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Abstract: To understand mechanisms for arsenic toxicity in the lung, we examined effects 

of sodium m-arsenite (As3+) on microtubule (MT) assembly in vitro (0–40 µM), in cultured 

rat lung fibroblasts (RFL6, 0–20 µM for 24 h) and in the rat animal model (intratracheal 

instillation of 2.02 mg As/kg body weight, once a week for 5 weeks). As3+ induced a  

dose-dependent disassembly of cellular MTs and enhancement of the free tubulin pool, 

initiating an autoregulation of tubulin synthesis manifest as inhibition of steady-state 

mRNA levels of I-tubulin in dosed lung cells and tissues. Spindle MT injuries by As3+ 

were concomitant with chromosomal disorientations. As3+ reduced the binding to tubulin 

of [3H]N-ethylmaleimide (NEM), an -SH group reagent, resulting in inhibition of MT 

polymerization in vitro with bovine brain tubulins which was abolished by addition of 

dithiothreitol (DTT) suggesting As3+ action upon tubulin through -SH groups. In response 

to As3+, cells elevated cellular thiols such as metallothionein. Taxol, a tubulin polymerization 

agent, antagonized both As3+ and NEM induced MT depolymerization. MT–associated 

proteins (MAPs) essential for the MT stability were markedly suppressed in As3+-treated 

cells. Thus, tubulin sulfhydryls and MAPs are major molecular targets for As3+ damage to 

the lung triggering MT disassembly cascades.  
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1. Introduction 

Arsenic (As) is an abundant metalloid element in the Earth’s crust. Its compounds are widely used 

in industries, agricultures, and medicines [1]. In addition to occupational contact, consumption of 

contaminated drinking water is a major source of As exposure for humans. Most As in drinking water 

exists as inorganic forms released from either certain types of rock or man’s past activities [1,2]. An 

estimated 100–140 million people around the world are suffering from chronic As poisoning [3,4]. 

Inhaled or ingested As can be rapidly absorbed, enter the bloodstream, and distribute throughout the 

body [5,6]. The lung is one of the major target organs of As, either from contaminated air or from 

polluted water, and leading to the development of bronchiectasis, bronchitis, chronic obstructive 

pulmonary disease (COPD), and malignancies [2,7]. Environmental exposure to As is generally in the 

form of either arsenite (As3+) or arsenate (As5+) [6,8,9], with As3+ being more potent in its biological 

effects than As5+ [9,10]. As3+ is the predominant form in drinking water from deep (anaerobic) wells 

while As5+ predominates under aerobic conditions. Any As5+ in the water is rapidly reduced to As3+ as it 

enters cells [8,9]. Since As3+ displays high affinity for -SH groups perturbing essential proteins [11,12], 

As3+ compounds are of major human health concern. However, the precise mechanisms leading to lung 

damages and cancinogenesis by As3+ remain unclear and should be further investigated.  

Microtubules (MTs) are a highly organized network of filamentous structures in the cytoplasm of 

eukaryotic cells [13]. The principal protein of MTs is a heterodimer consisting of tightly linked 

globular peptides, i.e., α- and β-tubulins, which polymerize into long, hollow, cylindrical filaments 

within the cell. In addition, a third subunit of MTs is -tubulin, functioning in the nucleation of mitotic 

spindle MTs. The most prominent feature of MTs is a rapid exchange between tubulin subunits and 

polymers. Lung cells contain abundant MTs which play a critical role in maintaining cellular architecture 

and internal organization, and in regulating cell shape, motility, transport, division, etc. [14]. Many 

drugs and toxicants can interact with cytoskeletal MTs [13,15]. For example, colchicine and 

vinblastine disassemble MTs and block mitotic spindle formation. In contrast, taxol promotes tubulin 

assembly and stabilizes MTs. Notably, metal ions display important modulating effects on MT 

dynamic. As shown by us and others, Mg2+, Be2+ and Ni2+ promote MT assembly while Ca2+, Cu2+, 

Cd2+, Hg2+, Cr6+ and As3+ cause MT disassembly [16-21]. Thus, MT injuries may be a critical 

manifestation of the pathogenesis of a number of toxic agents.  

Our previous studies have shown As3+ disassembly of MTs in cultured Swiss 3T3 cells [21]. To 

further understand mechanisms for cellular toxicity of As in the lung, we examined effects of As3+, a 

major toxic form of As in the nature, on MT assembly in vitro, in cultured rat lung fibroblasts (RFL6) 

and in lung tissues of the rat animal model. Results demonstrated that As3+ targets tubulin sulfhydryls 

and MT-associated proteins (MAPs) disrupting the MT organization in tubulin polymerization in vitro 

and in rat lung cells in vitro and in vivo.  

2. Materials and Methods 

2.1. Materials 

Sodium m-arsenite (As3+, NaAsO2, analytical grade with purity ≥ 99.0%), dithiothreitol (DTT),  

N-ethylmaleimide (NEM), propidium iodine, and taxol were from Sigma-Aldrich Co (St. Louis, MO, 
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USA). As3+ stock solutions were freshly prepared for each experiment. A rabbit anti-tubulin antibody 

and an FITC conjugated anti-tubulin antibody were from Polysciences (Warrington, PA, USA).  

A mouse anti-metallothionein antibody (Dako-MT, E9) against both metallothionein-I and  

metallothionein-II were from Dako Inc. (Fort Collins, CO, USA). A rabbit antibody against the heavy 

chain of -glutamylcysteine synthetase (-GCS) was from NeoMarkers (Fremont, CA, USA). An  

FITC-conjugated goat-anti-rabbit IgG was from Organon-Teknika (Malvern, PA, USA). A rabbit  

anti-actin (I-19) antibody and a horseradish peroxidase (HRP)-conjugated goat anti rabbit or  

mouse IgG were from Santa Cruz Biotech. (Santa Cruz, CA, USA). [3H]NEM (30–60 Ci/mmol)  

and [35S]methionine (1,000 Ci/mmol) were purchased from PerkinElmer Life and Analytical Sciences, 

Inc. (Waltham, MA, USA). Oligonucleotide primers for the PCR were synthesized by Integrated DNA 

Technologies (Coralville, IA, USA). Protein assay reagents for the Bradford dye binding method were 

from Bio-Rad (Richmond, CA, USA). All tissue culture products were from Invitrogen Co. (Carlsbad, 

CA, USA). 

2.2. Cell Cultures 

The fibroblastic RFL6 cell line derived from the fetal lung tissue of normal Sprague-Dawley rats 

was obtained from ATCC. Cells were regularly maintained in Dulbecco’s modified Eagle’s medium 

(DMEM) containing 10% fetal bovine serum (FBS). To standardize experimental conditions, cells 

were growth-arrested and synchronized at the G1 phase by incubation in 0.3% FBS/DMEM for 72 h 

followed by changing to fresh 0.3% FBS/DMEM and incubation for another 24 h before experiments [21]. 

Cells were treated for 24 h with As3+ or other reagents at various concentrations, then processed for 

further analysis.  

2.3. Fluorescence Microscopy 

MTs were revealed fluorescently in control and treated cells with the primary rabbit anti-tubulin 

antibody and the secondary goat-anti-rabbit IgG coupled with FITC as described [22]. To assess As3+ 

effects on cell division, cells on coverslips were incubated in 10% FBS medium without or with 10 µM 

As3+ for 24 h. After fixation with 3.7% formaldehyde/0.2% Triton X-100/PBS and washing with PBS, 

cells were treated with an RNase A/PBS solution (the final concentration = 50 µg/mL) to lyse cellular 

RNA. Cell division stages and aberrations were visualized by the in situ chromosomes staining with 

propidium iodine (the final concentration = 50 µg/mL in PBS containing 2 mM MgCl2) and spindle 

MT staining with FITC-conjugated anti-tubulin antibody under the dark condition. Samples were 

examined under the Nikon fluorescence microscope using the DAPI-FITC-TRITC filter to detect green 

and red fluorescence simultaneously. All photographs were taken at the same magnification with a  

40 × Planapochromat objective. 

2.4. Immunohistochemistry and Total RNA Extraction in Lung Tissues of the Rat Animal Model 

To assess As3+ injury to the lung MTs, eight Sprague-Dawley rats (body weight  150 g) per group 

were intratracheally instilled with 520–530 µg NaAsO2 in 100 µL physiological saline according to  

2.02 mg As/kg body weight once a week for 5 weeks. Control rats received saline only. Rats were 
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killed 1 week after the last instillation. For immunohistochemistry, lungs removed from four rats of 

each group were fixed with 0.2% glutaraldehyde and 4% paraformaldehyde in 0.1 M phosphate buffer, 

pH 7.4. Lung tissues were embedded in paraffin. Sections of 5 m in thickness were immunohistochemically 

stained to visualize tubulin distribution in lungs with the anti-tubulin antibody and the streptavidin-HRP 

system according to the procedure provided by the manufacturer (KPL, Inc., Gaithersburg, MD, USA). 

For total RNA extraction, lungs in other four rats of each group were perfused with physiological 

saline via the pulmonary artery. The minced lung tissues were homogenized in TRIzol reagent 

(Invitrogen) and total RNA were extracted with phenol-chloroform as described [23]. 

2.5. Purification of MT Proteins 

MT proteins containing tubulins and MAPs were purified from calf brain through two cycles of 

temperature-dependent assembly-disassembly as described in our previous publications [16,17]. The 

MT protein pellet was dissolved in a PME buffer (0.1 M Pipes, pH 6.6, 1 mM MgCl2 and 1 mM 

EGTA) and aliquots of this MT protein stock were stored at −80 °C until their use in experiments. Pure 

tubulin free of MAP was prepared by passing the twice-cycled MT proteins through a Whatman P11 

phosphocellulose column as described [24]. 

2.6. Turbidity Assay 

The original MT protein stock was diluted with the 0.1 M Pipes buffer, pH 6.6, to yield a final 

concentration of 0.8 mg/mL with 0.15 mM Mg2+ and 0.15 mM EGTA. MT polymerization in vitro was 

started by the addition of 500 µM GTP and monitored by turbidimetry at A350 nm at 25 C using a 

Perkin-Elmer Lambda 3B spectrophotometer equipped with a chart recorder [16,17]. To assess effects 

of As3+ on MT assembly in vitro, various concentrations of As3+ were added to the reaction mixtures 

for 5 min prior to addition of GTP. To observe DTT influence on As3+-induced effects on MT 

polymerization, As3+, DTT (1 mM) and final GTP were added to the reaction mixture in this order with 

the 3-min interval between additions to allow the interaction of As3+ with MT proteins.  

2.7. Electron Microscopy (EM)  

EM examination of assembled MT polymers was carried out in conjunction with turbidity assays as 

described [16]. When the MT assembly reaction was approaching its plateau, a 10 µL-drop of the 

reaction mixture was removed from the cuvette and placed on glow-discharged carbon formvar-coated 

copper grids (300 mesh) for five min and successively replaced by cytochrome c (1 mg/mL, from 

Sigma) and distilled water. The samples were stained with filtered 1% uranyl acetate for 3 min, 

blotted, air dried, and examined with a Philips CM12 transmission electron microscope. All EM 

images were recorded on SO-163 film. MT numbers on three photo prints with the same size and 

magnification were counted for each sample and results are expressed as % of the control. 

2.8. Tubulin Sulfhydryl (-SH) Assay 

Tubulin -SH groups were determined as described in our previous publication [22]. This assay is 

based on covalent incorporation of [3H]NEM, a specific -SH group binding agent, to protein -SH 
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groups. To quantitate As3+ effects on [3H]NEM binding to tubulin -SH groups, tubulin proteins free of 

MAPs prepared from the bovine brain were diluted with 10 mM phosphate buffer containing 0.3% 

NP40 to a final concentration of 1.5 mg/mL, pretreated with As3+ at indicated concentrations for 1 h at 

0 C, then mixed with [3H]NEM (2 µCi/mL), and incubated for an additional 1 h at 37 C. Proteins 

were precipitated with 5% TCA and collected on nitrocellulose filters. Collected proteins on the 

membrane were measured by β-counting. The amount of radioactivity was normalized to total tubulin 

proteins and expressed as % of the control. Differences between control and As3+ treated samples  

(n = 3 for each group) were evaluated by using the ANOVA program as described [22].  

2.9. Cytoskeletal and Cytosolic Protein Isolation in Cultured Cells 

The cytoskeletal and cytosolic protein fractions in cultured cells were prepared by detergent 

extraction and centrifugation as described [21]. Briefly, control and treated cells were rinsed with PBS, 

and gently scraped into the MT stabilizing buffer (PM2G) containing 0.1 M Pipes, pH 6.9, 1 mM 

MgSO4, 2 M glycerol, and 2 mM EGTA, and extracted with 0.3% NP-40 in the PM2G buffer. After 

micro-centrifugation, the supernatant was collected and the pellet resuspended in a PM buffer (0.1 M 

Pipes, pH 6.9, 1 mM MgSO4) followed by centrifugation. The supernatant was mixed with the first 

extract and referred to as the “cytosolic” fraction. The final pellet was resuspended in 0.3% NP-40 in 

10 mM phosphate buffer (pH 7.0) containing 1 mM EGTA and termed as the “cytoskeletal” fraction. 

Total protein concentrations in each fraction were determined by using the reagent from Bio-Rad as 

described [22].  

2.10. Western Blot Analysis 

Cytosolic and cytoskeletal lysates or total cell extracts in control and treated cells each containing 

equal amounts of protein (10–15 µg) were boiled in an SDS sample buffer and analyzed by SDS-PAGE 

gradient gel (4–15%) as described [23] using primary antibodies, i.e., the rabbit anti-tubulin (1:1,000), 

the mouse anti-metallothionein (1:500), the rabbit anti--GCS (1:1,000), or the rabbit anti-actin 

(1:1,000) antibody, and HRP conjugated corresponding secondary antibodies, i.e., the anti-rabbit or 

mouse IgG with 1:5,000 dilutions. Molecular weights were determined by comparison with 

BenchMark pre-stained protein ladder (Invitrogen). Protein bands were quantitated by the 1 D Scan 

EX software (Scananalytics, Fairfax, VA, USA). Experiments as shown here were repeated at least 

three times with reproducible results and a representative one is presented, unless otherwise indicated.  

2.11. 2-D Gel Analysis 

Cell metabolic labeling, cytoskeletal protein extraction and 2-D gel analysis were carried out as 

described [25]. Briefly, growth-arrested cells were incubated with [35S]methionine at 50 µCi/mL for  

24 h in methionine-free DMEM in the presence or absence of 10 M As3+. Cells treated with 5 µg/mL 

nocodazole, an MT depolymerization agent, at the last 3 h incubation, were used as a positive control. 

Cells were washed with PBS followed by PM2G with the protease inhibitor cocktail (Roche, 

Mannheim, Germany), extracted twice with 0.3% NP-40 in PM2G containing protease inhibitors and 

finally with 5 mM CaCl2 (Ca2+). Ca2+ released MT proteins including tubulins and MAPs were used 



Int. J. Environ. Res. Public Health 2012, 9 479 

 

 

for 2-D gel analysis as described [25]. Isoelectric focusing gels (3% acrylamide) with gradients of 

approximately pH 4.5–7.5 were obtained with 0.44% pH 3.5–10 Ampholines and 1.76% pH 6–8 

Ampholines (LKB). The pH gradient was determined by measuring the pH value of 1-cm slices of 

parallel isoelectric focusing gels following overnight-incubation in 0.025 M KCl. The second 

dimension gels using 7.5% acrylamide were run with molecular markers (Bio-Rad) and stained with 

0.25% Coomassie Brilliant Blue. Gels were treated with EN3HANCE (New England Nuclear Co., 

Boston, MA, USA), dried and exposed to prefogged Kodak X-Omat AR film at –80 °C. Protein spots 

were quantitated by the 1 D Scan EX software (Scananalytics) as described [23]. 

2.12. Reverse Transcription-Polymerase Chain Reaction (RT-PCR) 

Total RNA (500 ng) extracted from cultured cells or from lung tissues were converted to the cDNA 

which was then amplified by using the SuperScript One-Step RT-PCR with Platinum Taq Kit 

(Invitrogen) under the following conditions: reverse-transcript at 50 °C for 30 min and  

pre-denaturation at 94 °C for 2 min, denaturation at 94 °C for 30 s, annealing at 58 °C for 45 s, and 

extension at 72 °C for 1 min for a total of 35 repetitive cycles. Final extension was performed at 72 °C 

for 10 min. The primer pair used to amplify I-tubulin DNA is: forward, 5’-ATGAGGGAAATCGTG 

CACATCCAG-3’ and reverse, 5’-TTAGGCCTCTTCTTCTGCCTCC-3’. The primer pair used to 

amplify glyceradehyde 3-phosphate dehydrogenase (GAPDH) DNA, an internal control, is: forward,  

5’-GACTCTACCCACGGCAA-3’ and reverse, 5’-GGATGACCTTGCCCACA-3’. PCR products were 

respectively separated on agarose gels, stained with ethidium bromide and visualized on a UV 

transilluminator. Bands of cDNA were quantitated with 1 D Scan analysis [23]. 

3. Results 

To elucidate As3+ effects on cellular MT organization, growth arrested RFL6 cells on coverslips 

were incubated with or without freshly prepared As3+ solution at final concentrations as indicated. 

Cellular MT distribution was revealed by immunocytochemistry [21]. As shown in Figure 1(A),  

growth-arrested RFL6 cells contain an intricate, highly organized network of MTs that radiate outward 

from the MT organizing center (MTOC) in the perinuclear region to the cell periphery. Exposure of 

cells to 5 µM As3+ for 24 h induced partial loss of MTs and no-organized tubulins with brightly 

staining accumulated in the perinuclear area where the MTOC is generally located [Figure 1(B)]. 

Treatment of cells with 20 µM As3+ for 24 h resulted in severe loss of MTs. Instead, mast cells 

exhibited high-density of depolymerized tubulin mass concentrated in the central area of cells  

[Figure 1(C)]. Notably, the maximum doses of As3+ (20 µM) that disrupted the MT organization in the 

cell model did not affect cell viability seriously (about 10% decrease) as assayed by trypan blue 

staining (data not shown). Morphological alterations in MTs were reversible after removal of As3+. 

These studies indicated that the MT cytoskeleton is an important cellular target for As3+ insult.  
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Figure 1. As3+ induced disassembly of MTs in RFL6 cells. Growth-arrested RFL6 cells  

on coverslips were treated without or with As3+ at indicated concentrations for 24 h, and 

then immunofluorescently stained for visualization of MTs. (A) control; (B) 5 µM As3+;  

(C) 20 µM As3+. 

 
 

Since spindle MTs are intrinsically involved in chromosomal organization during cell mitosis [13,14], 

As3+ may perturb spindle MTs inducing abnormal cell division. To test this, we have examined cell 

division aberrations by fluorescently double-staining spindle MTs and chromosomes in situ in  

As3+-treated RFL6 cells. As shown (Figure 2), exposure of RFL6 cells to 10 µM As3+ for 24 h resulted 

in the defect in or the absence of spindle MTs in 34% of proliferating cells (200 cells counted) 

accompanied by chromosomal lagging, scattering, clustering, etc., in 22% of proliferating cells (200 cells 

counted) [Figure 2(f–j)], in sharp contrast to those in control cells (only 2% of proliferating cells 

counted with spindle deficiency and 1.5% of proliferating cells counted with chromosomal 

disorientations).  Figure 2(a–e) show normal chromosome patterns in different phases of the cell 

division. These results indicate that chromosomal disorientations are closely linked to As3+-induced 

damage to spindle MTs.  

As3+-induced MT disassembly (Figure 1) should decrease the polymer MT and increase the free 

tubulin pool. To test this, As3+-treated cells were treated with 0.3% NP40 in the PM2G buffer to isolate 

cytosolic and detergent-resistant cytoskeleton fractions [21]. Western blot analysis indicated that in 

comparison to the actin control, RFL6 cells exposed to As3+ exhibited a dose-dependent decrease in 

polymer MT proteins and increase in the free tubulin pool [Figure 3(A)]. The density assays indicated 

that the 50% decrease in MT polymer proteins and increase in the free tubulin pool occurred in cells 

exposed to 5 µM As3+. These results are consistent with morphological loss of MTs and increase of 

free tubulin mass in these cells as revealed by fluorescent microscopy. Five β-tubulin genes encode 

highly homologous proteins, class I–V [26]. The rat class I β-tubulin (βI-tubulin) gene was selected as 

a sample to elucidate As3+ modulation of tubulin transcription. As shown by the RT-PCR assay  

[Figure 3(B)], the steady-state I tubulin mRNA levels in cells treated with 5, 10 and 20 µM As3+ were 

reduced to 66%, 26% and 6% of the control, respectively. Thus, As3+ depolymerization of MTs was 

associated with inhibition of tubulin mRNAs. 
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Figure 2. Deficient spindle MTs and cell division aberrations in As3+-treated cells. RFL6 

cells on coverslips were incubated in 10% FBS medium without (a–e) or with (f–j) 10 µM 

As3+ for 24 h. Cell division stages and aberrations were examined by visualization of the  

in situ chromosomes stained with propidium iodine (red) and spindle MT stained with  

FITC-conjugated anti-tubulin antibody (green). Note: Cytoplasmic FITC-labeled MTs are 

green; however, since spindle MTs overlap with DNA staining in red, they appear as 

yellow structures. a, prophase; b, prometaphase; c, metaphase; d, anaphase; e, telophase;  

f, chromosome lagging with a defective spindle at metaphase; g, chromosome scattering in 

the absence of spindle; h, chromosome clustering and scattering in the absence of spindle; 

i, chromosome lagging with a defective spindle at anaphase; j, apoptosis of a cell with 

aberrant division. 

 

Figure 3. As3+ effects on expressions of tubulin proteins and mRNAs in the cell model. 

(A) As3+ enhanced the free tubulin pool as a result of depolymerization of MTs.  

Growth-arrested RFL6 cells were treated with As3+ at indicated concentrations for 24 h. 

Cytoskeletal and cytosolic fractions were isolated, and analyzed by Western blot.  

β-tubulin, 50 kDa; actin, 43 kDa used as a reference. (B) As3+ inhibition of steady-state βI 

tubulin mRNA levels. Cells were treated with As3+ as indicated above. Total RNA 

extracted was assessed for steady-state βI tubulin mRNA levels by the RT-PCR. GAPDH 

mRNA levels were used as an internal control. M indicates a DNA molecular ladder.  

 

To elucidate As3+ damage to the lung MTs, a small animal model study was performed to visualize 

tubulin protein distribution by immunohistochemistry and to assay for steady-state I tubulin  

mRNA expression by the RT-PCR in control and As3+-dosed lungs. As shown [Figure 4(A)], 
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immunoperoxidase staining of the lung tissue indicated markedly weakened tubulin signals, i.e., 

peroxidase-labeled brown-black color materials, in As3+-treated lung tissues [Figure 4(A2)] in 

comparison to the control [Figure 4(A1)]. Figure 4(A3) is a negative control tissue slice from control 

rats, which was incubated in the absence of the primary antibody against -tubulin. Notably, As3+ 

exposure apparently induced discontinuity of tubulin-rich epithelial cells in small bronchioles (arrow). 

Furthermore, RT-PCR assays indicated that As3+-dosed lungs displayed decreased βI tubulin mRNA 

levels amounting to 53%, 48% and 20% of the control in As3+-exposed Rat#1, Rat#2 and Rat#3, 

respectively [Figure 4(B)]. Thus, As3+ inhibited pulmonary tubulin expression at protein and mRNA 

levels in vivo. 

Figure 4. Inhibition of β-tubulin expression at protein and mRNA levels in As3+-exposed 

lungs. Rats (150 g body weight) were intratracheally instilled with 520–530 µg NaAsO2 

in 100 µL physiological saline according to 2.02 mg As/kg body weight once a week for  

5 weeks. Control rats received saline only. Rats were killed a week after the last 

instillation. Lung tissues were processed for immunohistochemical staining and total RNA 

extraction. (A) β-Tubulin protein distribution. The tubulin protein in control and As3+-dosed 

lung sections was stained with the antibody against -tubulin and the streptavidin-HRP 

system. (A1) control; (A2) As3+ exposed lung; (A3) a negative control without the primary 

antibody treatment. a, alveolus; b, bronchioles; arrow indicates discontinuity of  

tubulin-rich epithelial cells in small bronchioles. (B) I-tubulin mRNA levels revealed by 

the RT-PCR. RC, control rat; RAs1, As3+ treated Rat#1; RAs2, As3+-treated Rat#2; RAs3, 

As3+-treated Rat#3 (note: single doses for Rat #1, #2 and #3 were 520, 525 and 530 µg 

NaAsO2 , respectively, dependent on the body weight). M, a DNA molecular ladder. 

 

To identify characteristics of the interaction of As3+ with tubulin proteins, we assessed its effects on 

the MT polymerization in vitro. Bovine brain MT proteins containing tubulins and MAPs were 

purified through two cycles of temperature dependent assembly and disassembly [17]. MT assembly in 

vitro was monitored by turbidity assays at A350 nm (Figure 5) and confirmed by electron microscopy 

(EM) (Figure 6) as described [16,17]. In a typical turbidity assay at 25 C [the black curve, in  

Figure 5(A)], assembly of MT proteins (0.8 mg/mL) progressed steadily with an initial leg (two min) 

followed by an elongation phase (2–30 min) and a final plateau indicating the reaction equilibrium  

(30–32 min). EM examination of samples taken at 30 min revealed the typical morphology of in vitro 

assembled MTs [Figure 6(B)]. No assembly of MTs was evident at time 0 [Figure 6(A)]. Incubation 

with As3+ induced a dose-dependent inhibition of MT assembly as evidenced by enhancement of the 
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initial leg, decreases in the elongation rates and the plateau levels. For example, the average elongation 

rates at 12 min of the reaction (the turbidity values/time) were decreased to 50.0%, and 10.4% of the 

control at 20 (the green curve) and 40 (the blue curve) µM of As3+, respectively [Figure 5(A)]. The 

inhibition of MT assembly by As3+ was further confirmed by EM which showed significant reduction 

in the number of MT fragments in the presence of 40 µM As3+ [Figure 6(C)], amounting to 50% of the 

control [Figure 6(B)]. Importantly, addition of 1 mM dithiothreitol (DTT), a thiol reducing agent, to 

the reaction mixture strongly abolished the As3+ inhibitory effect on MT assembly as shown in the 

turbidity [the pink curve in Figure 5(B)] and EM assays [Figure 6(D)] reaching 95% (the turbidity 

assay) and 108% (the EM assay) of corresponding controls, respectively. Thus, As3+ inhibited MT 

polymerization in vitro and results provide a critical clue for the direct interaction of As3+ with tubulin 

-SH groups. 

Figure 5. As3+-inhibition of MT protein polymerization in vitro as revealed by the turbidity 

assay. The in vitro polymerization of MT proteins (0.8 mg/mL) in 0.1 M Pipes buffer,  

pH 6.6, containing 0.15 mM Mg2+, 0.15 mM EGTA and 500 µM GTP was monitored by 

turbidity readings at A350nm at 25 °C in the absence or presence of As3+ at indicated 

concentrations. Curves represent the time course of tubulin assembly under different 

conditions. (A) dose-dependent inhibition by As3+ of MT assembly. the black curve, 

control; the green curve, 20 µM As3+; the blue curve, 40 µM As3+. (B) DTT effects on As3+ 

inhibition of MT assembly. DTT (1 mM) was added after preincubation of polymerization 

mixture in the presence of As3+ for three min. the black curve, control; the brown curve, 1 

mM DTT; the blue curve, 40 µM As3+; the pink curve, 40 µM As3+ plus 1 mM DTT. 

 

To further assess As3+ binding to tubulin protein -SH groups, we also examined the competition of 

As3+ with N-ethylmaleimide (NEM), a sulfhyryl group reagent [21], for tubulin binding. “Pure” 

tubulin free of MAP (1.5 mg/mL) prepared from bovine brain was pretreated with As3+ at indicated 

doses for 2 h at 0 C, mixed with [3H]NEM (2 µCi/mL), and incubated for an additional 2 h at 37 C. 

Proteins were precipitated with 5% TCA and filtered. Radioactivities associated with collected proteins 

on the membrane were measured by -counting. As shown (Figure 7), As3+ decreased the binding of 
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[3H]NEM to tubulin with 50% inhibition occurring at 23 µM. This straightforward experiment shows 

As3+ binding to tubulin through -SH groups, initiating the cascade of MT disruption events. 

Figure 6. As3+-inhibition of MT protein polymerization in vitro as confirmed by EM 

examination. The in vitro MT polymerization was carried out as described in Figure 5. At 

the plateau level of the MT assembly (30 min after reaction), a 10 µL-drop of the reaction 

mixture was removed and processed for EM examination. (A) the absence of polymerized 

MTs at 0 min; (B) the typical morphology of in vitro assembled MTs at 30 min; (C) 40 µM 

As3+; (D) 40 µM As3+ plus 1 mM DTT. Photographs with a final magnification of 22,000 × 

observed under a Philips 300 transmission electron microscope. 

 

Figure 7. As3+ binding to tubulins through -SH groups as revealed by [3H]NEM binding 

assay. “Pure” tubulin free of MAP (1.5 mg/mL) prepared from bovine brain was pretreated 

with As3+ at indicated concentrations for 2 h at 0 C, mixed with [3H]NEM (2 µCi/mL), 

and incubated for an additional 2 h at 37 C. Proteins were precipitated with 5% TCA and 

filtered. Radioactivities coupled with collected proteins on the membrane were measured 

by β-counting. The significance of data presented was assessed by ANOVA analysis.  

* p < 0.05, ** p < 0.01 (n = 3). 
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Cellular thiols such as glutathione (GSH) and metallothionein are important in maintaining the 

integrity of cytoskeletal structures and functions [21,22]. Interaction with cellular thiols is the most 

important biological property of As3+ [12,27]. Thus, we further examined the levels of other cellular 

thiols such as metallothionein (I and II isoforms) and thiol-related protein such as the heavy chain of  

-GCS, a rate limiting enzyme for GSH synthesis [28], in As3+-exposed RFL6 cells. As shown  

(Figure 8), treatment of cells with As3+ at indicated concentrations induced a dose-dependent elevation 

of cellular levels of metallothionein [Figure 8(A)] and the -GCS heavy chain [Figure 8(B)].  

Thus, RFL6 cells exhibited a sensitive response to As3+ exposure in terms of altered cellular thiol 

homeostasis. 

Figure 8. As3+ enhanced expression of metallothionein and -GCS. Growth-arrested RFL6 

cells were treated with As3+ at indicated concentrations for 24 h and processed for Western blot 

analysis. (A) metallothionein (I and II); (B) -GCS heavy chain; actin as an internal control. 

 

Taxol is an MT stabilizing drug [13]. To assess taxol protective effect on As3+-induced MT injury, 

we examined MT organization in As3+-treated RFL6 cells in the presence or absence of taxol.  In 

comparison to the control [Figure 9(A)], treatment of cells with taxol at 20 µM induced MT bundling 

[Figure 9(B)]. As expected, 20 µM As3+ exposure for 24 h induced severe loss of cellular MTs  

[Figure 9(C)]. In contrast, co-incubation with 20 µM taxol prevented As3+-induced MT disruption 

[Figure 9(D)]. In addition, taxol also blocked disassembly of MTs induced by NEM (25 µM), a 

sulfhydryl group binding agent [21], which was used as a positive control in this experiment 

[comparing Figure 9(F), NEM + Taxol with Figure 9(E), NEM alone]. Thus, taxol antagonizes 

disassembly of MTs by thiol-bound agents such as As3+ and NEM. 

As3+ damage to the MT organization may be facilitated by alterations in MAPs which are important 

in maintaining the structural and functional integrity of MTs [29]. Because MTs are very sensitive to 

Ca2+, proteins released by Ca2+ extraction of the detergent resistant MTs of cells, by definition, contain 

tubulins and MAPs [25]. As analyzed by two-dimension (2-D) gels, quiescent RFL6 cells treated with 

5 µg/mL nocodazole, a MT disassembly agent, a positive control in this study, for 3 h, displayed 

marked reduction of MT proteins in association with disappearing several MAPs such as 50/6.5, 

53/6.5, 60/6.4, 62/6.3 and 86/6.5 (apparent MW in kDa/isoelectric point) indicated by arrowheads 

 



Int. J. Environ. Res. Public Health 2012, 9 486 

 

 

[compare Figure 10(D) with Figure 10(C)]. Similarly, cells incubated with 10 µM As3+ for 24 h 

exhibited a decrease in α and β tubulins and those MAPs sensitive to nocodazole [arrowheads in 

Figure 10(B)] in comparison to the control in the absence of As3+ treatment [Figure 10(A)]. Note that 

the internal control of actin was not significantly changed. Quantitative densitometric analysis 

indicated that the integrated intensities of MAPs 50/6.5, 53/6.5, 60/6.4, 62/6.3 and 86/6.5 were 

decreased to 44%, 49%, 15%, 48%, and 12% of the control, respectively. In view of the critical role of 

MAPs in the MT stability [29], decreases in the levels of several MAPs would contribute to MT 

instability favoring their disassembly.  

Figure 9. Taxol antagonistic effects on As3+-induced MT injury. Growth–arrested RFL6 

cells on coverslips were treated with As3+, NEM, or their combinations with taxol for 24 h, 

and then stained with an anti-β tubulin antibody-FITC to visualize MTs. (A) control cells; 

(B) cells treated with 20 µM taxol; (C) cells treated with 20 µM As3+; (D) cells treated with 

20 µM As3+ + 20 µM taxol; (E) cells treated with 25 µM NEM; (F) cells treated with  

25 µM NEM + 20 µM taxol. 
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Figure 10. 2-D gel profile of tubulins, MAPs, and other cytoskeletal proteins in As3+-treated 

cells. Growth-arrested RFL6 cells were labeled with [35S]methionine (50 Ci/mL) in the 

absence (A) or presence (B) of 10 µM As3+ for 24 h. Cells treated without (C) or with (D) 

5 µg/mL nocodazole, an MT depolymerization agent, at the last 3 h of the metabolic 

labeling, were used as a positive control. The MT protein-rich extracts with identical 

redioactivity from control and treated cells were processed for 2-D gel analysis (α, β and A 

indicate α tubulin, β tubulin and actin, respectively). For MAP nomenclature, e.g., 

MAP56/6.5, the numbers refer to their apparent molecular weight (MW in kDa) and 

isoelectric point (pI), respectively. Protein quantitation was measured by the 1 D Scan EX 

software. Arrowheads indicate altered MAPs. 

 

4. Discussion  

Our previous studies have shown As3+ perturbation of the cytoskeletal organization and cellular 

glutathione homeostasis in Swiss 3T 3 cells [21]. The lung is a major target organ for arsenic. In this 

report, we further evaluated As3+ effects on the organization of MTs, a critical element of the 

cytoskeleton, in vitro, in cultured rat fetal lung fibroblasts and in lungs of the animal model. RFL6 

cells were selected as an in vitro model in this study because they display a typical MT morphology 

sensitive to As3+ injury (Figure 1). Results indicated that As3+ disrupted MT assembly by targeting 
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tubulin sulfhytryl groups and MAPs, two major stabilizers of MTs. Our findings showing As3+-elicited 

biochemical pathology of MTs are summarized in Table 1. 

Table 1. Summary for As3+-elicited MT Biochemical Pathology. 

Figure# Stressor/antagonist System MT biochemical pathology by As3+ 
1 As3+ 5 µM, 20 µM. MTs in RFL6 cells. Disassembly of MTs. 
2 As3+ 10 µM. Spindle MTs and 

chromosomal patterns in 
RFL6 cells. 

Spindle MT deficiency, cell division 
aberration, chromosome clustering, 
scattering and lagging. 

3 As3+ 5 µM, 10 µM, 20 µM. Tubulin proteins and 
mRNA in RFL6 cells. 

Increasing free tubulin pool, decreasing 
polymer tubulins, inhibiting I tubulin 
mRNA. 

4 As3+ intratracheal instillation 
(2.02 mg As/kg body in the 
form of NaAsO2 in 100 μL 
physiological saline) once a 
week for 5 weeks. 

-tubulin protein and 
mRNA in the lung of rats. 

Inhibition of lung β-tubulin protein and 
mRNA levels. 

5 As3+ 20 µM, 40 µM, DTT  
1 mM. 

Bovine brain tubulin 
polymerization in vitro. 

Inhibition of MT polymerization  
in vitro and DTT abolishing As3+ 
effects assessed by turbidimetry. 

6 As3+ 40 µM, DTT 1 mM. Bovine brain tubulin 
polymerization in vitro. 

Inhibition of MT polymerization  
in vitro and DTT abolishing As3+ 

effects conformed by EM. 
7 As3+ 10 µM, 20 µM, 40 µM, 

[3H]NEM (2 µCi/mL). 
NEM binding to pure 
tubulins free of MAPs  
in vitro. 

Blocking NEM binding to tubulins. 

8 As3+ 5 µM, 10 µM, 20 µM. Metallothionein and -
GCS proteins in RFL6 
cells. 

Enhancement of -GCS and 
metallothionein expression. 

9 As3+ 20 µM, NEM 25 µM, 
taxol 20 µM. 

MTs in RFL6 cells. Taxol antagonized As3+ and  
NEM-induced MT disassembly. 

10 As3+ 10 µM, nocodazole  
5 µg/mL. 

Tubulins and MAPs in 
RFL6 cells. 

Suppression of tubulin and MAP 
expression, nocodazole as a  
positive control. 

Arsenic is a metalloid element existing in inorganic and organic forms and in different oxidative 

states (−3, 0, +3 and +5) which distribute in water, soil and air from nature and anthropogenic sources. 

High-level exposure to arsenic is involved in workers in metal smelting, wood preservation and 

semiconductor industries [1]. The acute inhalation of arsenic dust or fume resulted in gastrointestinal 

effects, and central and peripheral nervous disorders such as vomiting, diarrhea, bloody urine, anuria, 

shock, convulsion coma and death [1,30]. Chronic exposure to arsenic in humans, by inhalation and 

oral routes via contaminated water, food and air, are strongly associated with anemia, peripheral 

neuropathy, lesions and carcinogenesis in the lung, liver, bladder, skin, kidney, etc. [1]. As3+ is  

60-times more toxic than As5+ [31]. As3+ has a high affinity for sulfhydryl groups in proteins, such as 

enzymes, receptors or coenzymes. Binding of As3+ to critical thiol groups of proteins may be important 
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mechanism for As3+ toxicity [12,27]. Our previous and present studies showing As3+ depolymerization 

of MTs indicated that tubilin, a critical cell structure protein, is a target for As3+ insult. 

A dimeric tubulin molecule contains 20 cysteine residues (12 for α and eight for β), most of which 

are biochemically accessible. Maintenance of certain tubulin -SH groups in the reduced form is crucial 

for MT polymerization since their loss induces MT disassembly [32,33]. One such “assembly-critical”  

-SH group, for example Cys239, has been identified in -tubulin [33,34]. Cys239 mediates the lateral 

interaction of tubulin molecules required for MT assembly [33]. Thus, tubulin -SH groups are of a 

critical stabilizer for MTs. In this report, to identify the mechanism for As3+ depolymerization of MTs, 

we performed the in vitro MT polymerization assay using purified tubulins isolated from bovine brain. 

As3+ incubation with tubulin proteins inhibited MT assembly in vitro and DTT, a thiol-reducing agent, 

reversed the As3+ suppression of MT assembly (Figures 5 and 6) supporting As3+ interaction with 

tubulin -SH groups. One should be noted. As3+ concentrations used in this in vitro MT assembly study 

were higher than those used in cell culture studies. This is most likely due to: (1) low concentrations of 

MT proteins in cultured cells, and (2) more abundant MAPs in the bovine brain tissue compared to  

non-neural cells, e.g., fibroblasts [35]. As3+ doses used in present studies, i.e., 5–20 µM (0.374–1.498 ppm) 

for RFL6 cells, 10–40 µM (0.748–2.996 ppm) for in vitro tubulin polymerization assays, and 2.02 ppm 

for the rat animal model, are relevant to human exposure situation. The As content in the well drinking 

water of some areas in India reaches 3.4 ppm [36]. Furthermore, using the in vitro [3H]NEM binding 

competition assay (Figure 7) we demonstrated again As3+ binding to tubulin -SH groups. Decreases in 

[3H]NEM association with tubulins in the protein mixture preincubated with As3+ provided more direct 

evidence for As3+ targeting -SH groups of MT proteins initiating the MT injury cascade. More 

importantly, As exposure stimulates the formation of the reactive oxygen species (ROS) and activation 

of oxidative stress signaling such as the NF-kB pathway in the biological system [37] which act as an 

amplification system to further facilitate oxidation of sulfhydryl groups on tubulins and cell injuries. 

As reported, cells treated with hydrogen peroxide exhibited disruption of the MT cytoskeleton [38]. 

Our previous studies have shown As3+-induced a biphasic response in cellular glutathione (GSH), 

i.e., an initial decrease followed by a full restoration and overshooting. Inhibition of cellular GSH by 

buthionine sulfoximine (BSO), an inhibitor of GSH biosynthesis, apparently increased cell sensitivity 

to As3+ toxicity [21]. Since As3+ targets cellular thiols we also examined other thiol-containing 

molecules such as metallothionein as well as -GCS, a rate limiting GSH synthetase [28], in cell 

response to As3+. In this report, we illustrated As3+ enhanced expression of metallothionein and -GCS 

at the protein levels accompanied by depolymerization of MT. The metallothionein molecule with 20 

Cys residues can bind six As3+ while GSH binds As3+ to form As(SG)3 complex which favors 

transferring of As3+ to other thiol containing components [39,40]. Increased expression of -GCS as an 

upstream event is required for downstream enhancement of cellular GSH in cells treated with  

As3+ [21]. The metallothionein gene contains multiple copies of the metal responsive element (MRE) 

in its promoter region. MRE-binding transcription factor-1 (MTF-1), a zinc (Zn) finger protein, 

interacts with the MRE transactivating the metallothionein gene [41]. Zn also binds to tubulin proteins 

stimulating MT assembly in vitro. Tubulins isolated from brains of Zn-deficient animals showed an 

impaired ability for polymerization of MTs [42]. As3+ upregulated methallothioneins possibly by its 

binding to sulfhydryls of tubulins or other proteins releasing bound Zn ions that in turn enhance MTF-1 

affinity for MRE containing genes such as metallothionein [41]. The NF-E2-related factor-2 (Nrf2) 
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regulates antioxidant response element (ARE)-mediated expression of -GCS heavy subunit and other 

xenobiotic metabolizing enzymes. Nrf2 binds to the cysteine-rich keap1 protein in the actin filaments 

as an inactive form in the cytoplasm. Upon oxidative stress such as As3+ exposure, modification of 

cysteine residues in the Keap1 protein results in the Nrf2 release and nuclear localization for ARE 

binding and transactivation of the genes [43]. Elevation of cellular metallothionein and -GCS/GSH 

may be a critical detoxification mechanism against As3+ toxicity. 

Tubulin heterodimer binds two GTP molecules, one exchangeable in -tubulin and another one 

nonexchangeale in -tubulin. Upon polymerization, GTP bound to  tubulin is hydrolyzed to GDP by 

intrinsic tubulin GTPase activity. The resulting GDP-tubulin exhibits a reduced affinity for its 

neighbors and undergoes disassembly [35]. Thus, MTs exhibit dynamic equilibrium, growing and 

shrinking by the addition or loss of tubulin dimers from the ends of protofilaments. As3+ has been 

reported to inactivate the GTP binding site on tubulins, thus inhibiting the MT assembly in vitro [44]. 

The hydrolysis of GTP to GDP in β-tubulin increases the curvature of protofilaments, destabilizing 

MTs [45]. This suggests that modulating the curvature status of MTs can change its stability. Taxol 

binding to the β-tubulin subunit, specifically to peptides 1–31, 217–231 and 297–293 [46], has been 

shown to straighten the GDP protofilament and slow down the transition of protofilaments from straight 

to a curved configuration [45]. Taxol stabilization of MTs has been reported to resist depolymerization 

by Ca2+, cold temperature, dilution, etc. [47]. Here, we go on to demonstrate taxol antagonism on 

disassembly of MTs by sulfhydryl-directed agents such as As3+ and NEM. Presumably, As3+ binding 

to tubulin -SH-groups may enhance the curvature of protofilaments, thus instabilizing MTs.  

In addition to the tubulin dimer, MTs also contain several minor proteins, i.e., MAPs. The 

procedures for metabolic labeling, extraction with detergent and Ca2+, analysis of MAPs and other 

related proteins on 2-D gels have been used in different cells in response to different agents [25,48]. As 

shown in our studies, As3+ induced disassembly of MTs. Autoradiograms of proteins present in the MT 

fraction under As3+ treatment conditions were compared with its “control” profile derived from cells 

without As3+ treatment to identify subtle changes in protein molecular species. A protein that is present 

in cells with intact MT but changed or absent when intact MT no longer exist in such cells (such as 

nocodazole and As3+ treatments) fulfilling the operational definition of MAPs. Because of its high 

resolution, the quantitative 2-D gel electrophoresis has been the most powerful technique used for 

identifying unknown MAP proteins. With this 2-D gel system, several MAP proteins have been 

identified [25,48]. However, only five of them were decreased by >50% in cells exposed to 10 μM 

As3+ [Figure 10(B)], indicating that not all MAPs were equally susceptible to this trivalent metalloid 

element. MAPs exist only in minute amounts in non-neuronal cells. Based on their apparent MW and 

pI on 2-D gels, none of these MAPs (Figure 10) appeared to resemble any existing MAP reported in 

the literature. This is not surprising since most MAPs identified so far, such as MAP1, MAP2, MAP3, 

Tau family and 210 kD protein (MAP4), etc., are from either the brain tissue or cells of neural  

origin [29,49-51]. Notably, several MAP, e.g., MAP-2 and Tau proteins isolated from the brain tissue, 

stimulate MT assembly and enhance MT stability both in vitro and in vivo [29,50]. Thus, results in 

giving for inhibition of MAPs by As3+ would lead to the enhancement of MT instability. 

Immunohistochemical studies indicated severe loss of tubulin synthesis and distribution in  

As3+-dosed lungs [Figure 4(A2)]. Since absorbed As3+ is distributed throughout the body [5,6],  

all types of lung cells are targets for As3+ insult including interstitial fibroblasts. In view of MT 
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functions, loss of MTs/tubulins, a cell structural protein, may be a critical basis for As-induced lung 

pathology such as bronchiectasis, bronchitis, COPD, etc. Synthesis of tubulin is subjected to a novel 

feedback autoregulation, i.e., the level of the free tubulin pool directly controls the level of tubulin 

expression [52]. Thus, As3+ disrupts MTs increasing the free tubulin pool, as a result, inhibiting new 

tubulin synthesis. Our studies have shown As3+ downregulation of tubulin synthesis occuring at the 

mRNA level, i.e., marked reduction of steady-state I-tubulin expression in in vitro and in vivo models 

[Figures 3(B) and 4(B)]. As reported, the binding of tubulin subunits to the nascent N-terminal 

tetrapeptide (Met-Arg-Glu-Ile) of -tubulin triggers the adjacent ribosome to activate an RNase that 

degrades the polysome bound tubulin mRNA, inducing its destabilization [53]. In addition to its effects 

on tubulin mRNA stability, As3+ may also reduce tubulin mRNA initiation (synthesis) leading to low 

levels of steady-state tubulin mRNAs in lung cells and tissues.  

MTs play a fundamental role in regulation of cell division. Mitosis requires precise execution of a 

number of MT-based processes such as reduplication and splitting of the centrosome, assembly of a 

bipolar spindle, attachment of spindle MTs to chromosomes through kinetochores, tension generation 

on kinetochores by the dynamics of bipolar spindle MTs, and finally pulling each chromatid to one of 

the spindle poles [54]. An error in any step of such interdependent subcellular processes could perturb 

chromosomal organization, resulting in failure of mitosis. In this study we have observed cell division 

aberrations in the forms of chromosome lagging, scattering and clustering associated with spindle MT 

injury in the cell model following As3+ exposure (Figure 2). These characteristic chromosomal 

disorientations are also evident in cells treated with colchicine, an MT disassembly reagent [55]. 

Disassembly of all spindle MTs by As3+ may induce chromosomal scattering and clustering at 

metaphase while partial injure of spindle MT (such as disconnection of a few spindle fibers  

with chromosomes and/or monopole or multipoles, etc.) may lead to chromosomal lagging at 

anaphase/telophase. The latter appears to result from escaping the mitotic block (i.e., passing through 

metaphase) as seen [Figure 2(i)]. Importantly, lagging chromosomes are believed to induce  

aneuploidy [56], which is in turn closely related to tumorigenesis [57]. Oxidation and methylation 

status of As displayed various effects on the mitotic apparatus [58]. As3+-resulted in production of 

aneuploid cells was associated with disruption of both the MT assembly and the spindle formation [59]. 

Thus, As3+-induced disassembly of spindle MTs and aberrations in the cell division have a critical 

biological significance for human tumor pathogenesis. 

5. Conclusions  

Briefly, present studies demonstrate two molecular targets of MTs for As3+ insult, i.e., tubulin -SH 

groups and MAPs. As3+ binding to tubulin -SH groups and inhibition of MAPs enhanced MT 

instability leading to its disassembly. Increase in the free tubulin pool by As3+ as a result of MT 

disassembly triggered an autoregulation mechanism inducing inhibition of tubulin synthesis at protein 

and mRNA levels and thus further aggravating lung MT injury, which was accompanied by activation 

of cellular metallothionein and -GCS, a critical thiol defense mechanism. As3+ damage to MTs was 

antagonized by taxol. Cytoskeletal MT injury by As3+ may be a critical basis for pulmonary pathology. 

These findings are expected to provide a piece of information for preventing As3+ cellular toxicity in 

the lung. 
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