shown theoretically and empirically to

be more efficient than grid search for hyper-parameter optimization [40].

Table 1. List of the investigated products of interest and the corresponding enzymes whose levels were optimized,

selected based on [34] and [36].

product target

reaction

perturbed enzymes

succinic acid

[36]

SUCOS ICL, PPC, ENO, FUM, ICDHyr, SUCCt2_2pp_ex_H

acetate [34] EX_ac(e) RPI, PFL, GLCptspp_ex_exi, HSK, THRS, IPPS, IPMD, OMCDC, IPPMIb,

IPPMIa, HSDy, ASPK, LDH_D

ethanol [34] PDH PFL, FRD2, RPI, GLCptspp_ex_exi, HSK, LDH_D, ASPK, THRS, IPPS, IPMD,

OMCDC, IPPMIb, IPPMIa

https://doi.org/10.1371/journal.pcbi.1010177.t001
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For the all three algorithms, we have used the same examples for the warm up period. In

the experiments, four parallel agents are considered by the MARL algorithm, and to match the

setup, in the BO-GP and RAND experiments, four parallel experiments are executed. We have

used an existing Bayesian Optimization implementation in SHERPA [41], for BO-GP.

All the reported experiments relate to the average of the best found response obtained by

iteration 40—a point where the improvement of the response variable has slowed down for all

methods—across four agents and five runs of varied seeds (resembling biological replicates).

Results

We report results on evaluating of the proposed MARL method both in simulation data arising

from the k-ecoli457 model, as well as on experimental data arising from [8].

In the simulation experiments, the MARL approach is used to optimize the k-ecoli457 mod-

el’s production of acetate, ethanol or succinic acidmultiplied by growth (i.e. response). All the

reported responses are relative to their corresponding wild-type cases, that is, improvement

obtained for each product with respect to its corresponding wild-type case. Besides the

response optimization, we also study the stability of the solutions and the noise tolerance of

algorithms.

For the evaluation of the proposed method on experimental data, we used a combinatorial

yeast S. cerevisiae strain library provided in [8]. In this problem, the aim was improving L-tryp-

tophan production by optimizing the expression levels of five genes PCK1, TAL1, TKL1,
CDC19 and PFK1.

Response improvement

The response improvements obtained for the aforementioned products in k-ecoli457, using

the studied algorithms, MARL, BO-GP and RAND, are presented in this section.

In Fig 3, we have illustrated the median (solid lines) and 25th to 75th percentiles (shaded

areas) of the obtained best found response improvement of the MARL approach with respect

to BO-GP and RAND throughout the iterations, for the three products, acetate, ethanol and

succinic acid. MARL approach reached in earlier iterations than BO-GP and RAND improve-

ment in both acetate and succinic acid, and it outperformed the two other approaches in etha-
nol as early as iteration 13.

Statistical stability of the optimal strain designs

Here we set out to to study how sensitive the final strain design obtained by the algorithm is to

the situation that the actual enzyme levels realized are different from the designed ones. For

quantifying the stability of a particular strain design, we computed the variation in the

response (product exchange flux � growth) of the final strain design within a neighborhood

generated by small perturbations of strains. Specifically, we sampled randomly within 0.5 fold

change of enzyme levels of the final strain design and checked the target response in each sam-

pled point. We used as a measure of strain stability the relative standard deviation (or coeffi-

cient of variation) RSD ¼ s

m
of the yields, where σ and μ denote standard deviation and mean of

the neighbors’ responses, respectively.

We ran MARL for 40 iterations, and considered the strain design with the best response

within those iterations as the final strain design. We computed in total 20 trajectories per prod-

uct, consisting of four agents, and five repeated trials per agent. We used neighborhood size of

ten for computing the stability measure (RSD). RL appears to converge to more stable strain

designs than RAND meaning that the close neighbourhood of the recommended strains by
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Fig 3. The development of the median (solid lines) and 25th to the 75th percentile (shaded areas) of the response

(growth�production, C-mmol biomass/(g CDW h)�mmol/(g CDW h)) in k-ecoli457 model using MARL, BO-GP

and RAND, in acetate (top), ethanol (middle) and succinic acid (bottom) production.

https://doi.org/10.1371/journal.pcbi.1010177.g003
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MARL are less likely to result in a drastic different response (Table 2). Compared to BO-GP,

more stable strain designs are found by MARL for acetate and ethanol, and for succinic acid
the stability of the strain designs obtained with BO-GP and MARL are comparable. However,

the final succinic acid response with BO-GP is significantly lower than the response obtained

with either MARL or BO-GP, which lessens the worth of the good stability.

Production improvement in the presence of noise

Using the strain designs in practice is subject to noise arising from different sources (measure-

ment errors, biological variability, inaccuracy of implementing enzyme level changes). Since

the k-ecoli457 model is deterministic, it lacks all of these sources of variability and, conse-

quently, might make the algorithm’s performance look unrealistically good compared to the

real-life situation. To evaluate the robustness of the proposed MARL strategy under noise, we

performed simulations related to MARL approach in a setup where noise was added to the

input or output variables of the k-ecoli457 model. We experimented with noise levels ofm%

(m 2 [10, 20, 30]) noise in either states, actions or response (product exchange flux � growth).

To simulate noisy states (concentrations of metabolites and enzymes in k-ecoli457 output),

the original state vector was added to a Gaussian noise signal denoted as X* N(μ, σ2) which is

normally distributed with mean μ = 0 and standard deviation equal tom% of the median of

the values in the state vector. Similarly, the action vector (changes on the enzyme levels input

to k-ecoli457) is summed up with a Gaussian noise signal with mean μ = 0 and standard devia-

tion equal tom% of the minimum absolute value in the action vector. The obtained growth-

coupled production (response) is also perturbed by a Gaussian noise signal with mean μ = 0

and standard deviation equal tom% of the original growth-coupled production. The average

percentage of median max-response decrements at iteration 40 over three studied products

was computed for the three investigated noise levels for the case when noise is added to the

action (blue bars), response (orange bars), states (green bars) and also to the all three elements

(pink bars), with respect to no noise scenario. In none of the simulations a significant adverse

effect was observed, which reveals the robustness of the proposed MARL method in the pres-

ence of noisy measurements (Fig 4).

Evaluation of strain design optimization using experimental data

In this section we report the evaluation of our proposed MARL approach on experimental

data from a combinatorial yeast S. cerevisiae strain library provided by Zhang et al. (2020) [8]

(Supplementary Data 3). The combinatorial strain library was aimed at improving L-

Table 2. Mean and standard deviations of the strain stability measure (RSD) obtained with algorithms. For each

product and each method mean and standard deviation among 20 computed RSDs are shown.

product method mean±std

acetate RL 30.49±16.21

BO-GP 45.86±24.44

RAND 49.67±14.37

ethanol RL 23.59±21.18

BO-GP 71.33±55.58

RAND 51.36±28.38

succinic acid RL 34.11±25.31

BO-GP 33.47±22.53

RAND 57.62±31.87

https://doi.org/10.1371/journal.pcbi.1010177.t002
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tryptophan production by optimizing the expression levels of five genes PCK1, TAL1, TKL1,
CDC19 and PFK1. As a proxy of L-tryptophan production a green-fluorescent protein (GFP)

synthesis rate readout as a reporter of an engineered tryptophan biosensor had been deter-

mined. This comprehensive data set allowed us to evaluate designs proposed by the MARL

algorithm, by selecting each time the closest matching design from the library.

To this end, the action vector (a) consists of 6 levels of genes strength coded as {0, 0.2, 0.4,

0.6, 0.8, 1}, respectively correspond to the lowest strength up to the highest of each gene. The

state vector (s) consists of all the information available for each strain (the entire row for each

strain of Supplementary Data 3 in [8]). The reward (r) is defined as the change of the GFP syn-

thesis rate, which is the optimization objective in this problem.

The setting of the algorithm is kept as previously mentioned. At each iteration, for each rec-

ommendation given by the algorithm, we search for its nearest neighbor strain (element-wise

subtraction for each coded genes strengths is less than 0.2) in the library to use it as the strain

that has to be queried. In the case that no close strain is found, zeros is assigned to the GFP

rate of that experiment. This assumption is not destructive in our experiments as we are look-

ing at the best found GFP synthesis rate up to the current iteration, hence this choice will only

miss the strains that can potentially produce higher GFP synthesis rates but are not provided

in the available data set. We use this approach as a proxy for the lab experimentation.

We compare the proposed MARL algorithm with RAND and BO-GP as explained in the

previous experiments. In Fig 5 we illustrate the average and 25th to 75th percentiles (across

four agents and 20 times running the algorithms) of the best found GFP synthesis rates using

MARL, BO-GP an RAND. Note that, for this experiment, we have not used the

Fig 4. Average percentage of median response decrements at iteration 40 over 3 studied products, with respect to

the baseline with no noise.

https://doi.org/10.1371/journal.pcbi.1010177.g004
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recommendation strains for training. However, to asses whether the algorithm finds the

strains proposed by [8], we compare each recommendation with all the strains to monitor

their corresponding GFP synthesis rates. As we can see that the proposed MARL approach

outperforms BO-GP and RAND in terms of the average obtained GFP synthesis rate (MFI/h).

Also we observe in this plot, MARL tends to find the highest GFP synthesis rates (blue shaded

area).

Discussion

In this paper we have put forward a MARL framework for strain design optimization. The pro-

posed MARL algorithm is able to find metabolic enzyme levels that would optimize a given

target such as desired compound production. MARL does not assume any stoichiometry or

metabolic kinetics to be known but learns those dependencies and beyond between the given

target and the enzyme levels from strain characterization data. Optimizing the enzyme levels

has been found useful in improving production [42] and in wet-lab the enzyme levels can be

adjusted by using e.g. different promoters, numbers of gene copies, or synthetic degrons.

Though wide promoter libraries and other options for tuning the enzyme levels are available

for many hosts, desired levels may not be achieved exactly. For this reason it is important that

the designs are stable around the optimal enzyme levels. In our simulations using the k-

ecoli457 model as a proxy for the wet-lab, our MARL approach in general showed better stabil-

ity of the enzyme level designs upon small perturbations than the alternative BO-GP algo-

rithm. The actual enzyme levels in engineered strains can be quantified by sampling

cultivations and using targeted mass spectrometry based proteomics approaches. Neither

Fig 5. Mean and 25th to 75th percentile (shaded areas) of the best GFP synthesis rate (MFI/h), using MARL, BO-GP and RAND.

https://doi.org/10.1371/journal.pcbi.1010177.g005
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noise in the enzyme levels (i.e. input data) nor in the target (i.e. output data) substantially com-

promised the performance of our MARL algorithm, instead a gradual (linear) deterioration of

obtained response levels was observed upon increasing noise levels.

We demonstrated the versatility of the algorithm by optimizing L-tryptophan production

in S. cerevisiae using the combinatorial library data by Zhang et al. (2020) [8]. Our results

show that MARL could optimize the L-tryptophan production (response variable being the

GFP synthesis rate in response to L-tryptophan biosensor) effectively, achieving 95% of the

optimum mean response within 12 iterations, while BO-GP algorithm not achieving this level

within 19 iterations. Thus, MARL would be suitable for optimizing enzyme levels when inte-

grated to an experimental DBTL cycle.

For the practical use of MARL integrated to an experimental DBTL cycle, we note that

when the experiments were replaced with the k-ecoli457 model simulations, around 10-15 iter-

ations of the MARL algorithm (i.e. corresponding to wetlab strain improvement and charac-

terization iterations) were required to reach a median response that is within 10% of the

optimum median response in case of improving ethanol or succinic acid production, while for

improving acetate production more than thirty iteration were needed. This number depends,

in part, on the number of enzymes that are being simultaneously optimized which here was

between 6-13 enzymes. Focusing on a smaller set of enzymes is likely to lead to lower number

of required samples to reach convergence, but at the same time, usually a lower optimum

response will be exhibited. Another direction is to increase the parallelism by using more

agents per iteration (i.e. corresponding to parallel modified strains in wetlab). This is also likely

to decrease the number of iterations required, however, the cost per iteration will be higher,

and the overall number of strain designs required will be higher.

MARL could also be used for optimizing metabolic gene expression levels. In that case, we

expect that the amount of samples required by the algorithm is higher than in the enzyme level

optimization, due to the more indirect link to metabolic fluxes. Similarly, response variables

alternative to the product exchange flux by growth we restricted our attention to in the simula-

tion studies or the biosensor’s GFP reporter readout in the L-tryptophan case (i.e. Zhang et al.

(2020) [8] are directly compatible with MARL.

Current limitation of our MARL method is that the strain design optimization is restricted

to the given target enzymes though the number of target enzymes can be varied. However, tar-

get enzymes whose levels should be tuned for optimizing production have previously been suc-

cessfully identified using a genome-scale metabolic model simulations [8]. If suitable prior

knowledge is not available, we believe using genome-scale metabolic models for the target

enzyme identification for MARL is a strong approach as it relies on the ultimate limits of meta-

bolic states, mass conservation and thermodynamics. Genome-scale metabolic model simula-

tions could also be used for proposing enzyme deletions leading to overproduction previously

successfully predicted [43–45] before strain design optimization using MARL. However, the

gene deletions are limited to the very few pathways that compete with production but are not

essential for sufficient cell growth. Further development of MARL could also be using fluxes of

modified strains predicted with genome-scale metabolic model simulations (with established

methods such as e.g. MOMA [35], ROOM [46]) as an input for MARL together with experi-

mental strain characterization data. Finally, optimizing the actual enzyme levels for maximiz-

ing production calls for a data driven approach like our MARL method due to the complexity

of cellular regulation beyond known stoichiometric dependencies and kinetic constraints.

Overall, our results show that MARL is a promising approach for guiding the strain optimi-

zation beyond mechanistic knowledge, and has potential to contribute to advancing novel

microbial strains reaching industrial production processes.
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Validation: Maryam Sabzevari.

Visualization: Maryam Sabzevari.

Writing – original draft: Maryam Sabzevari, Juho Rousu.

Writing – review & editing: Maryam Sabzevari, Sandor Szedmak, Paula Jouhten, Juho Rousu.

References
1. Garcı́a-Granados R, Lerma-Escalera JA, Morones-Ramı́rez JR. Metabolic engineering and synthetic

biology: synergies, future, and challenges. Frontiers in bioengineering and biotechnology. 2019; 7:36.

https://doi.org/10.3389/fbioe.2019.00036 PMID: 30886847

2. Varma A, Palsson BO. Metabolic flux balancing: basic concepts, scientific and practical use. Bio/tech-

nology. 1994; 12(10):994–998. https://doi.org/10.1038/nbt1094-994

3. Lewis NE, Nagarajan H, Palsson BO. Constraining the metabolic genotype–phenotype relationship

using a phylogeny of in silico methods. Nature Reviews Microbiology. 2012; 10(4):291–305. https://doi.

org/10.1038/nrmicro2737 PMID: 22367118

4. Maia P, Rocha M, Rocha I. In silico constraint-based strain optimization methods: the quest for optimal

cell factories. Microbiology and Molecular Biology Reviews. 2016; 80(1):45–67. https://doi.org/10.1128/

MMBR.00014-15 PMID: 26609052

5. Nielsen J, Keasling JD. Engineering cellular metabolism. Cell. 2016; 164(6):1185–1197. https://doi.org/

10.1016/j.cell.2016.02.004 PMID: 26967285

6. HamediRad M, Chao R, Weisberg S, Lian J, Sinha S, Zhao H. Towards a fully automated algorithm

driven platform for biosystems design. Nature communications. 2019; 10(1):1–10. https://doi.org/10.

1038/s41467-019-13189-z PMID: 31723141

7. Radivojević T, Costello Z, Workman K, Martin HG. A machine learning Automated Recommendation

Tool for synthetic biology. Nature communications. 2020; 11(1):1–14. https://doi.org/10.1038/s41467-

020-18008-4 PMID: 32978379

8. Zhang J, Petersen SD, Radivojevic T, Ramirez A, Pérez-Manrı́quez A, Abeliuk E, et al. Combining
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