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Abstract: Peptides are important biomolecules which facilitate the understanding of complex
biological processes, which in turn could be serendipitous biological targets for future drugs. They are
classified as a unique therapeutic niche and will play an important role as fascinating agents in the
pharmaceutical landscape. Until now, more than 40 cyclic peptide drugs are currently in the market,
and approximately one new cyclopeptide drug enters the market annually on average. Interestingly,
the majority of clinically approved cyclic peptides are derived from natural sources, such as peptide
antibiotics and human peptide hormones. In this report, the importance of cyclic peptides is discussed,
and their role in drug discovery as interesting therapeutic biomolecules will be highlighted. Recently
isolated naturally occurring cyclic peptides from microorganisms, sponges, and other sources with a
wide range of pharmacological properties are reviewed herein.

Keywords: cyclic peptides; microorganisms; sponges; therapeutic agents; clinical trials; anticancer
activity; antimicrobial activity; antiviral activity

1. Introduction

Peptides are among the most important biomolecules in nature. This class of compounds has
gained special attention due to its remarkable variety of structures and valuable functions. Peptides
display enormous variation in terms of both structure and function as they act as neurotransmitters [1]
or as signalling molecules in the immune response [2] and hormones [3]. For instance, in higher
organisms, peptides can be expressed locally in a flexible manner [4] and under physiological
conditions, and their short half-lives facilitate quick removal after they have fulfilled their functions [5].
Cyclic peptides are polypeptide chains which are formed by amide bonds in a circular sequence
between proteinogenic or nonproteinogenic amino acids. Many cyclic peptides are found in nature
and several of them have been synthesized in the laboratory.

Cyclic peptides can play key roles in various processes and have excellent potential as therapeutics.
Examples of widely discovered cyclic peptide therapeutic agents are: the antibiotics vancomycin,
daptomycin, and polymyxin B; the hormone analogues oxytocin, octreotide, and vasopressin; and the
immunosuppressant cyclosporine [6,7].

Due to the favourable characteristics of cyclic peptides, such as low toxicity, good binding affinity,
and target selectivity, they are attractive candidates for the development of therapeutics [8,9]. Cyclic
peptides are more cell permeable and have better biological activity compared with their linear
counterparts due to their reduced conformational flexibility [10,11]. The rigidity of cyclic peptides play
an important role in decreasing the entropy term of the Gibbs free energy, allowing these molecules to
bind to multiple unrelated classes of receptors with very high affinity [11]. The privileged structures
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of cyclic peptides facilitate resistance to hydrolysis by exopeptidases because of the lack of both
amino and carboxyl termini. Additionally, they are resistant to endopeptidases, as the structure is
less flexible than their linear counterparts [12]. It is very interesting to note that cyclopeptides can
adopt β-sheet-like arrangements, which can stack to create hollow tubular ensembles through the
intermolecular hydrogen-bond network. Cyclic peptide nanoparticles and nanotubes have great
potential for a wide range of biomedical applications [13–15]. Naturally occurring cyclic peptides have
been isolated from plants [16], fungi [17,18], bacteria (including actinomycetes) [19–21], sponges [22],
algae [23,24], and mammals [25].

Most of the clinically developed cyclopeptides are derived from natural products. Based on
rational design, several recently approved powerful techniques were applied in addition to in vitro
evolution, which enhanced the development of cyclic peptides synthesized de novo to targets for
which nature does not offer solutions [8]. Some cyclic peptides from marine sources [26] have been
approved by the Food and Drug Administration (FDA) such as ziconotide, a cyclic peptide isolated
from the toxin of the cone snail species Conus magus [27]. Ziconotide is an analgesic drug used for
severe and chronic pain that works by selective blocking of N-type calcium channels which control
neurotransmission at many synapses [28].

In this mini review, the medicinal significance of naturally occurring cyclic peptides and their
important role as therapeutic agents and biochemical tools is documented. Recently isolated natural
cyclic peptides with antibacterial, antifungal, anticancer, antiviral, and other biological activities
documented within the last four years are discussed.

2. Examples of Previously Isolated Cyclic Peptides Used as Therapeutic Agents

Vancomycin, a glycopeptide antibiotic, is an inhibitor of cell wall synthesis in susceptible
organisms [29,30]. In addition to daptomycin, vancomycin is a first-line antibiotic choice for
methicillin-resistant Staphylococcus aureus (MRSA) bacteremia [31]. It is recommended for intravenous
administration as a standard therapy for patients with S. aureus bacteremia in complicated skin,
bloodstream infections, endocarditis, bone and joint infections, and meningitis [30,32]. Due to the
growing incidence of vancomycin-resistant bacteria [33,34], recent research resulted in the discovery
of a dipicolyl–vancomycin conjugate (Dipi-van). This conjugate can inhibit cell-wall biosynthesis
and enhance in vitro activity by more than two orders of magnitude higher than that of vancomycin
alone [35].

The hepta-N-methyl undecapeptide cyclosporin A was created by nature as an orally bioavailable
peptide drug [36]. Cyclosporin A has high membrane permeability, allowing it to cross the cell
membrane due to its several intramolecular hydrogen bonds which keep hydrophilic groups from the
surface of the molecule [11]. Cyclosporin was approved in 1983 as an immunosuppressive therapeutic
drug in patients undergoing organ and bone marrow transplants, subsequently revolutionizing organ
transplantation [37].

Romidepsin (also called FK-228, FR-901228, and Istodax) is a potent and selective histone
deacetylase (HDAC) inhibitor. It was discovered in the early 1990s while evaluating antimicrobial and
antitumour activities of fermentation products [38]. It has impressive clinical responses in patients
with relapsed/refractory peripheral T-cell lymphoma (PTCL), leading to its approval by the US FDA
in 2011 as an effective drug for PTCL in patients who have received at least one prior therapy [39].

Griselimycin is a macrocyclic poly-N-methylated depsipeptide discovered from Streptomyces
bacterial cultures [40]. The new optimized derivatives of griselimycin exhibit striking activity
in vitro and in vivo against Mycobacterium tuberculosis by inhibiting the DNA polymerase sliding
clamp DnaN [41]. Griselimycin and its derivatives are potential targets to be taken through to the
preclinical phase of drug development [42]. The structures of vancomycin, cyclosporin, romidepsin
and griselimycin were drawn in Figure 1 and their medicinal significance were listed in Table 1.
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Table 1. Previously discovered naturally occurring cyclopeptides and their medicinal significance. 

Cyclic 
Peptide 

Natural Source Medicinal Significance Mechanism of Action 

Vancomycin 
Amycolatopsis 

orientalis 

An antibiotic mostly active against 
Gram-positive microorganisms, 
including MRSA but not vancomycin-
resistant Enterococcus (VRE). It is used 
for bacterial prophylaxis in neurological, 
orthopedic, and vascular surgery. For 
patients who are allergic to penicillins 
and cephalosporins, it can be used as an 
alternative antibiotic [43].  

Inhibiting cell wall synthesis of bacteria by 
binding to the building blocks of 
peptidoglycan monomers of N-acetylmuramic 
acid and N-acetylglucosamine and blocking 
cross-linking of the peptidoglycan layer [44]. 

Cyclosporin 
A 

The fungus 
Tolypocladium 

inflatum 

Has potent immunosuppressive 
properties. It prevents graft-versus-host 
disease following transplantation, 
rejection of kidney, heart, and liver 
transplants [45]. 

It blocks the transcription of cytokine genes in 
activated T cells via the calcineurin-
phosphatase pathway [46]. It binds to the 
cytosolic protein cyclophilin of T cells and 
consequently leads to reduced T-cell function. 
It also binds to the cyclophilin D protein that 
constitutes part of the mitochondrial 
permeability transition pore (MPTP), which 
causes movement of calcium ions (Ca2+) into 
the mitochondria and causes the contraction of 
the muscle cells (heart) [47]. 

Romidepsin 
Chromobacterium 

violaceum 

A potent antitumor drug that reverses 
the malignancy of tumorigenic cell lines 
and induces apoptosis in malignant cell 
lines. 

Promotes acetylated histones H3 and H4 in the 
peroxiredoxin 1 (Prdx1) promoter (as a tumor 
suppressor), thus activating Prdx1 expression 
in tumor tissues and inhibiting tumour growth 
[48]. 

Griselimycin 
Streptomyces 

bacteria 

Griselimycin derivatives showed 
antibiotic activity in addition to 
oral bioavailability, absorption, and 
antitubercular activity [40]. Griselimycin 
exhibited formidable pharmacokinetic 
properties for its chemical class and size. 

Prevents DNA replication (known as sliding 
clamp) by inhibiting the interaction of the 
replicative DNA polymerase with the DNA 
polymerase beta subunit [41]. 
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Table 1. Previously discovered naturally occurring cyclopeptides and their medicinal significance.

Cyclic Peptide Natural Source Medicinal Significance Mechanism of Action

Vancomycin Amycolatopsis orientalis

An antibiotic mostly active against
Gram-positive microorganisms,
including MRSA but not
vancomycin-resistant Enterococcus
(VRE). It is used for bacterial
prophylaxis in neurological, orthopedic,
and vascular surgery. For patients who
are allergic to penicillins and
cephalosporins, it can be used as an
alternative antibiotic [43].

Inhibiting cell wall synthesis of bacteria by binding
to the building blocks of peptidoglycan monomers
of N-acetylmuramic acid and N-acetylglucosamine
and blocking cross-linking of the peptidoglycan
layer [44].

Cyclosporin A The fungus Tolypocladium
inflatum

Has potent immunosuppressive
properties. It prevents graft-versus-host
disease following transplantation,
rejection of kidney, heart, and liver
transplants [45].

It blocks the transcription of cytokine genes in
activated T cells via the calcineurin-phosphatase
pathway [46]. It binds to the cytosolic protein
cyclophilin of T cells and consequently leads to
reduced T-cell function. It also binds to the
cyclophilin D protein that constitutes part of the
mitochondrial permeability transition pore
(MPTP), which causes movement of calcium ions
(Ca2+) into the mitochondria and causes the
contraction of the muscle cells (heart) [47].

Romidepsin Chromobacterium
violaceum

A potent antitumor drug that reverses
the malignancy of tumorigenic cell lines
and induces apoptosis in malignant cell
lines.

Promotes acetylated histones H3 and H4 in the
peroxiredoxin 1 (Prdx1) promoter (as a tumor
suppressor), thus activating Prdx1 expression in
tumor tissues and inhibiting tumour growth [48].

Griselimycin Streptomyces bacteria

Griselimycin derivatives showed
antibiotic activity in addition to oral
bioavailability, absorption, and
antitubercular activity [40].
Griselimycin exhibited formidable
pharmacokinetic properties for its
chemical class and size.

Prevents DNA replication (known as sliding
clamp) by inhibiting the interaction of the
replicative DNA polymerase with the DNA
polymerase beta subunit [41].

3. Natural Cyclic Peptides and Analogues in Clinical Trials

More than 20 cyclic peptides have entered different phases in clinical trials. These compounds
were developed for a wide range of medical conditions, including hematological diseases and
cardiovascular disorders, many types of cancer, several infectious diseases, and endocrine/metabolic
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disorders. Many cyclic peptides, which are similar to those already approved, are analogues of natural
products from microorganisms or human hormones.

A number of natural cyclic peptides from marine sources are currently undergoing clinical
evaluation, such as kahalalide F, an anticancer cyclic tridecapeptide from a sacoglossan mollusk,
Elysia rufescens, and its diet alga Bryopsis pennata. Kahalalide F exhibited potent cytotoxic potential
against a panel of human prostate and breast cancer cell lines, with IC50 ranging from 0.07 (PC3)
to 0.28 µM [49,50]. Kahalalide F has reached clinical trials for the treatment of patients with solid
tumors such as melanoma, non-small lung cancer, and hepatocellular carcinoma [51,52]. Due to a
lack of antitumor activity, the trials were stopped. Fortunately, kahalalide F has appeared in recent
investigations of advanced solid tumor therapy in a phase I clinical trial [53].

The anticancer compound elisidepsin is an analogue of kahalalide F, which exhibited in vitro
activity against several tumor cell lines such as breast, colon, pancreas, prostate, and lung [54–56].
It showed promising results for further clinical studies of cancer therapy. Some clinical trials were
submitted, including a study of elisidepsin in patients with advanced solid tumors [57]. The anticancer
cyclic depsipeptide plitidepsin was isolated from the Mediterranean tunicate Aplidium albicans [58].
The chemical structure of plitidepsin closely resembles that of didemnin B, which has been submitted
to clinical trials for many cancer treatments [59–62]. The clinical trials were ended due to severe
fatigue and anaphylaxis experienced by patients [61,63]. Plitidepsin showed comparable levels to
didemnin B in the in vitro anticancer activity to tumor cell lines [63,64]. It is currently undergoing
phase I and II clinical trials. Results were announced in early 2016 following a small trial I for multiple
myeloma [65]. A marine cyanobacterium, Nostoc sp. ATCC 53789 and GSV 224, afforded a depsipeptide
cryptophycin, which is known as a potent fungicide [66]. It was discovered later that cryptophycin
bound to the microtubule ends at the vinca-binding domain and inhibited the formation of the mitotic
spindle. It showed strong anticancer activity against drug-resistant human cancer cell lines [67].
Cryptophycin-52, which is known as LY355703, is a synthetic derivative of the cryptophycin obtained
by chemical synthesis. It was reported in a preclinical study [68] that cryptophycin-52 enhanced
in vitro Bcl-2 hyperphosphorylation, cell cycle arrest, and reduced the growth of human non-small
cell lung carcinoma cells. In Phase II clinical trials of cryptophycin-52, promising results of antitumor
activity were found in patients with platinum-resistant advanced ovarian cancer [69] in addition to
patients with advanced non-small cell lung cancer [70].

4. Recently Reported Naturally Occurring Bioactive Cyclopeptides Covering 2014–2018

4.1. Antibacterial Cyclic Peptides

The antibacterial cyclic peptides, pargamicins B, C, and D, were discovered from the fermentation
broth of the soil actinomycete strain Amycolatopsis sp. ML1-hF [71].

Pargamicins A and C showed remarkable antibacterial activity against Gram-positive bacteria,
including methicillin resistant S. aureus and vancomycin-resistant enterocci (VRE), which are the
two most common healthcare-associated multidrug-resistant organisms. Moreover, the antibacterial
activity of pargamicins B and D against these bacteria was weak. Pargamicins C and D, which have a
polar group in the northern region of piperazic acid (Pip), showed 4- to 8-fold weaker activity against
staphylococci than against enterococci. Additionally, pargamicins A and B exhibited the same activity
against staphylococci and enterococci. The study reported that the presence of polar groups in the
northern region of Pip may be responsible for the interaction with the staphylococcal membrane.
Pargamicins were inactive against Gram-negative bacteria [55].

The antibacterial cyclic depsipeptide rakicidin F was isolated from the marine sponge-derived
actinomycete strain Streptomyces sp. GKU 220 [72]. In the antimicrobial activity assay, rakicidin F had
growth inhibitory activity against Bacillus subtilis and Escherichia coli at a dosage of 25 µg per disk.

A cyclic pentapeptide named asperpeptide A cyclo(-Pro-Ala-Ala-Tyr-5-OHAA) was obtained
from the gorgonian-derived fungus Aspergillus sp. XS-20090B15. Asperpeptide A showed antibacterial
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activity against Bacillus cereus and Staphylococcus epidermidis with the same MIC value of 12.5 µM [73].
Recently isolated antibacterial cyclic peptides were listed in Figure 2.
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4.2. Antifungal Cyclic Peptides

An antifungal cyclic tetrapeptide, cyclo-(L-leucyl-trans-4-hydroxy-L-prolyl-D-leucyl-trans-
4hydroxy-L-proline), was obtained from the coculture broth of two mangrove fungi, Phomopsis sp. K38
and Alternaria sp. E33. [74]. This compound showed moderate to high inhibitory activity against four
crop-threatening fungi with MIC values of 220, 160, 130, and 250 µg/mL against Gaeumannomyces
graminis, Rhizoctonia cerealis, Helminthosporium sativum, and Fusarium graminearum, respectively,
compared with triadimefon. A cyclic depsilipopeptide colisporifungin was discovered from the
liquid culture broths of the hitherto unstudied fungus Colispora cavincola following a Candida albicans
whole-cell assay and a bioassay to discover the potential antifungal compound caspofungin [75].

A dose of 2 µg/mL of colisporifungin induced the antifungal activity of caspofungin against the
pathogenic fungus Aspergillus fumigatus, which dropped the IC50 of caspofungin from ~33 to 6.2 nM,
in a 5.3-fold increase in potency. Moreover, a dose of 1 µg/mL colisporifungin decreased the IC50 of
caspofungin when tested against C. albicans [58].

Theonellamide G was isolated from the marine sponge Theonella swinhoei located in the Red Sea
coast, Hurghada, Egypt. The bicyclic glycopeptide theonellamide G exhibited both antifungal and
cytotoxic activities. It has potent antifungal potential against wild and amphotericin B-resistant strains
of C. albicans with IC50 of 4.49 and 2.0 µM, respectively. Moreover, it possesses cytotoxic activity
against the human colon adenocarcinoma cell line (HCT-16) with IC50 of 6.0 µM [76,77].

An antifungal cyclic hexapeptide named ASP2397 was produced by Malaysian leaf litter
Acremonium persicinum MF-347833 [78]. This compound is similar to ferrichrome, a hydroxamate
siderophore due to its ability to chelate aluminum ion. However, ASP2397 differs structurally from
licensed antifungal agents such as amphotericin B, triazoles, and echinocandins. Four synthetic
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derivatives of ASP2397 were isolated from the culture broth and the metal-free form was converted
chemically to other derivatives. Although ASP2397 differs structurally from the famous antifungal
drugs such as amphotericin B, triazoles, and echinocandins. It exhibits potential activity against
Aspergillus species and was found to be not cytotoxic to mammalian cells at concentrations as high as
50 µg·mL−1 and as also more soluble than the other derivative AS2529132. Therefore, ASP2397 was
selected as a potential candidate for determination of its in vitro and in vivo activities.

Three cyclic pentapeptides named as Cyclo-(L-Leu-L-Leu-D-Leu-L-Leu-L-Ile),
Cyclo-(L-Leu-L-Leu-D-Leu-L-Leu-L-Val), and Cyclo-(L-Leu-L-Leu-D-Leu-L-Leu-L-Leu) were
delivered from the endophytic fungus Fusarium decemcellulare LG53, harbored in a Chinese medicinal
plant Mahonia fortunei [79]. The three pentapeptides possessed moderate inhibitory effects towards
three plant pathogenic fungi including Aphanomyces cochlioides, Pythium ultimum, and Rhizoctonia solani.
Recently isolated antifungal cyclic peptides were drawn in Figure 3.
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4.3. Anticancer Cyclic Peptides

Two cyclotetrapeptides, named cyclo-(Leu-Pro-Ile-Pro) and cyclo(Tyr-Pro-Phe-Gly), were isolated
from the deep-sea bacterium Bacillus amyloliquefaciens GAS 00152 collected from the South China Sea
deep-sea sediment [17,80].

The cytotoxicities of cyclo-(Leu-Pro-Ile-Pro) and cyclo(Tyr-Pro-Phe-Gly) were assayed in vitro
against the HepG2 and HeLa cell lines using the MTT method. Cyclo-(Leu-Pro-Ile-Pro) was cytotoxic
with IC50 values of 26.6 and 34.7 µM, respectively. The values of cyclo(Tyr-Pro-Phe-Gly) were 38.2 and
46.1 µM, respectively.

Wewakazole B, an antitumor cyanobactin, was isolated from the cyanobacterium Moorea producens
collected in the Red Sea. The structure was elucidated by means of NMR and MS techniques [81].
Wewakazole B showed cytotoxic activity against human MCF-7 breast cancer cells (IC50 = 0.58 µM)
and human H460 lung cancer cells (IC50 = 1.0 µM) and was inactive in a siderophore assay.

The cyclotripeptide psychrophilin E was produced by a coculture of two marine alga-derived
fungal strains of Aspergillus [82]. It showed selective antiproliferative activity towards the HCT116
(colon) cell line with IC50 values of 28.5 µM compared with cisplatin as a positive control (IC50 33.4 µM).
A cyclohexapeptide, similanamide, was obtained from the culture of the marine sponge-associated
fungus Aspergillus similanensis KUFA 0013 [83]. Similanamide showed weak anticancer activity
against MCF-7 (breast adenocarcinoma, GI50 = 125 ± 0), NCI-H460 (non-small cell lung cancer,
GI50 = 117.50 ± 3.55), and A373 (melanoma, GI50 = 115 ± 7.07) cell lines, and it was inactive in
the antibacterial bioassay.

A cyclic pentapeptide known as disulfide cyclo-(Leu-Val-Ile-Cys-Cys) and named malformin
E, along with 13 known cyclic dipeptides, was obtained from the culture broth of the endophytic
fungus Aspergillus tamarii harbored by Ficus carica. Malformin had potent anticancer activities towards
the human cancer cell strains MCF-7 and A549, with IC50 values of 0.65 and 2.42 µM, respectively.
It also showed potential antibacterial activities against B. subtilis, S. aureus, Pseudomonas aeruginosa,
and E. coli and antifungal potential against Penicillium chrysogenum, C. albicans, and Fusarium solani,
with MIC values of 0.91, 0.45, 1.82, 0.91, 3.62, 7.24, and 7.24 µM, respectively [84]. Unprecedented
highly N-methylated cyclic octadecapeptides named as gymnopeptides A and B were isolated from the
mushroom Gymnopus fusipes. Gymnopeptides A and B showed impressive antiproliferative activity on
several human cancer cell lines including cervical (HeLa), skin epidermoid (A431), and breast (T47D,
MCF7, and MDAMB-231) cell lines, with nanomolar IC50 values [85]. Although both compounds were
at least two orders of magnitude more efficient than that of the reference compound cisplatin, the study
reported that gymnopeptide B is more potent than gymnopeptide A. These compounds highlighted
the importance of mushroom cyclopeptides [86].

The cyclic tetrapeptides pseudoxylallemycins A–F, with rare allenyl modifications, were obtained
from Pseudoxylaria sp. X802, which is known as a competitor of Fungus-Growing Termite Cultivars [87].
Pseudoxylallemycins A–F have antiproliferative activity towards human umbilical vein endothelial
cells (HUVEC) and K-562 cell lines, with GI50 values of 4.2 µg/mL(K-562 forpseudoxylallemycin C) to
42.8 µg/mL (K-562 for pseudoxylallemycin D), in addition to cytotoxic activity (HeLa cells) with a
CC50 value as low as 10.3 µg/mL (for pseudoxylallemycin C). Additionally, they showed antimicrobial
activity against the Gram-negative human-pathogenic P. aeruginosa.

The marine sponge Reniochalina stalagmitis, collected from Yongxing Island in the South China
Sea, delivered five cyclic peptides (including four heptapeptides and one octapeptide), named
reniochalistatins A–E [88]. Reniochalistatins A–E were tested towards five different human cancer
cell lines (RPMI-8226, MGC-803, HL-60, HepG2, and HeLa). Interestingly, the cyclic octapeptide
reniochalistatin E exhibited biological activity towards myeloma RPMI-8226 and gastric MGC-803 cells
with IC50 values of 4.9 and 9.7 µM, respectively. Additionally, it was inactive against leukemia HL-60
and hepatoma HepG2 (IC50 > 20.0 µM) and cervical HeLa (IC50 >17.3 µM) cells.

The four heptapeptides (A–D) were inactive against the tested cell lines. This report has drawn
attention to the marine secondary metabolites from the sponges of the genus Reniochalina, which was



Molecules 2018, 23, 2080 8 of 19

previously dominated by dihydrothiopyranone, fatty acids, and acetylenic alcohols [89–91]. Recently
isolated anticancer cyclic peptides were listed in Figure 4.Molecules 2018, 23, x FOR PEER REVIEW  8 of 18 

 

 
 
 
 

 

 

N
H

N
H

O
N

O

O
NO

N
H

O

N

O

NH
O

N
O

NH N

OO

O

O

NNH

 
cyclo-(Leu-Pro-Ile-Pro) cyclo-(Tyr-Pro-Phe-Gly) Wewakazole B 

TryPro

NHO

O

NH

O

N

NH

O

Abz  

D-AlaL-MeLeu

L-Leu

D-Val

Anthranilic acid

N
HN NH

NH
N
H

O
O

O

O

N O

O

L-Pip

 

NH

NH

NH

NH

N
H

O

O

O

O

O

S

S

 

Psychrophilin E Similanamide Malformin E 
NMVal4 Val5 NMVal6 Ala7 NMVal8 Val9 Sar10Val3

NMVal2

Ser1/Thr1

O
N
H

N
N
H O

N
N
H O

N
N
H O

N
O O O

N

OO

N

O

R

OH O
N

O
N N

N
H

O

N
H

N
H

N
H O O

O

O

N O

NMVal18 Ala17 NMVal16 Ala15 Sar14 Val13
NMAla12

NMVal11

 
Gymnopeptides A and B 

NH

NNH

N

O

O

O

O

 
NH

NNH

N

O

O

O

O

O

O

 

NH

NNH

N

O

O

O

O

R

O

 

Pseudoxylallemycin A  Pseudoxylallemycin B Pseudoxylallemycin C 
R=H 

Pseudoxylallemycin D 
R=OH 

Figure 4. Cont.



Molecules 2018, 23, 2080 9 of 19

Molecules 2018, 23, x FOR PEER REVIEW  9 of 18 

NH

NNH

N

O

O

O

O

O

 
NH

NNH

N

O

O

O

O

O

O

 

L-Pro1

trans

L-Ile2

L-Leu

L-Trp

L-Ile1

L-Val

NH
O

N

O

NH

H

O

O

N

NH
O

NH

O

N

O
NH

O

N
H

H

L-Pro2

trans

L-Pro3

trans

 
Pseudoxylallemycin E Pseudoxylallemycin F Reniochalistatin E 

Figure 4. Recently isolated anticancer cyclic peptides. 

4.4. Recently Antiviral Isolated Cyclic Peptides 

A pentacyclic peptide named aspergillipeptide D was isolated from a culture broth of the marine 
gorgonian-derived fungus Aspergillus sp. SCSIO 41501 [92]. Aspergillipeptide D exhibited good 
antiviral activity towards herpes simplex virus type 1 (HSV-1), with IC50 values of 9.5 µM under their 
noncytotoxic concentrations (TC0) against a Vero cell line with TC0 and TC50 values of 81.9 and 204.4 
µM, respectively. It also showed antiviral activity towards acyclovir-resistant clinical isolates of HSV-
1-106 and HSV-1-153 at a concentration of 12.5 µM with about 50% inhibition rate. The cyclic peptides 
simplicilliumtides J–M were identified along with a linear peptide and other known analogues 
verlamelins A and B from the deep-sea-derived fungal strain Simplicillium obclavatum EIODSF 020. 
Simplicilliumtide K exhibited significant antiviral activity toward HSV-1 with IC50 value of 14.0 µM, 
and it also showed antifungal activity against Aspergillus versicolor and Curvularia australiensis [93]. 
Recently isolated antiviral cyclic peptides were drawn in Figure 5. 

L-Val

L-Pro

N-Me-D-Tyr

O-Me-L-Tyr

O-Me-L-Tyr

O

NH

N O

OH

N
H

O

N

O

O

O O

 

N
H

O
O

NH

O

OH
ONH2

O

R2

R3

N
H

O
OH R1

NH

O

O N
N
HO

D-Tyr

L-Gln

L-Val / L-allo-Ile

L-Pro

D-Ala

D-allo-Thr

 

Aspergillipeptide D S im plicillium tide J R 1=R 2=C H 3, R 3=

S im plicillium tide K  R 1=C H 3, R 2=H , R 3=

S im plicillium tide L R 1=C H 3, R 2=H , R 3=
OO

 

Figure 4. Recently isolated anticancer cyclic peptides.

4.4. Recently Antiviral Isolated Cyclic Peptides

A pentacyclic peptide named aspergillipeptide D was isolated from a culture broth of the marine
gorgonian-derived fungus Aspergillus sp. SCSIO 41501 [92]. Aspergillipeptide D exhibited good
antiviral activity towards herpes simplex virus type 1 (HSV-1), with IC50 values of 9.5 µM under
their noncytotoxic concentrations (TC0) against a Vero cell line with TC0 and TC50 values of 81.9 and
204.4 µM, respectively. It also showed antiviral activity towards acyclovir-resistant clinical isolates of
HSV-1-106 and HSV-1-153 at a concentration of 12.5 µM with about 50% inhibition rate. The cyclic
peptides simplicilliumtides J–M were identified along with a linear peptide and other known analogues
verlamelins A and B from the deep-sea-derived fungal strain Simplicillium obclavatum EIODSF 020.
Simplicilliumtide K exhibited significant antiviral activity toward HSV-1 with IC50 value of 14.0 µM,
and it also showed antifungal activity against Aspergillus versicolor and Curvularia australiensis [93].
Recently isolated antiviral cyclic peptides were drawn in Figure 5.
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4.5. Cyclic Peptides with Diverse Biological Activities

Bioactive cyclic hexapeptides anabaenopeptins (1–5) were isolated from an extract of Baltic Sea
cyanobacterial bloom material contained of Nodularia spumigena (50%), Aphanizomenon flos-aquae
(40%), and Dolichospermum spp. (10%) by preparative reversed-phase high performance liquid
chromatography (HPLC) [94]. The five anabaenopeptins showed inhibitory activity against
carboxypeptidase A (apart from one anabaenopeptin variant) in addition to protein phosphatase
1 with different potency. None of the compounds exhibit inhibitory activity against chymotrypsin,
trypsin, and thrombin.

Two cyclic peptides, named pentaminomycins A and B, were obtained from cultures of
Streptomyces sp. RK88-1441. Pentaminomycin A inhibited α-MSH-stimulated melanin synthesis
by slowing the expression of melanogenic enzymes such as tyrosinase, tyrosinase-related protein-1
(TRP-1), and tyrosinase-related protein-2 (TRP-2) [95].

The marine-derived fungus Stachylidium sp. was isolated from the sponge Callyspongia sp. cf.
C. flammea afforded two cyclic tetrapeptides, bearing a very rare amino acid 3-(3-furyl)-alanine, and
these were named endolides A and B. Radioligand binding assays were performed and endolide A
had affinity to the vasopressin receptor 1A with a Ki of 7.04; additionally, endolide B showed affinity
toward the serotonin receptor 5HT2b with a Ki of 0.77 µM [96].

Four cyclic tetrapeptides, named as psychrophilins E-H, were isolated from the marine-derived
fungus Aspergillus versicolor ZLN-60. They are rare fungal cyclic peptides, which have amide groups
consisting of anthranilic acid and indole moieties in the macrocycle. Psychrophilin G exhibited potent
lipid-lowering effects. Recently isolated cyclic peptides with diverse biological activities were drawn
in Figure 6.
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4.6. Cyclic Peptides with No Reported Biological Activity

Cyclic tetrapeptides auxarthrides A and B were obtained from cultures of the coprophilous
fungus Auxarthron pseudauxarthron [97]. These compounds were inactive in the antifungal bioassay
and against cancer cell lines. A cyclic heptapeptide, talarolide A, was isolated from an Australian
marine tunicate-associated fungus, Talaromyces sp. (CMB TU011), by following a miniaturized
24-well plate microbioreactor approach. The compound was tested for anticancer activity towards
human embryonic kidney (HEK-293) and colorectal (SW-620) adenocarcinoma cells. It was also
tested for antimicrobial potential against Candida albicans (ATCC 90028), the Gram-negative bacteria
Escherichia coli (ATCC 11775) and Pseudomonas aeruginosa (ATCC 10145), and the Gram-positive bacteria
Staphylococcus aureus (ATCC 9144 and ATCC 25923) and Bacillus subtilis (ATCC 6633 and ATCC
6051), but unfortunately, it was inactive (IC50 > 30 µM). The study suggested that it may have a
specialized ecological purpose [98]. The endophytic fungus Penicillium tropicum, which harboured
Sapium ellipticum, afforded a cyclohexapeptide penitropeptide. The compound was tested for its
cytotoxic and antibacterial activities, but it was inactive [99].

The cyclotetrapeptides sartoryglabramides A and B were isolated from the marine
sponge-associated fungus Neosartorya glabra KUFA 0702. Both compounds were inactive in the
antimicrobial bioassay [82]. Cyclic heptapeptides, mortiamides A–D, were isolated from a Mortierella
sp. isolate which was found in marine sediment collected from the intertidal zone of Frobisher Bay,
Nunavut, Canada. None of these compounds exhibited antimicrobial or cytoxic activities [100].

A cyclic pentapeptide named MBJ-0174 was isolated, together with a linear peptide MBJ-0173,
from the culture broth of Mortierella alpina f28740 derived from a soil sample collected in Ise, Japan [101].
The compound did not show antimicrobial or cytotoxic activities. Recently isolated cyclic peptides
with no reported biological activity were drawn in Figure 7.

Molecules 2018, 23, x FOR PEER REVIEW  12 of 18 

 

4.6. Cyclic Peptides with No Reported Biological Activity 

Cyclic tetrapeptides auxarthrides A and B were obtained from cultures of the coprophilous 
fungus Auxarthron pseudauxarthron [97]. These compounds were inactive in the antifungal bioassay 
and against cancer cell lines. A cyclic heptapeptide, talarolide A, was isolated from an Australian 
marine tunicate-associated fungus, Talaromyces sp. (CMB TU011), by following a miniaturized 24-
well plate microbioreactor approach. The compound was tested for anticancer activity towards 
human embryonic kidney (HEK-293) and colorectal (SW-620) adenocarcinoma cells. It was also tested 
for antimicrobial potential against Candida albicans (ATCC 90028), the Gram-negative bacteria 
Escherichia coli (ATCC 11775) and Pseudomonas aeruginosa (ATCC 10145), and the Gram-positive 
bacteria Staphylococcus aureus (ATCC 9144 and ATCC 25923) and Bacillus subtilis (ATCC 6633 and 
ATCC 6051), but unfortunately, it was inactive (IC50 > 30 µM). The study suggested that it may have 
a specialized ecological purpose [98]. The endophytic fungus Penicillium tropicum, which harboured 
Sapium ellipticum, afforded a cyclohexapeptide penitropeptide. The compound was tested for its 
cytotoxic and antibacterial activities, but it was inactive [99]. 

The cyclotetrapeptides sartoryglabramides A and B were isolated from the marine sponge-
associated fungus Neosartorya glabra KUFA 0702. Both compounds were inactive in the antimicrobial 
bioassay [82]. Cyclic heptapeptides, mortiamides A–D, were isolated from a Mortierella sp. isolate 
which was found in marine sediment collected from the intertidal zone of Frobisher Bay, Nunavut, 
Canada. None of these compounds exhibited antimicrobial or cytoxic activities [100]. 

A cyclic pentapeptide named MBJ-0174 was isolated, together with a linear peptide MBJ-0173, 
from the culture broth of Mortierella alpina f28740 derived from a soil sample collected in Ise, Japan 
[101]. The compound did not show antimicrobial or cytotoxic activities. Recently isolated cyclic 
peptides with no reported biological activity were drawn in Figure 7. 

NH

NHN

N

O

O

O

O

R

 

N-Me-D-Ala N-Me-L-Tyr

NH

N
N

O

O N OH

O

N
O

O

NH O

O

OH

NH D-allo-Ile

D-Ala

N-Me-D-Leu

N-OH-Gly

 
Auxarthride A R=H 

Auxarthride B R=CH3 
Talarolide A 

Gly1

Phe2N
HNH NH

NH N

O
O

O

ON
H

O ONTrp5

Pro4

Pro3

Leu6

CH4  

N
H

N

NH N
H

O OO
O

 

Penitropeptide Sartoryglabramide A 

  
Figure 7. Cont.



Molecules 2018, 23, 2080 13 of 19

Molecules 2018, 23, x FOR PEER REVIEW  13 of 18 

 

N
H

N

NH N
H

O OO
O

NH

 

N
H

N
H

NHNH

O

O

N
H

O

RO

O

N
H

ONH
O

 

Sartoryglabramide B Mortiamide A R=CH(CH3)2 

Mortiamide B R=C6H5 

N
H

N
H

NHNH

O

O

N
H

O

O

O

N
H

ONH
O

 

N
H

N
H

NH

O

O

NH

NH

OO

N
H

O

NH

O
O

 
Mortiamide C Mortiamide D 

 
MBJ-0174 

Figure 7. Recently isolated cyclic peptides with no reported biological activity. 

5. Conclusions and Future Perspectives 

For a long time, much attention has been paid to cyclic peptides derived from natural sources 
due to their therapeutic potential. In this context, microbial cyclic peptides have brought chemical 
templates for clinically potent lead compounds to the attention of the pharmaceutical industry. 
Several cyclic peptides and analogues derived from marine sources exhibited different biological 
activities, including anticancer, antimicrobial, antiparasitic, anti-inflammation, antiproliferative, and 
anti-hypertensive properties. Cyanobacteria too are excellent sources of structurally diverse marine 
cyclic peptides with a broad range of pharmacological properties. It is important to mention that 
marine peptides and analogues have high commercial value and have entered the nutraceutical and 
pharmaceutical markets. Several of them are in different stages of the clinical and preclinical pipeline. 
Various recently isolated cyclic peptides obtained from fungi and marine sources exhibited 
interesting biological activities. Examples of these include potent anticancer compounds active 
against several cancer cell lines and gymnopeptides A and B from the mushroom G. fusipes. The 
antibacterial pseudoxylallemycins A–F from Pseudoxylaria sp. X802 with rare allenyl modifications 
have interesting properties. The antifungal cyclic hexapeptide ASP2397 from A. persicinum was 
reported to be a potential therapeutic drug, but further studies are required to elucidate its antifungal 
mechanisms as well as its derivatives. An interesting cyclic pentapeptide, a disulfide cyclo-(Leu-Val-
Ile-Cys-Cys) malformin E, isolated from the culture broth of endophytic fungus A. tamarii exhibited 
potent anticancer as well as antimicrobial activities. The marine-derived fungus Stachylidium sp. 
delivered endolides A and B, which showed affinity to the vasopressin receptor 1A and serotonin 

Figure 7. Recently isolated cyclic peptides with no reported biological activity.

5. Conclusions and Future Perspectives

For a long time, much attention has been paid to cyclic peptides derived from natural sources
due to their therapeutic potential. In this context, microbial cyclic peptides have brought chemical
templates for clinically potent lead compounds to the attention of the pharmaceutical industry.
Several cyclic peptides and analogues derived from marine sources exhibited different biological
activities, including anticancer, antimicrobial, antiparasitic, anti-inflammation, antiproliferative, and
anti-hypertensive properties. Cyanobacteria too are excellent sources of structurally diverse marine
cyclic peptides with a broad range of pharmacological properties. It is important to mention that
marine peptides and analogues have high commercial value and have entered the nutraceutical
and pharmaceutical markets. Several of them are in different stages of the clinical and preclinical
pipeline. Various recently isolated cyclic peptides obtained from fungi and marine sources exhibited
interesting biological activities. Examples of these include potent anticancer compounds active against
several cancer cell lines and gymnopeptides A and B from the mushroom G. fusipes. The antibacterial
pseudoxylallemycins A–F from Pseudoxylaria sp. X802 with rare allenyl modifications have interesting
properties. The antifungal cyclic hexapeptide ASP2397 from A. persicinum was reported to be a potential
therapeutic drug, but further studies are required to elucidate its antifungal mechanisms as well as its
derivatives. An interesting cyclic pentapeptide, a disulfide cyclo-(Leu-Val-Ile-Cys-Cys) malformin E,
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isolated from the culture broth of endophytic fungus A. tamarii exhibited potent anticancer as well
as antimicrobial activities. The marine-derived fungus Stachylidium sp. delivered endolides A and
B, which showed affinity to the vasopressin receptor 1A and serotonin receptor 5HT2b, respectively,
in radioligand binding assays. Interestingly, psychrophilins E-H, which were discovered from the
marine-derived fungus Aspergillus versicolor ZLN-60, are rare fungal cyclic peptides, which have amide
groups consisting of anthranilic acid and indole moities in the macrocycle. Psychrophilin G exhibited
potent lipid-lowering effects.

Hence, fractionation and structure elucidation of active secondary metabolites is urgently needed.
It is important to note that isolation of bioactive natural products has become more difficult because
traditional methods typically lead to known metabolites. Developing new dereplication procedures
should be followed in addition to employing novel techniques and strategies in chemical, biological,
and biotechnological screening. It is very important to describe a systematic assessment of natural
species abundance as a constructive step in the discovery of novel cyclic peptides. Successful
approaches and strategies such as discovery of new taxa, unculturable microorganisms, mixed
fermentation, and genome mining could have an important impact on the discovery of interesting and
useful cyclic peptides.
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