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Abstract: Human exposure to particulate air pollution (e.g., PM2.5) can lead to adverse health
effects, with compelling evidence that it can increase morbidity and mortality from respiratory and
cardiovascular disease. More recently, there has also been evidence that long-term environmental
exposure to particulate air pollution is associated with type-2 diabetes mellitus (T2DM) and dementia.
There are many occupations that may expose workers to airborne particles and that some exposures in
the workplace are very similar to environmental particulate pollution. We conducted a cross-sectional
analysis of the UK Biobank cohort to verify the association between environmental particulate air
pollution (PM2.5) exposure and T2DM and dementia, and to investigate if occupational exposure to
particulates that are similar to those found in environmental air pollution could increase the odds
of developing these diseases. The UK Biobank dataset comprises of over 500,000 participants from
all over the UK. Environmental exposure variables were used from the UK Biobank. To estimate
occupational exposure both the UK Biobank’s data and information from a job exposure matrix,
specifically developed for UK Biobank (Airborne Chemical Exposure–Job Exposure Matrix (ACE JEM)),
were used. The outcome measures were participants with T2DM and dementia. In appropriately
adjusted models, environmental exposure to PM2.5 was associated with an odds ratio (OR) of 1.02
(95% CI 1.00 to 1.03) per unit exposure for developing T2DM, while PM2.5 was associated with an odds
ratio of 1.06 (95% CI 0.96 to 1.16) per unit exposure for developing dementia. These environmental
results align with existing findings in the published literature. Five occupational exposures (dust,
fumes, diesel, mineral, and biological dust in the most recent job estimated with the ACE JEM) were
investigated and the risks for most exposures for T2DM and for all the exposures for dementia were
not significantly increased in the adjusted models. This was confirmed in a subgroup of participants
where a full occupational history was available allowed an estimate of workplace exposures. However,
when not adjusting for gender, some of the associations become significant, which suggests that there
might be a bias between the occupational assessments for men and women. The results of the present
study do not provide clear evidence of an association between occupational exposure to particulate
matter and T2DM or dementia.
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1. Introduction

Individuals are exposed to many environmental risk factors, such as air pollution, chemicals,
radiation, and noise, which may impact on their health. There are several studies that indicate
links between air pollution, especially ambient air particulate matter (PM), and both short-term and
long-term health effects [1]. It is now widely accepted that exposure to PM may cause or exacerbate
allergic respiratory diseases (e.g., asthma), pneumonia, chronic obstructive pulmonary disease (COPD)
and cardiovascular disease [2], and is classified as a human carcinogen by International Agency for
Research on Cancer (IARC) [3]. The cellular and molecular mechanisms underlying the toxicity of
inhaled particles has been extensively investigated, and hypothesised to be driven by the stimulation
of inflammation and/or oxidative stress [4].

More recently, there has also been evidence from laboratory and epidemiological studies that
long-term particulate air pollution exposure is associated with diabetes and especially type-2 diabetes
mellitus (T2DM) and dementia [5–13]. Millions of people are estimated to live with these conditions,
with increasing incidence expected over coming years. Moreover, epidemiological evidence has
identified that diabetes and neurodegenerative diseases involving dementia are linked and that the
relationship between them may arise as a consequence of a common inflammatory mechanism [14,15].
As diabetes and dementia are linked an increased cooccurrence of those two conditions is found.
T2DM may increase the risk of developing all-cause dementia, Alzheimer’s disease (AD) and vascular
dementia and therefore a considerable overlap in the risk factors has been identified [16,17].

There are many occupations that are exposed to airborne particles, such as mineral dusts,
metal and polymer fumes, and ultrafine particles. Some exposures in the workplace are very similar
to environmental particulate pollution, mainly where there is potential exposure to combustion
aerosol, such as diesel soot, or fumes. More specifically, ultrafine particles (defined as having a
diameter of <100 nm) are encountered in both ambient air and at the workplace. The particles that
workers may be exposed to often have similar physicochemical properties (such as size) to ambient
particulate air pollution, and therefore it is a concern that exposure to such particles in an occupational
setting may cause similar adverse health outcomes. Key occupations exposed to these pollutants
include construction workers, tunnel workers, miners, farmers using diesel equipment, wood burners,
road-patrol officers, people who work in parking lots or automobile factories, and generally workers in
open areas in cities. There is evidence that occupational exposure to PM can have a negative impact on
health. For example, there are studies that suggest that such exposures are related with cardiovascular
diseases [18,19] or respiratory diseases [20]. In addition, from research on traffic police in a big city
who were exposed to urban pollutants, there is evidence of altered levels of plasma insulin [21] and
metabolism adaptation which is likely involved in the development of diabetes mellitus [22].

The UK Biobank resource offers the opportunity to investigate the association between particulate
air pollution and diabetes and dementia. This is a population cohort of over 500,000 participants from
all over the UK. As an individual’s job title has commonly been identified as a major determinant of
workplace exposure in epidemiological studies, the development of Job–Exposure Matrices (JEMs)
provides a way of characterising specific workplace exposures [23]. The ACE JEM (Airborne Chemical
Exposure–Job Exposure Matrix) was originally developed to investigate workplace causes of COPD
amongst participants in the UK Biobank. It covers a range of different airborne workplace pollutants,
such as fumes, dust, and diesel exhaust particulates [24]. This is the largest study to date of particulate
environmental and occupational exposures and T2DM and dementia.

The primary aim of this work is to use data from the UK Biobank to verify the association between
environmental particulate air pollution exposure (as particulate with average aerodynamic diameter
less than 2.5 µm; PM2.5) and T2DM and dementia, and to investigate if occupational exposure to
particulates have effects similar to environmental air pollution for these diseases. It is hypothesised
that as environmental exposure to particulate air pollution can cause adverse health outcomes,
occupations with exposure to PM2.5 could cause similar adverse health effects, and in particular T2DM
and dementia.
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2. Materials and Methods

2.1. Population and Study Design

Baseline data were used from the UK Biobank study (project code 42084). The UK Biobank [25]
is a large population-based cohort study created to investigate how environment, lifestyle factors,
and genetic background could affect an individual’s health. Approximately 9.2 million people were
invited between 2006 and 2010 to attend 22 assessment centres all over UK, to obtain a sample of
502,504 adults aged between 37 and 73 years. After recruitment, participants attended an assessment
centre for data collection (baseline assessment), including smoking status, alcohol consumption,
body mass index (BMI), and physical activity, after providing a written informed consent and
then they were followed-up. UK Biobank provides generally detailed information about lifestyle,
physical measures, genetics, and imaging and is globally accessible to approved researchers who are
undertaking health-related research that is in the public interest .

2.2. Disease Categories

Participants provided a self-report disease status during a touchscreen questionnaire. Diabetes data
were retrieved from field 2443 with the description “Diabetes diagnosed by doctor”. In order to reduce
the likelihood of type-1 diabetes mellitus (T1DM) and other forms of diabetes, we excluded those
on insulin for less than a year from diagnosis, anyone < 35 years old at diagnosis of diabetes and
individuals reporting diabetes diagnosed within past year [26]. After the exclusion we obtained the
participants with presumptive T2DM (n = 21,560) (flow chart in Figure 1).

Dementia patients were identified using the field 41202 (Diagnoses-main ICD10;
International Classification of Diseases 10th Revision), which is a summary of the main/primary diagnosis
codes a participant has had recorded across all their hospital inpatient records. Only codes corresponding
to dementia were selected (Alzheimer’s disease, vascular dementia, frontotemporal dementia, dementia
in other diseases, and unspecified dementia) to obtain the participants diagnosed with dementia (n = 534).

2.3. Environmental and Occupational Variables

Environmental exposure variables were used from the UK Biobank. More specifically, information
on exposure to PM air pollution was modelled for the year 2010 using a Land Use Regression (LUR)
model as part of ESCAPE (European Study of Cohorts for Air Pollution Effects) project [27]. PM2.5 is
comprised of smaller particles than PM10 which are generally considered more relevant to adverse
health effects, and so this is the focus of this study.

The job code mentioned at the time of the baseline assessment was used. The participants were
asked about their job in the verbal interview, depending on whether they first stated they were currently
employed or self-employed in the touchscreen interview. In addition, the job codes for a subset of the
participants for their full working career were provided during an online follow-up along with other
variables (year job started, year job ended), and these data were used to reconstruct lifetime exposure
estimates. This subgroup of participants responded to the Online Work Environment Questionnaire of
the UK Biobank, which was sent out to all the UK Biobank participants. Finally, three self-reported
exposure variables from the UK Biobank dataset were used (workplace very dusty, workplace full
of chemical or other fumes and workplace had a lot of diesel exhaust) for further examination of the
occupational exposure.

2.4. Occupational Variables and ACE JEM

We extracted information from the ACE JEM on workplace exposure to dust, fumes, diesel exhaust,
mineral dust, and biological dust, which uses the UK Standard Occupational Classification (SOC)
2000 system and combined this with the information from UK Biobank about each individual’s
occupation. The ACE JEM provides the proportion (P) of workers that were estimated to be exposed to
each of the pollutants (< 5%, 5–19%, 20–49%, and ≥ 50%), within a given SOC code, and the level or
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intensity of exposure (L) as a typical average per day or weekly exposure (categorised as “not exposed”,
“low”, “medium”, or “high”). As we did not want to weight the categories differently, and there was a
need to reflect the true exposures, a new scale was created for the intensity of exposure, by using a
factor of 5, and not the original scale mentioned at the ACE JEM (Table S1).

Figure 1. Flow chart demonstrating how the population sample was identified for type-2 diabetes
mellitus (T2DM).

To obtain a combined measure of exposure including both measures, we used the product of
P and L (P × L), which was computed by multiplication of the values in each category of P and L.
Therefore, each participant corresponds to a (P × L) score according to their occupational exposure at
each of the five agents (dust, fumes, diesel, biological dust, and mineral dust).

2.5. Covariates

Following a review of known risk factors for T2DM and dementia, we selected appropriate
variables from the UK Biobank for inclusion in the analysis. Baseline measurements of socioeconomic
and demographic covariates (age as years, sex, ethnic background, BMI, Townsend Deprivation Index
of residential area, diet, physical activity, family history of the disease, or other conditions) were
included as covariates in the model. Where there were measurements made on several occasions
(baseline assessment, repeat assessments), means were calculated when appropriate. Physical activity
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was considered and included in the model, by selecting a variable which calculated the total physical
activity MET (Total Metabolic Equivalent Task) in minutes per week, for all activity including walking,
moderate and vigorous activity. Smoking (tobacco smoking) and alcohol consumption (frequency of
drinking alcohol) data items were not included in the analysis, due to the high percentage of missing
values in the dataset.

2.6. Statistical Analyses

Descriptive analysis was undertaken on the prevalence of the diseases and how this was
distributed between the different groups of the covariates. To investigate the association between
environmental pollution and T2DM and dementia, univariable and multivariable logistic regression
was performed. The first model introduced the unadjusted association between environmental
exposure and the outcome of interest (the two diseases). The second model was adjusted for several
factors. Univariable and multivariable logistic regression were also performed, in order to explore if
occupational exposure is associated to the two diseases. The models adjusted for all included variables
for each disease (PM included), using DAGs (Directed Acyclic Graphs) developed for the diseases
of interest (Figures S1 and S2) and then stepwise regression. The occupational variable (P × L) was
recategorised into two levels, with level 1 representing no exposure and level 2 representing some
exposure. This recategorisation was chosen because the ACE JEM assignments are probably reliable for
highly exposed jobs and for jobs assigned as unexposed, while the assignments for medium exposed
and low exposed are less reliable [23]. This is a complete case analysis, as participants with missing
data were excluded (Table S2) and only participants with full data records were included in the analysis.
All analyses were conducted using the statistical software R version 3.6.2 [28].

2.7. Sensitivity Analyses

Different approaches were considered for sensitivity analysis. The associations between T2DM
and dementia and occupational exposure were explored further in four different ways. Approach 1:
We performed the same analysis, but without adjusting for gender. Approach 2: To explore further
the occupational association, and as individuals are exposed to a combination of pollutants [29],
we recategorised the exposure (P × L) to every agent in three levels (high, medium, and low) according
to their (P × L) score percentages, and then kept the maximum occupational exposure across all five
agents (dust, fumes, diesel, mineral, and biological dust). Then, we recategorised further in two new
levels (high and medium exposure together, low exposure separately) and created a new occupational
variable ((PL-max), which was then further considered to investigate if this recategorisation altered
the outcome. Approach 3: Self-reported workplace exposures were selected from the UK Biobank
(workplace very dusty, workplace with fumes, or workplace with diesel engine exhaust) and entered in
the model instead of the (P × L) variable, to investigate further the relationship between occupational
exposure, as reported from the participants, and the two diseases. Approach 4: A subgroup of
120,299 participants for whom there was a full occupational history was investigated, after calculating
the cumulative exposure through their occupational lifetime, based on the length of time for which
they carried out a specific job, to check the consistency of our results.

3. Results

3.1. Characteristics of the Study Population

Of the 502,504 UK Biobank participants, after excluding those who were likely not to have
T2DM, there were 21,560 participants with T2DM and 534 cases of dementia (Table 1). From the total
number of the participants, 273,382 (45.6%) were male and 229,122 (54.4%) were female. From the
participants diagnosed with dementia, 309 were males and 225 females and from the participants
with T2DM, 13,036 were male (60.5% of the T2DM population), and 8524 were female (39.5% of the
T2DM population). The age ranged from 37 to 73, with the modal category being 57–66 years old at
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the recruitment, with 43.9% self-reporting as white ethnic background (94.2%). Around 20% of the
UK Biobank population was taking medication for blood pressure and cholesterol. Twelve percent
had changed their diet because of illness and 30% for other reasons. As expected, because of the
nature of both diseases investigated in this study, the proportion of diseased people increased at ages
above 56 years. According to the Townsend Deprivation Index, which is used as a proxy for SES
(socioeconomic status), the prevalence of both diseases increased as the deprivation increased. Most of
the cases for both diseases had a BMI over 25, which corresponds to them being overweight or obese.
Fewer cases were observed, as the reported physical activity levels increased.

3.2. Association between Particulate Air Pollution (PM2.5) and T2DM and Dementia

The results of analyses to investigate the association between environmental particulate exposure
(PM2.5) and T2DM and dementia are shown in Table 2. Univariable analysis suggested that PM is
strongly positively related to both diseases (with an Odds Ratio (OR) of 1.13 (1.12–1.15) per 1 µg/m3

increase in annual average PM2.5 for T2DM and 1.18 (1.09–1.28) per unit for dementia). The results
from the multivariable logistic regression are also displayed in Table 2, showing a summary of ORs
for T2DM and dementia when other factors are also included in the model. In order to select a
parsimonious model that fitted the data well, the covariates for the multivariable analysis were selected
by creating directed acyclic graphs (DAGs, shown in Figures S1 and S2) and then following a stepwise
regression model. Based on the DAGs we excluded the blood pressure (BP) variable, as it was judged
to be on the causal pathway of PM2.5 and both diseases. This was followed by stepwise regression
for determining the best model with the smallest AIC [30]. For T2DM this model included age, sex,
ethnicity, Townsend deprivation index, BMI, dietary changes, physical activity, and parental history of
diabetes, and for dementia age, sex, Townsend deprivation index, dietary changes, physical activity,
and parental history of dementia. In the adjusted models, PM2.5 was associated with an OR of 1.02
(95% CI 1.00 to 1.03) per unit PM2.5 for developing T2DM, while the corresponding OR for dementia
was 1.06 (95% CI 0.96 to 1.16). In both adjusted models the odds of having the disease increased as the
deprivation index increased (Table 2) and decreased for higher levels of physical activity.



Int. J. Environ. Res. Public Health 2020, 17, 9581 7 of 17

Table 1. Descriptive statistics.

Baseline Variable Grouping
All Subjects Dementia Type 2 Diabetes Mellitus

n % (with NA’s) % n % (Out of 502,504) % (Out of the Diseased) n % (Out of 502,504) % (Out of the Diseased)

Sex
All 502,504 100 100 534 0.11 100 21,560 4.30 100

Male 273,382 45.60 45.60 309 0.06 57.87 13,036 2.60 60.46
Female 229,122 54.40 54.40 225 0.04 42.13 8524 1.70 39.54
Missing - - - - - - - - -

Age recruitment
All 502,504 100 100 534 0.11 100 21,560 4.30 100

(36–46) 77,177 15.36 15.36 30 0.01 5.62 1132 0.23 5.25
(46–56) 151,241 30.10 30.10 81 0.02 15.17 4704 0.94 21.82
(56–66) 220,407 43.86 43.86 275 0.05 51.50 11,597 2.31 53.79
(66–73) 53,679 10.68 10.68 148 0.03 27.71 4127 0.82 19.14
Missing - - - - - - - - -

Ethnicity
(All-Missing) 501,606

All 502,504 100 100 533 0.11 100 21,559 4.13 100
White 472,695 94.24 94.24 504 0.10 94.55 18,828 3.75 87.33
Mixed 2958 0.59 0.59 4 0.00 0.75 137 0.03 0.64
Asian 11,456 2.28 2.28 5 0.00 0.94 1442 0.28 6.69
Black 8061 1.61 1.61 10 0.00 1.87 684 0.13 3.17

Others 6436 1.28 1.28 10 0.00 1.87 468 0.09 2.17
Missing 898 0.17 - 1 0.00 - 1 0.00 -

SES
(All-Missing) 501,881

All 502,504 100 100 533 0.09 100 21,529 4.28 100
1 100,658 20.03 20.10 85 0.02 15.95 3215 0.64 14.93
2 100,098 19.92 19.90 71 0.01 13.32 3586 0.71 16.66
3 100,382 19.98 20.00 96 0.02 18.01 3978 0.79 18.48
4 100,367 19.97 20.00 116 0.02 21.76 4499 0.89 20.89
5 100,376 19.97 20.00 165 0.03 30.96 6251 1.24 29.04

Missing 623 0.12 - 1 0.00 - 31 0.01 -
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Table 1. Cont.

Baseline Variable Grouping
All Subjects Dementia Type 2 Diabetes Mellitus

n % (with NA’s) % n % (Out of 502,504) % (Out of the Diseased) n % (Out of 502,504) % (Out of the Diseased)

BMI
(All-Missing) 499,503

All 502,504 100 100 517 0.10 100 21,345 4.24 100
< 18.5 2374 0.47 0.50 3 0.00 0.58 19 0.00 0.09

18.5–24.9 157,631 31.37 31.60 144 0.03 27.85 2049 0.41 9.60
25–29.9 214,485 42.68 42.90 230 0.05 44.49 7276 1.45 34.09
≥ 30 125,013 24.88 25.00 140 0.03 27.08 12,001 2.40 56.22

Missing 3001 0.60 - 17 0.00 - 215 0.04 -

BP
(All-Missing) 498,639

All 502,504 100 100 524 0.10 100 21,430 4.26 100
No 387,531 77.12 77.7 325 0.06 62.02 7308 1.45 34.10

Unknown 637 0.13 0.10 3 0.00 0.57 20 0.00 0.09
Yes 110,525 21.99 22.20 196 0.04 37.40 14,102 2.81 65.80

Missing 3811 0.76 - 10 0.00 - 130 0.00 -

Diet changes
(All-Missing) 501,717

All 502,504 100 100 533 0.11 100 21,560 4.30 100
No 296,798 59.06 59.20 272 0.05 51.03 5474 1.09 25.39

Unknown 1443 0.29 0.30 4 0.00 0.75 78 1.02 0.36
Yes, illness 57,550 11.45 11.50 132 0.03 24.77 12,164 2.43 56.42
Yes, other 145,826 29.02 29.10 125 0.02 23.45 3844 0.77 17.83
Missing 887 0.18 - 1 0.00 - - - -

Physical activity
(All-Missing) 490,724

All 502,504 100 100 507 0.10 100 20,610 4.10 100
Low 163,988 32.63 33.40 232 0.05 45.76 8636 1.76 41.90

Moderate 203,130 40.42 41.40 161 0.03 31.75 7890 1.61 38.28
High 123,606 24.60 25.20 114 0.02 22.49 4084 0.83 19.82

Missing 11,780 2.34 - 27 0.00 - 950 0.19 -

NA: not applicable (missing values), SES: sosioeconimic status, BMI: body mass index, BP: blood pressure.
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Table 2. Associations between T2DM and dementia and particulate air pollution (PM2.5) exposure and
other potential risk factors.

T2DM Dementia

OR (95% CI) ** OR (95% CI) ** OR (95% CI) ** OR (95% CI) **

Univariable
Model 1

Multivariable *
Model 2

Univariable
Model 1

Multivariable *
Model 2

PM2.5 1.13 (1.12–1.15) 1.02 (1.00–1.03) 1.18 (1.09–1.28) 1.06 (0.96–1.16)
Sex (female) a

Male 1.88 (1.82–1.93) 1.83 (1.77–1.89) 1.64 (1.38–1.95) 1.55 (1.28–1.89)

Age 1.06 (1.06–0.07) 1.07 (1.07–1.08) 1.09 (1.08–1.11) 1.08 (1.07–1.10)

Ethnic background (White)
Asian 3.47 (3.28–3.68) 3.80 (3.52–4.09) - -
Black 2.24 (2.06–2.42) 1.64 (1.48–1.81) - -
Mixed 1.17 (0.98–1.38) 1.38 (1.11–1.70) - -
Other 1.89 (1.72–2.08) 1.64 (1.48–1.81) - -

Townsend deprivation (1)
2 1.13 (1.07–1.18) 1.06 (1.01–1.12) 0.84 (0.61–1.15) 0.76 (0.54–1.08)
3 1.25 (1.19–1.31) 1.13 (1.07–1.19) 1.13 (0.85–1.52) 1.02 (0.74–1.41)
4 1.42 (1.36–1.49) 1.18 (1.11–1.24) 1.37 (1.04–1.82) 1.38 (1.02–1.89)

5 (most deprived) 2.02 (1.94–2.11) 1.37 (1.29–1.44) 1.95 (1.50–2.54) 1.79 (1.31–2.46)

BMI (< 18.5)
≥ 30 13.15 (8.64–21.43) 12.53 (7.64–22.44) - -

25–29.9 4.35 (2.85–7.08) 4.70 (2.86–8.42) - -
18.5–24.9 1.63 (1.07–2.66) 2.23 (1.35–3.99) - -

Dietary changes (No)
Unknown 3.05 (2.40–3.80) 2.08 (1.52–2.77) 3.03 (0.93–7.12) 1.76 (0.29–5.67)

Yes, because of illness 14.26 (13.80–14.75) 11.22 (10.81–11.65) 2.51 (2.03–3.08) 1.86 (1.46–2.35)
Yes, because of other 1.44 (1.38–1.50) 1.36 (1.30–1.43) 0.94 (0.75–1.15) 0.96 (0.75–1.20)

Physical activity (Low)
High 0.61 (0.59–0.64 0.76 (0.73–0.79) 0.94 (0.75–1.15) 0.96 (0.75–1.20)

Moderate 0.73 (0.70–0.75) 0.88 (0.85–0.91) 0.94 (0.75–1.15) 0.96 (0.75–1.20)

Father’s history (No)
Do not know 1.71 (1.62–1.80) 1.23 (1.16–1.31) 2.23 (1.68–2.90) 1.65 (1.20–2.23)

Prefer not to answer 1.86 (1.34–2.52) 1.07 (0.66–1.65) 3.28 (0.54–10.20) 1.98 (0.29–7.65)
Yes 2.35 (2.27–2.44) 2.37 (2.27–2.48) 1.23 (0.82–1.77) 1.30 (0.85–1.91)

Mother’s history (No)
Do not know 1.63 (1.53–1.74) 1.06 (0.97–1.15) 1.67 (1.10–2.43) 0.99 (0.60–1.53)

Prefer not to answer 1.78 (1.24–2.47) 0.93 (0.54–1.53) 6.00 (1.49–15.72) 5.07 (1.10–15.59)
Yes 1.06 (1.03–1.09) 1.08 (1.05–1.12) 1.03 (0.77–1.37) 1.07 (0.77–1.45)

* Adjusted regression OR of multivariable logistic regression analysis. a Reference category is shown in brackets.
** Significant associations in bold.

3.3. Association between Occupational Exposure and T2DM and Dementia

The results of analyses to investigate the association between occupational exposure and T2DM
and dementia are displayed in Table 3 and Tables S3 and S4 in the Supplementary Material. There were
five different occupational exposures (dust, fumes, diesel exhaust, mineral, and biological dust) and the
results of the separate logistic regression models for each pollutant are displayed in this table. In the
unadjusted (univariable) models, associations were evident between four out of the five agents (dust,
fumes, diesel, and mineral dust) and T2DM. Note that the range of the diesel exhaust occupational
exposure (P × L) values are between 0.000 and 0.225, which implies that the interpretation of the OR
in Table 3, as per unit increase may not be reliable. However, in the adjusted models where other
factors are also included, the OR confidence intervals shows non-significant association between most
exposures and T2DM, and there were no detectable associations between any of the exposures and
dementia. When the interaction between occupational exposure and sex was included in the adjusted
model, the analysis showed significant differences in the impact of some of the occupational exposures
on T2DM, with a negative impact for males in some cases (Table S5). For that reason, a sensitivity
analysis was conducted, to investigate differences in the associations without including gender in
the model.
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Table 3. Associations between T2DM and dementia and occupational exposure.

T2DM

(P × L) *** OR (95% CI) Univariable OR (95% CI) Multivariable *
Dust a 1.11 (1.00–1.22) 0.93 (0.88–0.98)

Fumes a 1.60 (1.29–1.96) 1.01 (0.95–1.07)
Diesel a 27.69 (13.47–55.35) 1.07 (0.99–1.15)

Mineral Dust a 1.35 (1.16–1.57) 0.91 (0.86–0.97)
Biological Dust a 0.78 (0.78–1.13) 0.95 (0.89–1.02)

DEMENTIA
(P × L) *** OR (95% CI) Univariable OR (95% CI) Multivariable **

Dust a 1.51 (0.73–2.72) 1.02 (0.71–1.45)
Fumes a 1.80 (0.26–5.98) 1.25 (0.84–1.84)
Diesel a 1.22 (0.00–414.36) 0.98 (0.56–1.62)

Mineral Dust a 1.69 (0.49–4.08) 1.02 (0.66–1.51)
Biological Dust a 2.74 (1.07–5.57) 0.97 (0.58–1.52)

* Model is adjusted for PM2.5, age, sex, ethnicity, BMI, Townsend deprivation score, dietary changes, physical activity,
and parental history of diabetes. ** Model is adjusted for PM2.5, age, sex, Townsend deprivation score, dietary changes,
physical activity, and parental history of dementia. *** Significant associations in bold. a Level (1) Reference level:
no exposure—Level (2): Exposure; estimates given for level (2).

3.4. Sensitivity Analyses

The logistic regression results for the association between occupational exposure and the two
diseases are shown in Table 4, without adjusting for gender. There was a positive association between
fumes and both diseases (with OR (95% CI): 1.24 (1.17–1.31) per 1 µg/m3 increase in PM2.5 for T2DM and
1.57 (1.06–2.27) per 1 µg/m3 increase in PM2.5 for dementia and a positive association between diesel
exhaust and mineral dust and T2DM (OR (95% CI): 1.31 (1.22–1.41) and 1.11 (1.04–1.17) accordingly).

Table 4. Sensitivity analysis for occupational exposure and T2DM and dementia, without adjusting
for sex.

T2DM Dementia

(P × L) *** OR (95% CI) Multivariable * OR (95% CI) Multivariable **

Dust a 1.01 (0.96–1.06) 1.14 (0.79–1.61)
Fumes 1.24 (1.17–1.31) 1.57 (1.06–2.27)
Diesel 1.31 (1.22–1.41) 1.26 (0.72–2.05)

Mineral Dust 1.11 (1.04–1.17) 1.26 (0.83–1.86)
Biological Dust 0.90 (0.84–0.96) 0.95 (0.55–1.44)

* Model is adjusted for PM2.5, age, ethnicity, BMI, Townsend deprivation score, dietary changes, physical activity,
and parental history of diabetes. ** Model is adjusted for PM2.5, age, Townsend deprivation score, dietary changes,
physical activity, and parental history of dementia. *** Significant associations in bold. a Level (1) Reference level:
no exposure—Level (2): Exposure; estimates given for level (2).

A newly created occupational variable (PL-max), which represents the maximum occupational
exposure across all five substances, suggested that, when we did not adjust for sex, there was a
significant association between occupational PM exposure and T2DM (1.10 (1.05–1.15)) and dementia
(1.40 (1.00–1.95)). However, when we also adjusted for sex, the association for both diseases became
non-significant. This suggests a dependence between the occupational exposure variable (P × L) and
gender, and that (P × L) may be a proxy for sex. For all of the self-reported occupational exposures,
logistic regression indicated that there were no significant associations with disease status (Table 5).

From the subgroup analysis of the occupational history of the 120,299 participants (Table 6),
the point estimates and confidence intervals seem to be generally consistent with the results from
the whole dataset. The multivariable analysis with this subgroup of the participants suggested that
although we have a lifetime estimate of occupational exposure, which should provide a more accurate
picture of exposure, the ORs were not statistically different from unity.
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Table 5. Sensitivity analysis for occupational exposure (PL-max) and self-reported exposures and
T2DM and dementia.

T2DM * Dementia **

OR (95% CI) OR (95% CI)

(PL-max) *** 1.10 (1.05–1.15) 1.40 (1.00–1.95)
(PL-max) 0.96 (0.91–1.01) 1.20 (0.85–1.69)

Workplace very dusty 1.01 (0.93–1.09) 1.04 (0.48–2.24)
Workplace with fumes 0.95 (0.87–1.03) 1.15 (0.48–2.54)
Workplace with diesel 0.99 (0.90–1.09) 1.54 (0.58–3.67)

* Adjusted for age, sex, PM2.5, ethnicity, Townsend deprivation index, BMI, dietary changes, physical activity,
paternal history of diabetes. ** Adjusted for age, sex, PM2.5, Townsend deprivation index, dietary changes,
physical activity, paternal history of dementia. *** without adjusting for sex. Significant associations in bold.

Table 6. Sensitivity analysis for occupational history and T2DM and dementia (for the subgroup of
120,299 participants).

Cumulative Occupational
Exposure Over

Years—Standardised
Values (Standardised

(P × L) * Years) ***

T2DM
OR (95% CI)
Univariable

T2DM
OR (95% CI)

Multivariable *

Dementia
OR (95% CI)
Univariable

Dementia
OR (95% CI)

Multivariable **

Dust 1.09 (1.06–1.11) 1.00 (0.97–1.03) 1.00 (0.54–1.23) 0.95 (0.49–1.21)
Fumes 1.07 (1.04–1.09) 0.98 (0.95–1.01) 0.99 (0.46–1.19) 0.95 (0.42–1.18)

Diesel engine exhaust 1.07 (1.05–1.09) 0.98 (0.94–1.01) 1.10 (0.86–1.20) 1.08 (0.83–1.18)
Mineral dust 1.08 (1.05–1.10) 1.01 (0.97–1.03) 1.07 (0.73–1.23) 1.05 (0.69–1.22)

Biological dust 1.05 (1.02–1.07) 1.00 (0.97–1.03) 0.12 (0.00–0.58) 0.02 (0.00–4.70)

* Adjusted for age, sex, PM2.5, ethnicity, Townsend deprivation index, BMI, dietary changes, physical activity,
paternal history of diabetes. ** Adjusted for age, sex, PM2.5, Townsend deprivation index, dietary changes,
physical activity, paternal history of dementia. *** Significant associations in bold.

4. Discussion

Epidemiological evidence linking long-term, environmental particulate air pollution to adverse
health effects, such as T2DM and dementia, has gradually increased over recent years [31–33]. Our study
is consistent with findings from other research, with a significant association between PM2.5 and T2DM
(OR (95% CI): 1.02 (1.00–1.03)) per unit exposure [34,35]. A systematic review and meta-analysis by
Yang et al., showed significant associations of PM2.5 and T2DM prevalence (1.08 (1.04–1.12) per 10 µg/m3

increment [35]. Our study is also consistent with other studies that link PM2.5 and dementia [36–38] as
the size of the effect is similar, although because of the relatively small number of people with dementia
in the UK Biobank (534 cases) it probably does not have sufficient power to detect an association
of this magnitude. Other studies have adjusted for other covariates which makes comparing effect
sizes difficult. According to Lee et al., the adjusted hazard ratio (HR) of hospitalization with the
disease was 1.05 (1.04–1.05) per 1 µg/m3 increase in annual PM2.5 [37] and according to Chen et al.
a 1.04 (1.03–1.05) HR was observed, for every interquartile-range increase in PM2.5 exposure [38].
Moreover, a recent report on dementia, by Livingston et al. clearly states that air pollution is a risk
factor for dementia [39]. Interestingly, there are other studies that suggest that air pollution is positively
associated with cognitive decline with bigger effects, as an interquartile range increase in PM2.5 gave
an OR of 1.16 (1.05–1.27), but these studies seem to be of smaller population size, and investigated
mild cognitive impairment (MCI), which is an early stage of disease and not dementia per se [40].
A study of the UK Biobank, by Cullen et al. showed a weak association between air pollution and
cognitive performance [41]. A meta-analysis by Fu et al. indicated that long-term PM2.5 exposure was
associated with an increased risk of dementia (1.16 (1.07–1.26) per 10 µg/m3 PM2.5), although their
meta-analysis for AD (Alzheimer’s disease) was not significant (3.26 (0.84–12.74)) [33]. All the other
factors in the environmental models, for both diabetes and dementia, produced results consistent
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with what is already known in the literature. For example, for the most deprived areas the risk for
both diseases was increased [42,43], and the risk was higher for T2DM for certain ethnicities [44,45]
and physical activity had a protective effect for T2DM [46] (Table 2). However, these ORs need to be
interpreted with caution, because of the issues described by Westreich et al. [47], as effect measures for
secondary risk factors can be biased if they are interpreted in the same way as the primary risk factor.

To the best of our knowledge, although there are many studies that examine the relationship
between occupational exposures such as night-shift work, job strain, or specific substances such as
solvents and diabetes [48–50] or dementia [51–55], this is the first study to investigate an association
between occupational exposure to PM that are similar to environmental air pollution exposure and
both health outcomes. We relied on the ACE JEM to assign exposure probability and intensity to jobs,
although from our earlier work it is likely that these assignments were most reliable for highly exposed
jobs and for jobs assigned as unexposed [23]. We chose to recategorise into exposed and unexposed to
attempt to minimise the potential for misclassification in the analysis. In the multivariate analyses
the risks for occupational exposure to dust and mineral dust produced significant ORs for T2DM
less than one, which do not seem biologically plausible. All the other comparisons yielded ORs that
were not significantly different from one. Our findings for diesel exhaust are consistent with previous
work by Koeman et al., which found among other exposures, that there was no association between
motor exhaust and dementia, although Meo et al. found an association between motor exhaust and
T2DM [56,57]. Moreover, when occupational exposure and environmental exposure were both in
our model, we observed PM2.5 changes that suggest that these two exposures may not be completely
independent from each other (Tables S3 and S4).

There are a number of limitations in the current study that could mask associations between
occupational PM exposure and effects on the brain or diabetes mellitus [58]. The analysis was
cross-sectional; therefore, causality cannot be determined. It is as viewing a snapshot of the population
at a certain point in time, thus the identification of the participants is based on the absence or presence
of the exposure and the presence of the exposure of the disease. Another weakness of this study was the
lack of historical information surrounding exposure (both environmental and occupational). Moreover,
the occupational analysis was based on a JEM, and the simplicity of this tool cannot adequately account
for the variability in exposure between workers or between workplaces. JEMs are also generally not
good at identifying small effects, especially JEMs like the ACE JEM that are generated from subjective
information rather than objective measurements [59]. From our earlier evaluation of the ACE JEM it
was observed that the assignments for medium and low exposed jobs were less reliable than for high
and unexposed jobs [23]. Moreover, there may be problems in the JEM’s coding for men and women,
as it seems there is inconsistency between the assessments for the two gender. A further potential
limitation of the study was the definition of diabetes in UK Biobank, as this variable was self-reported
as just diabetes, which necessitated inference to identify presumptive T2DM participants. Another
limitation of this study was that information about smoking and alcohol could not been used because
of a high percentage of missing values. We used the Townsend deprivation index as a proxy for these
and other lifestyle factors that may influence the risk of the diseases studied, but this measure suffers
from lack of specificity.

Our study has some major strengths, the UK Biobank provides a large data source that is
geographically diverse, and allows adjustment for multiple environmental, social, and occupational
related factors. Moreover, this study is based on both the self-reported information in UK Biobank’s
and ACE JEM’s information to create a more objective occupational exposure measure on which to
draw conclusions.

Another strength of this study is the multiple approaches used in the sensitivity analysis
(Tables 4–6) to investigate the relationship between occupational exposure and the health outcomes.
Firstly, the same analysis was performed without adjusting for gender (Table 4), as sex seemed to be
a proxy for occupational exposure and that the impact of (P × L) may reflect the impact of gender.
From the logistic regression without adjusting for sex the results suggested that fumes had a significant
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association with both diseases and also diesel and mineral dust occupational exposure may have an
impact on the risk of T2DM. Those significant results are consistent with studies that link ultrafine
particles with the diseases [60] and occupations such as traffic policemen that have to deal with diesel
exhaust and the T2DM outcome [22]. A possible explanation for the apparent difference in risk between
male and female when the sex interaction is included in the model, could be that the ACE JEM provides
unreliable information for jobs typically carried out by men and women. There may be a bias in
the way that typical male jobs were assessed compared to typical female jobs. Secondly, to examine
the maximum exposure of all the substances to which a participant could be exposed, we created
the variable PL-max (Table 5). After running the logistic regression models, while adjusting for sex,
we obtain non-significant results. Although, if we hypothesize that (P × L) exposure assignments and
sex were interrelated and exclude sex from the model there was a significant association between
occupational exposure to PM and both T2DM and dementia (OR (95% CI): 1.10 (1.05–1.15) for T2DM
and (OR (95% CI): 1.40 (1.00–1.95) for dementia). So, although the results from the main analysis
cannot detect an association between occupational exposure and the diseases, by investigating an
extreme workplace exposure measure, a significant association was observed. To examine further
the three main occupational exposures (dust, fumes, and diesel exhaust), we also considered the
self-reported workplace exposure variables in the UK Biobank dataset. These analyses did not suggest
any relationship between self-reported exposure and the diseases (Table 5), which is consistent with
the main results of this study. Lastly, the sensitivity analysis performed in a subgroup of UK Biobank
participants with a full working history, provides a more reliable estimate of lifetime occupational
PM exposure. The association between occupational exposure and T2DM and dementia remained
undetectable in this population (Table 6).

5. Conclusions

There is no strong evidence from the present study for an association between occupational
exposure to particulates that are similar to environmental air pollution and T2DM or dementia,
although our analysis suggests an association between particulate air pollution exposure and T2DM.
Additionally, we did not find a significant association between PM2.5 and dementia, and this could
be because of the relatively low dementia prevalence in the cohort. Our findings were verified in
the subgroup of participants for whom we had more complete estimates of cumulative working
life exposures. However, when the analysis was carried out without adjusting for sex, some of
the associations become significant, and this suggests there may be differences between the JEM
assignments for jobs typically carried out by men and women.

If there is an association between occupational exposure to PM and T2DM or dementia, it is likely
to be small, which is consistent with the observations for PM air pollution. Given that people are
exposed to air pollution continuously over the whole lifetime while occupational exposure is for only a
fraction of that time, the magnitude of the impact related to occupational exposure is not expected to
be larger than the environmental impact. More reliable occupational information for a larger number
of participants in the UK Biobank, in combination with an improved JEM or an alternative way of
estimating workplace PM exposures, would help in further investigating the association between
occupational PM exposure and T2DM and dementia.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/17/24/9581/s1,
FigureS1: Directed acyclic graph showing the model assumptions for T2DM. FigureS2: Directed acyclic graph
showing the model assumptions for dementia. Table S1: Percentages used to create exposure score (P × L). Table S2:
Observations excluded from the analysis due to incomplete data, in the environmental and main occupational
final models for T2DM and dementia. Table S3: Associations between all occupational exposures and T2DM and
other potential risk factors by using logistic regression Table S4: Associations between all occupational exposures
and dementia and other potential risk factors by using logistic regression. Table S5: Associations between T2DM
and dementia and occupational exposure with the interaction term in the model- OR (95%CI) for males and
females. Recategorisation of variables and references corresponding to Table S1.
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