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Abstract

Urban-dwelling birds have the potential to serve as powerful biomonitors that reveal the impact of

environmental change due to urbanization. Specifically, urban bird populations can be used to sur-

vey cities for factors that may pose both public and wildlife health concerns. Here, we review evi-

dence supporting the use of avian biomonitors to identify threats associated with urbanization,

including bioaccumulation of toxicants and the dysregulation of behavior and physiology by

related stressors. In addition, we consider the use of birds to examine how factors in the urban en-

vironment can impact immunity against communicable pathogens. By studying the behavior,

physiology, and ecology of urban bird populations, we can elucidate not only how avian popula-

tions are responding to environmental change, but also how unintended consequences of urban-

ization affect the well-being of human and non-human inhabitants.
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Introduction

Urbanization is expanding worldwide, with over 50% of humans

now inhabiting urban areas (United Nations 2014). Pressing envir-

onmental concerns with significant health implications for both

human and non-human species include overpopulation, disease

transmission, and exposure to pollutants in air, water, and soil. One

major challenge for urban ecologists is to determine how specific

features of the urban environment influence the well-being of city-

dwelling organisms, including humans (Pataki 2015). Because of

their distribution, behavioral traits, and demonstrated responsive-

ness to factors associated with urbanization, bird species that com-

monly inhabit cities can help address this challenge by serving as

biomonitors.

In general, biomonitors and bioindicators are species or ecolo-

gical communities that respond in observable ways to anthropogenic

disturbances (Gerhardt 2001), making them useful for either quali-

tative or quantitative assessments of environmental quality and

threats. While “biomonitor” typically refers to the former function

and “bioindicator” refers to the latter, we will use “biomonitor” to

reference species used for both qualitative and quantitative measures

for the sake of simplicity. In part, the use of biomonitors to assess

ecosystem condition developed as a response to criticisms that la-

boratory toxicology studies poorly recapitulate the “real world” ef-

fects of pollution on free-living organisms, since individual toxicants

in the environment act within a complex array of other chemicals,

physical conditions (e.g., climate and food availability), and social

conditions (Siddig et al. 2016). The potential for interaction among

factors—which may manifest either as synergism or antagonism—

raises the possibility that toxicants impact free-living organisms in

ways that would be difficult to predict or interpret based solely on

laboratory studies (e.g., Rohr and Crumrine 2005).

As a complement to laboratory investigations, studies involving

free-living biomonitors can provide a more complete view of how

anthropogenic disturbances threaten the health of species and their

biological communities. For example, seabirds are commonly used

to study the effects of environmental change on the structure and

function of marine ecosystems (Piatt and Sydeman 2007).

Amphibian population sizes, diversity, and health are sensitive to en-

vironmental change and used as benchmarks for evaluating the im-

pacts of landscape restoration projects (Welsh and Ollivier 1998;
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Hayes et al. 2002; Rosenblum et al. 2010). In addition, birds in-

habiting urban environments (e.g., song sparrows, house sparrows,

and rock pigeons) are used to gauge the prevalence of issues associ-

ated with urbanization and industrialization, such as widespread ex-

posure to heavy metals (Roux and Marra 2007; Hoff Brait and

Antoniosi Filho 2010; Albayrak and Mor 2011). Such studies sup-

port the use of biomonitors to reveal how factors associated with ur-

banization influence the health of ecosystems and individual species.

Urban species, which have adapted to using urban resources ei-

ther as a complement or alternative to natural resources (Shochat

et al. 2006), provide especially fruitful opportunities for uncovering

widespread urbanization consequences that transcend species boun-

daries. In particular, urban birds are uniquely suited as biomonitors

because they are ubiquitous and relatively easy to catch, sample, and

observe. In addition, because urban species engage in a full assort-

ment of behaviors in the presence of humans, including nesting on

buildings and consuming human subsidies and waste, they can act

as reasonable correlates of human exposure to urban pollutants

(Chace and Walsh 2006; Kark et al. 2007). Widely distributed spe-

cies may be used for inter-population comparisons that could reveal

how habitat differences across an urbanization gradient influence

behavioral and physiological traits (e.g., Fokidis and Deviche 2012;

Foltz et al. 2015; Bailly et al. 2016). If these widely distributed spe-

cies also have small home ranges, they can serve as representatives

of micro-urban environments across multiple cities (allowing for

replicates), which is an important consideration given that urban

areas are a heterogeneous mixture of habitats (e.g., commercial vs.

residential districts, green space vs. asphalt or concrete, etc.). For ex-

ample, rock pigeons Columbia livia exhibit strong site fidelity to

their birth sites, generally remaining in a small area (<2 km) for

their entire lives (Sol and Senar 1995; Rose et al. 2006; Przybylska

et al. 2012). This trait makes them useful for investigating the geo-

graphic spread of bioavailable toxicants with a high level of loca-

tional specificity (Frantz et al. 2012; Cai and Calisi 2016).

Because avian species richness decreases with increasing urban-

ization (Blair 1999; Melles et al. 2003; Sandström et al. 2006), en-

tire avian communities can also serve as composite biomonitors that

reveal the ecosystem-wide effects of urbanization. Specifically, un-

disturbed areas often have the greatest abundance and biomass of

native bird species, while urban areas typically contain the greatest

abundance of exotic and invasive bird species (Blair 1999).

Monitoring bird species diversity and demographics could help as-

sess the contribution of urban populations to conservation efforts

and forecast avian diversity in an increasingly urbanized world

(Chamberlain et al. 2009).

In the sections that follow, we review a selection of studies that

demonstrate specific applications of avian biomonitors for under-

standing urbanization-associated threats to the health of humans

and other wildlife. Furthermore, we present a framework to help

guide the design of research that uses avian biomonitors to assess

public health concerns in urban areas (Figure 1). Because urban-

dwelling birds and humans are subjected to many of the same urban

factors—including noise, light, and chemical pollution—birds can

serve not only as proxies for human exposure, but as models for

investigating the mechanisms underlying the effects of urbanization

on health and behavioral changes. In addition, birds constitute im-

portant monitoring tools for zoonotic diseases, which are of particu-

lar concern in densely populated cities. Lastly, the use of avian

biomonitors can provide insight into the influence of urbanization

on animal behavior and physiology, as well as provide initiative and

direction for parallel investigations in humans.

Using Avian Biomonitors to Detect and Monitor
Pollutants

Assessing urban birds’ exposure to pollutants, like heavy metals, can

help predict relative levels of exposure of other animals to these

compounds. Such a tool would be particularly useful for monitoring

sublethal exposures, which may be too low to cause readily identifi-

able symptoms in humans and wildlife. For instance, heavy metal

pollution has adverse effects on human health, even at low levels of

bioaccumulation, and may linger in the environment long after ori-

ginal deposition (J€arup 2003; Roux and Marra 2007; Tchounwou

et al. 2012). Lead from gasoline can persist in soils near roads, long

after bans are instituted, creating a legacy of contamination that is

detectable decades later (Roux and Marra 2007). In addition to

serving as an informant of contamination legacies, urban birds could

be used to assess regional differences in levels of heavy metal pollu-

tion within developing cities and neighborhoods, where bans may

not be in place or well-enforced. These assessments could reveal

health risks present within particular areas and inform public health

approaches to controlling exposure for humans and urban wildlife.

Urban bird species have been used to monitor heavy metal

pollution—including levels and effects of lead, cadmium, chromium,

selenium, zinc, and mercury. In general, heavy metal concentrations

observed in wild avian populations increase with urbanization or

pollution gradients (Schilderman et al. 1997; Hoff Brait and

Antoniosi Filho 2010; Albayrak and Mor 2011; Bichet et al. 2013;

Meillère et al. 2016; but see Burger et al. 2004). Blood lead levels in

feral pigeons are positively correlated with traffic gradients in

Amsterdam, suggesting that urban birds could be used to monitor

the relationship between leaded gas in car exhaust and toxicity levels

in urban neighborhoods (Schilderman et al. 1997). Similarly, feral

pigeons sampled in a developed area of Brazil have significantly

greater levels of cadmium, lead, and chromium compared with a

population from rural regions (Hoff Brait and Antoniosi Filho

2010). The relevance of these findings for human health is under-

scored by a recent report that, in New York City, changes in the

blood lead levels of rock pigeons track changes in the blood lead lev-

els of children across neighborhoods (Cai and Calisi 2016). These

examples demonstrate how urban-dwelling birds can be used to link

urban areas with environmental contamination, particularly at a

local or neighborhood scale.

Heavy metals may have differential patterns of bioaccumulation

across tissue types, which may cause greater damage to certain

physiological systems (Doumouchtsis et al. 2009; Salamat et al.

2014). Thus, validation of a wide variety of sampling techniques—

many of them minimally invasive—to measure trace metals across

avian tissues and developmental stages highlights the utility of birds

as biomonitors. Methods include measuring heavy metal concentra-

tions in tissue samples, feathers, small amounts of blood, and eggs

(Hutton and Goodman 1980; Dauwe et al. 2005; Hoff Brait and

Antoniosi Filho 2010; Coeurdassier et al. 2012). Blood can provide

reliable information about trace metal exposure occurring within a

few weeks of sampling, thereby reflecting transient or seasonal ex-

posure, while bones and feathers can be used to show the accumula-

tion of trace metals over a greater period of time (e.g., Hutton and

Goodman 1980; Bianchi et al. 2008; Kerr et al. 2010). In addition,

external contamination has been measured by comparing lead con-

centrations in washed versus unwashed outermost tail feathers

(Scheifler et al. 2006). Furthermore, both cadmium and lead concen-

trations measured in the erythrocytes of Eurasian blackbirds Turdus

merula can accurately estimate circulating levels, demonstrating that
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very small blood samples are sufficient to measure these metals

(Coeurdassier et al. 2012). Portable blood analyzers have also been

used to measure lead concentrations in blood within natural popula-

tions, which allows for immediate in-field assessment (Brown et al.

2006).

Like heavy metals, many flame retardants present significant

health risks to both wildlife and humans, and growing concerns

about their biological activity have prompted investigations of how

these chemicals bioaccumulate in wild bird populations (Birnbaum

and Staskal 2004; Covaci et al. 2006; Chen and Hale 2010; Dodson

et al. 2012). Flame retardants of particular concern include polybro-

minated diphenyl ethers (PBDEs), hexabromocyclododecanes

(HBCDs), and organophosphate flame retardants (PFRs). These

compounds are associated with toxicity and deleterious health ef-

fects in humans and non-human species, and have been measured in

a variety of bird tissues, as well as feathers and eggs (Marteinson

et al. 2011, 2012; Baron et al. 2014; Eulaers et al. 2014a, 2014b;

Sun et al. 2014). Body feather concentrations constitute a reliable

predictor of both internal PBDE and HBCD burden in barn owls

Tyto alba (Eulaers et al. 2014b). In white-tailed eagles Haliaeetus

albicilla, feather concentrations of PFR are similar to atmospheric

concentrations, indicating that PFR deposition on feathers could be

a useful way to monitor relative atmospheric levels of flame retard-

ants (Eulaers et al. 2014a). Researchers have also used concentra-

tions of flame retardants in both feathers and eggs to document the

consequences of a recent government-mandated decrease in PBDE

use and the subsequent increase in HBCD use, an effort that has

demonstrated the long-term persistence of both chemical types in

the biome (Baron et al. 2014; Eulaers et al. 2014b). By measuring

the bioaccumulation of these chemicals, researchers reveal not only

the toxic burden within individual birds, but also the patterns of ac-

cumulation and persistence in the local environment as a whole

(Covaci et al. 2006; Chen and Hale 2010).

Because of their sensitivity to both heavy metals and flame re-

tardants, birds are useful for examining mechanisms underlying the

physiological and behavioral consequences of real-world toxicant

exposure. For instance, sublethal lead exposure in wild white storks

Ciconia ciconia alters their adrenocortical stress response, suggest-

ing that heavy metal toxicity could have far-reaching consequences

on behavior and metabolic processes regulated by the hypothal-

amic–pituitary–adrenal axis (Baos et al. 2006). A study of urbaniza-

tion and lead in South Korea revealed that young rock pigeons living

in more polluted regions display lower growth rates and lower fledg-

ing success, suggesting that lead bioaccumulation has a negative ef-

fect on breeding success in this urban species (Nam and Lee 2006).

Similarly, sublethal exposure to flame retardants affects avian health

and behavior. For example, exposure to HBCDs alters mating be-

havior in both male and female captive American kestrels Falco

sparverius; furthermore, females show a reduction in egg size, while

males display smaller testes and lower circulating testosterone levels

(Marteinson et al. 2011, 2012). In addition, kestrels exposed to en-

vironmentally relevant levels of PBDEs display altered thyroid and

retinol concentrations, hepatic oxidative stress, and marginal lipid

peroxidation, indicating that the accumulation of these toxicants in

wild birds has the potential to disrupt normal physiological proc-

esses (Fernie et al. 2005). Such findings demonstrate the damaging

effects of flame retardants on avian physiology, as well as provide

general insights into how these toxicants may influence the health of

species living in the same environment.

Using Avian Biomonitors to Detect and Track
Disease-Causing Pathogens

Transmission of disease-causing pathogens can, in some cases, in-

crease in urban adapted wildlife (Becker et al. 2015; Bradley and

Altizer 2007), a trend that may contribute to higher incidences of in-

ter- and intraspecies transmission of pathogens in urban areas com-

pared with undeveloped regions. For example, the prevalence and

severity of poxvirus and coccidian infections in house finches

Haemorhous mexicanus is associated with the degree of urbaniza-

tion, such that infection rates are higher in urbanized areas

(Giraudeau et al. 2014). Increased population density in urban habi-

tats may drive these elevated infection rates, though other urban-

Figure 1. Flowchart representing the use of avian biomonitors to examine the effects of urban factors on health and behavior in humans.

Humans and birds in urban habitats are exposed to many of the same potential threats, such as chemical pollution and disease-causing pathogens (arrows A and

B), which in turn can have effects on health and behavior (arrows E and F). By measuring toxicant bioaccumulation in urban birds, researchers can use these spe-

cies as biomonitors for toxicant exposure risk in human populations (dashed line D). Because of their potential status as reservoirs and vectors for zoonotic dis-

eases, monitoring pathogen loads and disease incidence in urban birds can inform our understanding of human disease risk (arrow C). Finally, the use of avian

biomonitors may provide insight into the influence of urbanization on wildlife behavior and physiology, as well as provide initiative and direction for parallel in-

vestigations in humans (dashed line G).
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related variables may also negatively influence immunity. Because

wild birds are capable of transmitting pathogens to humans, moni-

toring avian populations is of critical importance for evaluating their

role as vectors for zoonotic diseases (Halliday et al. 2012).

Urbanization has been linked to outbreaks of several different

zoonotic viruses, including West Nile Virus (WNV) and avian influ-

enza (H5N1; Olsen et al. 2006). For instance, in the northeastern

United States the incidence of human infection with WNV, transmit-

ted between its avian hosts and humans via a mosquito vector, cor-

relates with urban land use. This finding persists even after

controlling for human population density, indicating that factors in

the urban landscape enhance zoonotic transmission at a regional

scale (Andreadis et al. 2001; Petersen and Roehrig 2001; Brown

et al. 2008; Neiderud 2015). Similarly, in the American northeast,

WNV-positive crow carcasses are more prevalent in highly de-

veloped regions when compared with less developed areas (DeCarlo

et al. 2011). These studies suggest a potential association between

WNV disease prevalence and factors associated with urban environ-

ments. Wild birds may also act as reservoirs for viruses, such as

H5N1, thereby extending the time that these pathogens persist in

the environment and increasing the possibility of transmission to

other birds that humans commonly encounter (e.g., via domesti-

cated poultry; Olsen et al. 2006).

Reports such as those previously mentioned underscore the im-

portance of identifying urban-specific factors that impact disease-

causing pathogen prevalence. The immunocompromising effects of

chemical pollutants, which may make urban birds more susceptible to

pathogen infections, constitute one such factor. For instance, trace

metal concentrations are positively correlated with oxidative stress in

rock pigeons (Gasparini et al. 2014), and lead concentrations are asso-

ciated with higher plasmodium prevalence in house sparrows Passer

domesticus (Bichet et al. 2013). Furthermore, a correlation between

high levels of lead and Chlamydophila psittaci infection in feral pi-

geons collected in Paris, France suggests that trace metal pollution in

urban areas may modify host–parasite interactions by impairing some

facet of the immune response (Gasparini et al. 2014).

Like environmental toxicants, inadequate nutrition could in-

crease the susceptibility of urban birds to disease-causing pathogens

by limiting metabolic investment in immune responses to infections.

The widespread availability of calorically rich, but nutrient-poor

food sources in cities may in part underlie reports that urban birds,

despite their abundance, often display poorer body condition rela-

tive to their rural conspecifics (Shochat 2004; Liker et al. 2008;

Heiss et al. 2009; Meillère et al. 2015). For example, nutritionally

poor food may restrict fat deposition and overall growth in juvenile

house sparrows, resulting in smaller adult body size in urban versus

rural birds and potentially long-term life-history consequences for

urban-reared sparrows (Meillère et al. 2015).

Although low food quality may prime individuals for infection,

high population densities may set the stage for inter- and intra-species

transmission of disease-causing pathogens and establish avian reser-

voirs for zoonotic pathogens (Becker et al. 2015). The presence of res-

ervoirs could increase the time that microorganisms persist in urban

environments, allowing for the evolution of enhanced pathogenicity

(Morse et al. 2012). In addition, seasonal migrations with stopover

points in or near cities create opportunities for the introduction of

pathogens into densely populated urban areas. For example, the pres-

ence of disease-carrying neotropical ticks on migratory and residential

birds in urban areas indicates that avian movement may contribute to

the introduction and transmission of high-risk pathogens (Hamer

et al. 2012). Furthermore, in growing urban areas, where the built

environment pushes into previously untouched habitat, city inhabit-

ants may have more frequent encounters with wildlife and their

pathogens, some of which may cause novel zoonoses (Neiderud

2015). Since pandemic zoonoses are one of the most significant grow-

ing threats to global public health, understanding the ecological sys-

tems surrounding their emergence is of great consequence (Jones et al.

2008; Morse et al. 2012).

Several approaches may prove useful for combatting the spread

of pathogens in densely populated areas. For example, human infec-

tion rates may be correlated with the proximity between human es-

tablishments and clusters of dead birds (Johnson et al. 2006). Thus,

simple surveys of inter-individual proximity, both among birds and

between humans and birds, could be employed for predicting the in-

cidence of infection and potential micro-urban sites of pathogen

transfer. In addition to assessing inter-individual proximity, regular

monitoring of the microorganisms that urban birds carry can help

survey disease prevalence and aid predictions of infection risk for

other species (Halliday et al. 2012; Phan et al. 2013). Pathogen

monitoring is particularly important in cities, as high population

densities of urban wildlife may enhance conditions for inter- and

intraspecies pathogen transfer (Plowright et al. 2011; Morse et al.

2012; Becker et al. 2015; Neiderud 2015). This concern is especially

salient for growing cities in developing nations, where human over-

crowding, insufficient sanitation, and overburdened infrastructure

can contribute to the proliferation of disease vectors (Macpherson

2005; Neiderud 2015).

Using Avian Biomonitors to Understand the
Behavioral and Physiological Implications of
Urbanization

Inter-population comparisons have revealed striking differences in

the behavior and physiology of birds living in rural versus urban en-

vironments (Partecke et al. 2004; Atwell et al. 2012; Costantini

et al. 2014; Foltz et al. 2015; Isaksson 2015). For example, in male

song sparrows Melospiza melodia, territorial aggression is greater in

urban areas and increased by food supplementation, suggesting that

higher resource availability in urban environments may promote ag-

gressive behavior in this species (Foltz et al. 2015). The potential for

urbanization to yield heritable differences in behavior is underscored

by common garden experiments, which demonstrate that birds col-

lected from urban and rural sites display dissimilar behavioral

phenotypes despite rearing in identical conditions. Specifically,

urban dark-eyed juncos Junco hyemalis thurberi raised in captivity

are more exploratory compared with rural birds, presumably be-

cause urban environments, where novel resources and anthropo-

genic stimuli are abundant, select for boldness (Atwell et al. 2012).

Interestingly, another common garden study revealed that urban

Eurasian blackbirds are more neophobic than individuals collected

from forests; the authors posit that a heightened probability for dan-

gerous interactions in novel urban areas may favor more cautious in-

dividuals (Miranda et al. 2013). Such studies suggest that

urbanization creates selective pressures that influence microevolu-

tionary patterns in the behavior of urban birds. This prediction is

supported by a report that urban Eurasian blackbirds display greater

variation in their SERT alleles, which are candidate genes associated

with harm avoidance behavior and anxiety (Mueller et al. 2013).

Further clarification of urbanization-induced evolutionary trends

will aid in predicting how rapid development will influence urban

biota in the future.
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The physiological mechanisms underlying links between urban-

ization and behavioral variation are largely unknown, although at

least some behavioral changes are likely caused by the effects of ur-

banization on the hypothalamic–pituitary–adrenal axis, an evolu-

tionarily conserved neuroendocrine system that mediates the stress

response (Bonier 2012; Uchoa et al. 2014). A reasonable hypothesis

is that a suppressed stress response to novelty helps urban birds suc-

cessfully colonize cities; however, several reports suggest that this is

not always the case. For example, both urban Eurasian blackbirds

and dark-eyed juncos display a suppressed stress response to capture

relative to their rural conspecifics (Partecke et al. 2006; Atwell et al.

2012). In contrast, Fokidis et al. (2009) found in an investigation of

five species—house sparrows, northern mockingbirds Mimus poly-

glottos, curve-billed thrashers Toxostoma curvirostre, Abert’s tow-

hee Pipilo aberti, and the canyon towhee Pipilo fuscus—that

capture and handling stress tends to induce higher blood gluco-

corticoid levels in urban birds, although this effect varies by life-his-

tory stage. These reports emphasize the value of employing multiple

avian species as biomonitors, since urban factors could alter stress

physiology differently across species, as well as developmental and

life-history stages (Partecke et al. 2006; Atwell et al. 2012).

The integrated effects of specific facets of the urban environ-

ment, particularly pollution and disease, on behavior and physiology

are largely unknown and require attention if we are to move beyond

a generalized understanding of how individuals respond to urbaniza-

tion. Also worth considering is the probability that variations in be-

havioral phenotype impact individual differences in survival and

reproductive success within urban environments (Sih et al. 2012).

For instance, birds with greater exploratory tendencies may spend

more time interacting with other individuals, increasing the prob-

ability that they will acquire new infections (Sih et al. 2012).

Connecting individual responses to toxicant and pathogen loads in

urban environments is an essential next step to better understanding

the influence of urban environments on city dwellers.

Finally, further clarification of the impacts of urbanization on

avian behavior and physiology stands to inform our understanding

of how living in urban environments impacts human and wildlife

health. Noise and light pollution, exposure to chemical contamin-

ants, overpopulation, and the associated spread of diseases—all of

these urban-associated factors may have potentially negative conse-

quences on physiological processes, particularly during the sensitive

developmental periods of early life and puberty (e.g., noise pollution

for humans, Stansfeld and Matheson 2003; Goines and Hagler

2007). Such concerns are applicable not only to humans and birds,

but also to a wide range of taxa inhabiting urban areas.

The Upside to Urban Habitats

Although this review focuses primarily on the utility of urban birds

as biomonitors for urbanization-associated health threats, it is worth

noting that, for at least some species, urban habitats also present im-

portant benefits. For those species that are able to exploit resources

in cities, urban areas may increase their fecundity or support their

conservation by providing access to habitats with greater availability

of food and nesting sites, and/or fewer predators (Faeth et al. 2005;

Anderies et al. 2007; Goddard et al. 2010). For instance, a popula-

tion of black-crowned night-herons Nycticorax nycticorax in the

United States was able to maintain an urban colony within a city

park, despite their endangered status in surrounding regions (Hunt

2016). In addition, cities can offer increased habitat for some spe-

cies, since urban adapted birds are often rock nesters that take

advantage of tall buildings for nesting habitat (Kark et al. 2007).

Furthermore, higher levels of water and food availability, combined

with the heat island effect of cities, can turn urban areas into

“pseudo-tropical bubbles,” characterized by lower temporal vari-

ability in climate and access to resources (Shochat et al. 2006).

These conditions may allow some species, including invasive birds,

to undergo significant population growth (Shochat et al. 2006).

Finally, in some cases urban environments have been associated

with declines in disease prevalence. Pathogen type, as well as the na-

ture of urban resource provisioning, might explain the variation in

infection rates found across urban populations (Becker et al. 2015).

Although provisioning by humans can lead to an increase in disease

transmission due to increased host aggregation, it also has the poten-

tial to reduce transmission if provisioned food decreases dietary ex-

posure to parasites, either by improving physical condition or

decreasing consumption of intermediate hosts (Becker et al. 2015).

Conversely, urban birds may benefit urban ecosystems by play-

ing essential roles within emerging communities; for instance, as a

key predator of invertebrates, birds are critical for the regulation of

urban insect populations (Faeth et al. 2005). How factors in the

urban environment influence the ability of birds to perform this

task, which has important implications for the trophic dynamics of

urban ecosystems, remains poorly understood. Comparisons among

multiple cities and their adjacent wildlands could reveal general

principles underlying the effects of urbanization on ecosystems (e.g.,

Aronson et al. 2014), as well as how specific environmental factors,

such as pollution and disease, contribute to differences among urban

communities. Although we tend to think of urban ecosystems as in-

herently fragmented and in flux, monitoring the health of urban

birds can inform our understanding of population dynamics, and

thus ecosystem stability, in an increasingly urban world.

Conclusion

The expansion of urban areas is unlikely to slow down in the fore-

seeable future; particularly since continuing human population

growth is projected to add 2.5 billion people to urban areas over the

next 35 years (United Nations 2014). The United Nations predicts

that in less than 15 years, at least 41 urban areas will qualify as

“mega-cities” that contain more than 10 million people (United

Nations 2014). The majority of this growth will occur in developing

nations, where inadequate city planning, poor sanitation, degrading

infrastructure, and pollution already present significant challenges

for human and non-human inhabitants. Thus, it is imperative that

we develop an understanding of how factors associated with urban-

ization mediate changes in biological systems, as well as devise ways

to monitor these effects in urban environments across the globe.

Avian biomonitors constitute powerful tools for accomplishing these

goals because they allow us to investigate a number of facets of ur-

banization that threaten both humans and urban wildlife, such as

bioaccumulation of toxicants and the spread of disease. Finally, by

providing insights into the general principles underlying the behav-

ioral and physiological consequences of urbanization, studies using

bird biomonitors could initiate new lines of inquiry in other species.
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