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Abstract

The study aimed to establish a machine learning–based scoring nomogram for

early recognition of likely pressure injuries in an intensive care unit (ICU)

using large-scale clinical data. A retrospective cohort study design was

employed to develop and validate a top-performing clinical feature panel

accessibly in the electronic medical records (EMRs), which was in the mode of

a quantifiable nomogram. Clinical factors regarding demographics, admission

cause, clinical laboratory index, medical history and nursing scales were

extracted as risk candidates. The performance improvement was based on the

application of the machine learning technique, comprising logistic regression,

decision tree and random forest algorithm with five-fold cross-validation

(CV) technique. The comprehensive assessment of sensitivity, specificity and

the area under the receiver operating characteristic curve (AUROC) was con-

sidered in the evaluation of predictive performance. The receiver operating

characteristic curves revealed the top performance for the logistic regression

model in respect to machine learning improvement, achieving the highest sen-

sitivity and AUC among three types of classifiers. Compared against the

23-point Braden scale routinely recorded online, an incorporated nomogram of

logistic regression model and Braden scale achieved the best performance with

an AUC of 0.87 ± 0.07 and 0.84 ± 0.05 in training and test cohort, respectively.

Our findings suggest that the machine learning technique potentiated the lim-

ited predictive validity of routinely recorded clinical data on pressure injury

development during ICU hospitalisation. Easily accessible electronic records

held the potentials to substitute the traditional Braden score in the prediction

of pressure injury in intensive care unit. Preoperative prediction of pressure

injury facilitates the exemption from the severe consequences.

Abbreviations: AUROC, area under the receiver operating characteristic curve; CV, cross validation; DCA, decision curve analysis; EMR, electronic
medical record; ICU, intensive care unit; PI, pressure injury.
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Key Messages
• easily accessible electronic records held the potentials to substitute the tradi-

tional Braden score in the prediction of pressure injury in intensive
care unit

• preoperative prediction of pressure injury facilitates the exemption from the
severe consequences

1 | INTRODUCTION

Pressure injury (PI), defined as the local damage to the
skin and underlying soft tissue owing to the prolonged
pressure, still hangs in doubt in the medical field.1 PIs
were reported to frequently occur in the intensive care
unit (ICU) department, where patients undertook a
heavy burden in both expenditure and life.2,3 Considering
the burdensome consequences of PI, particularly in ICU,
it is compelling to identify the most relevant risk factors
and perform etiological prevention.4,5

An upsurge of PI incidence in aggressive ICU was
observed in recent years.6 Owing to the abysmal progno-
sis and curative rates, there was a diffuse thought to take
a holistic preventive approach, particularly in the nursing
field.7,8 The Braden scale to predict and assess the haz-
ards developing PIs is worldwide used in nowadays clini-
cal settings, which was attributed to a kind of bedside
nursing.9 This scale constituted of six subscales, including
activity-, friction-, mobility-, moisture-, nutrition- and
sensory perception-related scoring.10 However, the
Braden scale demonstrated an insufficient performance
and labour-consuming trait, so that numerous studies
devoted to finding better-performing estimates to require
less from nursing resources.11,12 Since most machine
learning algorithms were not presented intuitively, previ-
ous studies held predilection for logistic regression analy-
sis, which quantified the risk formulation for clinicians
to easily evaluate the risk probabilities.13,14

In this study, we generated fresh insight into the
fusion of machine learning and risk prediction to develop
a brand-new model for predicting the risk probability of
PIs in ICU.

2 | METHODS

2.1 | Aim and study design

Aiming at a specialised risk identification of the PI devel-
opment in the ICU population, we conducted a

retrospective observational cohort based on the STROBE
(Strengthening the Reporting of Observational Studies in
Epidemiology) guidelines,15 using the existing electronic
medical records for data mining, which took place in the
ICU department with a 60-bed allocation. To that end,
the study generated various machine learning–based clin-
ical models and sequentially anatomise the clinical value
by comparison between the novel clinical model and the
traditional Braden scale. This study was approved by the
ethics committee of the First Affiliated Hospital of Wen-
zhou (Approval No. 2020052) in China.

2.2 | Participant recruitment and
incident tracking

A total of 618 samples was gathered upon admission to
ICU during their hospital stay from 1 January 2020,
through 30 June 2021. The inclusion criteria for the study
permitted all patients in ICU, free of the limitation of age
and gender. Amongst the patients in ICU, those holding
the purpose of perioperative observation within the
24 hours of post operation, and palliative care with little
chance of being cured, were excluded for equilibrium.
Subsequently, the whole electric medical records were
searched to track PI incidents occurred in ICU. And
patients whose discharge diagnosis of PI were assigned
with the PI label (N = 206), while those with entry diag-
nosis on ICU admission of PI were assumed as non-PI
developed in ICU (N = 412), regardless of their previous
history of PI in the general ward.

According to the time interval from admission in ICU
to PI occurrence, we forward demarcated the PI-
developed participants into two subgroups: early-
developed cohort within 24 hours in ICU (N = 53) and
late-developed cohort after 24 hours in ICU (N = 153).

During the study period, complete clinical informa-
tion referred to commonly adopted demographics, a
head-to-toe PI nursing assessment, related clinical labora-
tory index and medical history was collected upon ICU
admission within 24 hours. For the late-developed
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cohort, a compromised indicator-recorded resolution
1 week in advance was adopted in avoidance of the inter-
ference brought by floating illness severity in a long stay
of ICU encounter. The total 618 samples gathered were
each assigned a unique serial number, and all their clini-
cal information was de-identified by a third-party staff
before investigators' accession to these data.

2.3 | Cohort formulation

At the time point of analysis, 70% and 30% of the samples
were split into training and test cohorts by principle. In the
practical application, the ratio of division in the whole sam-
ples was shared in the subgroups with opposite PI-related
outcomes to separately gather the subpopulation to consti-
tute the training and test cohorts, functioning in the equi-
librium of event occurrence. The training set further
conducted a quintile subdivision for parameter tuning. The
procedure of five fold inner cross-validation, where one
fold iteratively served as inner validation set in each round,
while the remaining four folds as the inner training set
were repeated five times till every fold experienced inner
validation. The training and inner validation set partici-
pated in the model construction and parameter optimiza-
tion, and the test cohort independent of the inner loop was
simply for the performance test.

2.4 | Feature engineering and outcome

Preliminary screening of the candidate features was con-
ducted in the range of electronic medical records and nurs-
ing records, which were literature-reportedly related to the
PI outcome. Regarding the data integrity and acquirability
in EHR, we finally compiled 31 clinical parameters relevant
to PI development. The alternatives were outlined as
followed: demographics (age, body mass index [BMI], gen-
der), classification of the admission cause (chronic consump-
tive diseases, acute critical diseases), clinical laboratory
index (haemoglobin, haematocrit, blood urea nitrogen, cre-
atinine, blood lactate, bilirubin, albumin), medical history
(history of hypertension, diabetes mellitus, stroke, distur-
bance of consciousness, peripheral vascular disease,
mechanical ventilation dependency, hypnotics and sedatives,
analgesic, vasoactive agent, surgical history) and nursing
scale (Braden score: moisture subscore, sensitivity perception
subscore, activity subscore, mobility subscore, nutrition sub-
score, friction subscore and Glasgow Coma Scale).

Those dynamically changing parameters along with
the ICU hospitalisation were arranged chronologically.
Once PI was developed, the nearest point of records
before PI development was input as vital metrics for

analysis. For those negative control groups, data collec-
tion was conducted within 24 hours on the admission of
ICU. Data pre-processing was further conducted with the
advent of missing values. Since the machine learning
algorithms properly handles the missing values, we just
keep missing data as a valid value in the decision tree
(DT) and RF algorithm. The intelligentialised algorithm
would take the missing value as an independent attri-
bute. In the logistic regression modelling, imputation was
a better choice premised on the missing at random
(MAR) than leaving them as is, particularly in the situa-
tion of no sense made by the missing value below the
threshold. Based on the characteristics of missing vari-
ables, the average value was applied to fill up the missing
value of continuous variables and modes for categorical
variables. Then, a qualified dataset of clinical information
matched to the outcome variables and nursing scale
scores came into being.

We mainly focussed on the development of pressure
injuries in the ICU, which appeared to be the high-
hazard department in the hospital. Based on the contin-
ued exposure in general ward spreading and carried to
ICU, we proposed a reclassification according to the ICU
stay length up to PI onset. A large collection of PI events
were recorded in the nursing board on EHR with their
injured body part. The rest was searched according to the
specialised management aiming at PI.

2.5 | Outcome-related risk factors
identification and machine learning–based
model construction

After the initial stage of pooling candidates with their
pre-specified clinical information in a dataset, the corre-
lation analysis embarked from the univariate analysis, to
elucidate an independent panel of outcome-related risk
factors in general. Given the indetermination of the cau-
sality, we lift a restriction in statistical power as much as
possible to provide more assumptions for potential risk
factors in the machine learning techniques.

Regarding machine learning, we performed logistic
regression (LR), DT16 and random forest (RF).17,18 R
package for implementation comprised glmnet for LR,
the recursive partitioning and regression trees (rpart) for
DT and randomForest for RF. Multivariate logistic
regression was based on the abovementioned univariate
analysis to further eliminate variables with collinearity.
The intuitive visualisation of the linearity relationship
between risk factors and PI outcome by the LR technique
was, to some extent, at a cost in the interpretability of
non-linear relationships. A delicate-modelled tree experi-
enced pruning approaches and developed into a mature
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model with minimum intra-class error and maximum
post-partition purity, which was the essence of DT.19 RF,
known as an ensemble learning technique, was proposed
as bootstrap aggregating of DTs.20,21 DT and RF algo-
rithms, previously reported to manage the missing data
modelling by themselves, actually master a hard substitu-
tion rule, orchestrating a more vulnerable discordance
owing to an appreciable fitting degree. To relieve the
overfitting brought by the complexity particularly in the
small sample, cross-validation was essential to address
these imbalances of predictive validity between training
and test cohorts by maximising the parameter stability.
Entropy or Gini impurity of predictor variables was per-
ceived as the impurity optimisation in a step-by-step
manner, which substituted P-values or coefficients in the
DT model.

Top important feature panels generated by different
machine learning algorithms were simultaneously used
to construct a machine learning–based prediction model
for PI prediction in ICU. Logistic regression formulated
the linear connection via the corresponding coefficients
of the top features, which shed light on the induction
process from the unimpressive features into a destructive
PI outcome. DT analysis depicted a complex tree model,
which constituted cascaded decision nodes and leaf nodes
split from root nodes. Root nodes, including different
split nodes, were recursively tested upward and down-
ward to reach a maximum depth of the tree model,
decided by the probability of incorrect classification when
randomly selected. RF visualised a full view of various
DT models and averaged the output of response variables
accumulated by a single DT.

2.6 | Nomogram development and
validation

The selection criteria toward prediction performance and
model discrimination were are determined with the met-
rics, including AUROC, sensitivity, specificity and so
on. In consideration of the performance orientation, we
tended to choose a lower threshold of specificity to
relieve the terrible trauma once PI events developed. We
designated the putative effect yielding the highest sensi-
tivity and a relative lower specificity above 0.8 and con-
sidered a combination between the best-performing
machine learning-based prediction model and the cur-
rent Braden scale predisposition to PI. Owing to the pre-
specified threshold on performance metrics, logistic
regression was modelled together with the Branden scale
to build a scoring nomogram. And then inter-comparison
between the three machine learning–based models, the
traditional Braden model and the novel nomogram were

conducted in predictive performance, calibration and
discrimination.

The standard evaluation process began with the met-
rics, named sensitivity, specificity, accuracy, precision,
positive predictive value (PPV), negative predictive value
(NPV) and area under the curve (AUC). Besides, accu-
racy was reflected in the comparison of the index inte-
grated discrimination improvement22 and the net
reclassification improvement (NRI). In terms of calibra-
tion capacity, calibration curves were plotted to explore

TABLE 1 Summary of the included potential risk factors

Categories Specific item

Classification of the
admission cause

Chronic consumptive diseases, acute
critical diseases

Clinical laboratory
index

Haemoglobin, haematocrit, blood urea
nitrogen, creatinine, blood lactate,
bilirubin, albumin

Demographics Age, BMI, gender

Medical history History of hypertension, diabetes
mellitus, stroke, disturbance of
consciousness, peripheral vascular
disease, mechanical ventilation
dependency, hypnotics and
sedatives, analgesic, vasoactive
agent, surgical history

Nursing scale Braden score (moisture subscore,
sensitivity perception subscore,
activity subscore, mobility subscore,
nutrition subscore, friction
subscore), Glasgow Coma Scale

TABLE 3 Key features selected by different selection methods

Method
Number of
features Entries

Univariate/
multivariate
logistic regression

7 Age, history of
diabetes mellitus,
history of stroke,
peripheral vascular
disease, mechanical
ventilation, GCS,
surgical history.

Decision tree 4 Bilirubin, peripheral
vascular disease,
GCS, surgical history

Random forest 6 Bilirubin, age, history
of diabetes mellitus,
peripheral vascular
disease, GCS,
surgical history

Abbreviation: GCS, Glasgow Coma Scale.
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the relevancy to which predicted probabilities approxi-
mated actuality, where a near 45� line denoted the well-
performed model. Clinical efficiency was assessed by the
DCA plot, where the net benefits were embodied in a
quantified area under the curve to be assessed.23 Perfor-
mance evaluations were conducted in the ‘rms’ and
‘rmda’ package of Rstudio software. The P-value for sta-
tistical significance was set at .05.

2.7 | Statistical Methods

Continuous variables with normal distribution were pres-
ented with mean ± SD, while categorical variables in per-
centage were shown as median (interquartile range).
Categorical variables were compared by the chi-square or
Fisher's exact tests, while continuous variables were by
the Mann–Whitney U-test. And the threshold of signifi-
cance was a two-sided P-value less than .05.

3 | RESULTS

3.1 | Clinicopathologic characteristics

A total of 618 patients in ICU were enrolled in the analy-
sis, 206 patients of whom with PIs were cases and
412 patients were controls. Among the PI cases,
53 patients developed PIs early within 24 hours in ICU,
and the rest 153 patients developed after 24 hours since
ICU admission. We gathered five panels of prediction
parameters based on the recorded information online,
and literature investigation, comprising of demographics,

classification of the admission cause, clinical laboratory
index, medical history and nursing scale. Details of vari-
able panels are presented in Table 1.

3.2 | Univariate analysis of risk factors

Univariate analyses for screening out a panoply of risk
factors roughly showed that creatinine, bilirubin and
haemoglobin were not statistically significant with the
occurrence of PIs in ICU (all P > .05; Table 2). Thus, we
eliminated the above factors, and the rest features were
entered into further analysis.

3.3 | Prediction performance of machine
learning–based models

The basic model was constructed based on the admis-
sive features by the univariate analysis using a different
machine learning algorithm. In general, seven (multi-
variate regression), four DT and six RF risk factors were
separately incorporated to develop the prediction
models after different algorithms (Table 3). Peripheral
vascular disease, GCS and surgical history were identi-
fied as significant PI predictors shared by all three basic
models. Age, bilirubin and history of diabetes mellitus
were perceived as significant in the two models. As
shown in Table 4, the powerful predictive capacity was
evidence by AUROC in three basic models (training
cohort: LR: 0.82 ± 0.08; DT: 0.74 ± 0.06; RF: 0.76
± 0.03; test cohort: LR: 0.81 ± 0.05; DT: 0.72 ± 0.04;
RF: 0.77 ± 0.05.).

TABLE 4 Predictive performance of each model on pressure injury possibility

Model Cohort

Acc,
mean
(SD)

Pre,
mean
(SD)

F1,
mean
(SD)

Sen,
mean
(SD)

Spe,
mean
(SD)

PPV,
mean
(SD)

NPV,
mean
(SD)

AUC,
mean
(SD)

Clinical LR Training 0.75 (0.06) 0.66 (0.05) 0.60 (0.04) 0.63 (0.06) 0.87 (0.04) 0.66 (0.03) 0.79 (0.11) 0.82 (0.08)

Test 0.73 (0.07) 0.65 (0.08) 0.58 (0.07) 0.61 (0.04) 0.86 (0.06) 0.65 (0.05) 0.77 (0.05) 0.81 (0.05)

DT Training 0.65 (0.05) 0.63 (0.09) 0.63 (0.10) 0.39 (0.05) 0.81 (0.05) 0.63 (0.11) 0.81 (0.06) 0.74 (0.06)

Test 0.62 (0.07) 0.63 (0.07) 0.62 (0.07) 0.38 (0.08) 0.80 (0.06) 0.62 (0.08) 0.82 (0.07) 0.72 (0.04)

RF Training 0.71 (0.03) 0.61 (0.04) 0.48 (0.03) 0.55 (0.05) 0.91 (0.04) 0.61 (0.03) 0.74 (0.07) 0.76 (0.03)

Test 0.68 (0.07) 0.62 (0.07) 0.46 (0.05) 0.57 (0.06) 0.89 (0.03) 0.59 (0.06) 0.75 (0.08) 0.77 (0.05)

Braden Training 0.65 (0.05) 0.58 (0.07) 0.59 (0.08) 0.60 (0.07) 0.81 (0.04) 0.58 (0.05) 0.79 (0.06) 0.75 (0.07)

Test 0.63 (0.07) 0.59 (0.11) 0.54 (0.05) 0.57 (0.08) 0.83 (0.05) 0.54 (0.07) 0.78 (0.04) 0.76 (0.04)

Nomogram
(LR
+ Braden)

Training 0.79 (0.09) 0.66 (0.07) 0.52 (0.06) 0.61 (0.07) 0.82 (0.04) 0.68 (0.07) 0.78 (0.04) 0.91 (0.07)

Test 0.78 (0.07) 0.62 (0.06) 0.49 (0.07) 0.59 (0.04) 0.81 (0.07) 0.65 (0.05) 0.77 (0.08) 0.88 (0.05)

Abbreviations: DT, decision tree; LR, logistic regression; RF, random forest.
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3.4 | Nomogram construction and
validation

According to the principle to achieve the highest sensitiv-
ity and a relative lower specificity above 0.8, a multivari-
ate logistic regression model was picked out as the top-
performing basic model with seven features shown in
Table 5. We then incorporated the Braden score into the
logistic regression model with seven significant parame-
ters and constructed the integrative nomogram. The com-
parison of AUROC in Figure 1 revealed that there were
obvious differences in performance between the nomogram

and the basic machine learning models in both training
and test cohort.

The prediction performance details on NRI and IDI were
presented in Table 6. When compared with each other, a
consistent trend was noticed that NRI or IDI favouring LR

FIGURE 1 The comparison regarding area under receiver

operating curves of the three machine learning-based clinical

models, Braden scale and integrative nomogram in the training and

test cohorts, respectively

TABLE 6 Prediciton value of the basic models and nomogram

regarding net reclassification improvement (NRI) and integrated

discrimination improvement (IDI)

Model Cohort

Variables

NRI Absolute_IDI

LR Training - -

Test - -

DT (vs LR) Training �0.17 �0.36

Test �0.12 �0.22

RF (vs LR) Training �0.34 �0.47

Test �0.28 �0.65

Nomogram (vs LR) Training 0.43 0.51

Test 0.37 0.39

Abbreviations: DT, decision tree; LR, logistic regression; RF, random forest.

FIGURE 2 Decision curve analyses of the three machine

learning-based clinical models, Braden scale and integrative

nomogram in the training and test cohorts, respectively
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model over the other basic models. Compared with three
basic models (LR, DT and RF), the LR model had significant
improvement in reclassification with NRI and IDI above
0. We performed a decision curve analysis (DCA) to assess
the applicability of each model. The DCA exhibited the larg-
est area under the decision curve, which meant preferable
net benefits of the nomogram (Figure 2) in both training and
test cohort than others. Calibration capacity shows the best
concordances between the nomogram-based predictions and
observed probabilities (Figure 3).

Overall, the nomogram integrating seven parameters
identified in the machine learning and the classical
Braden score was evidenced as the top-performing model
for predicting the risk of PIs in ICU and was exhibited in
Figure 4.

4 | DISCUSSIONS

To our best knowledge, this is the first study to exploit dif-
ferent machine learning algorithms to construct a seven-
variable scoring nomogram on merit for assessment of the
risk of PI in ICU. Braden scale was proposed in the nursing

field to take preventive measures to arrest the PI develop-
ment. However, extra focus on the Braden assessment item
caused a nursing burden in the circumstances with tight
medical resources.24 Besides, the accessibility of the Braden
scale index was not as convenient as the parameters shown
in our clinical models, thus applicability and generalisation
were not superior enough.25

Since the Braden scale was not perfect to use,26 we
performed the comparison between the Braden scale and
the basic machine learning model and found that
although discrimination capacity was comparable to
some extent, there existed complementarity among the
clinic- and bedside nursing-acquired parameters. Thus, a
nomogram prognostic model comprising both clinical
features, and the Braden scale was developed in this
study.

In the preliminary work, once admitted into ICU,
easy application of clinical parameters in LR model
except for Braden score were proposed for risk stratifica-
tion, followed by the Braden scoring specifically aiming
at the high-risk subgroup to quantify the possibilities fur-
ther. The combination of two assessment methods in
chronological order displayed a dramatic increment of
predictive power and resource allocation efficiency.

In the comprehensive nomogram, advanced age, bili-
rubin, peripheral vascular disease, diabetes mellitus, sur-
gical history and GCS were added to the Braden scale,
which was consistent with the previous analysis to a large
extent.27-30 A physiologic risk factor like bilirubin was
presumed as a marker of hepatic and cystic abnormali-
ties, accumulating inflammatory infiltration in the serum
and in turn arousing inflammatory and oxidative
responses.22 The imbalance of immunity homeostasis
dampened the output of the healing process and inclined
toward a wounded outcome.

Patients with low GCS scores could exhibit a wide
range of mobility-related disabilities. In accordance with
peripheral vascular dysfunction, hemodynamic disorder
owing to blood stasis decreased the perfusion, and dev-
ascularisation of surrounding tissues in high demand of
blood supply led to skin damage. Previous surgical his-
tory was considered as a more influential risk factor,
adding six folds chances at the incidence to patients
experiencing surgery beyond those without surgery, shed-
ding light on the physiological changes under the stress
of surgery.

Given those PI events occurred in the general ward
before ICU, their classification into non-PI developed in
the ICU subgroup generated the false-negative rate. The
second occurrence of PI was eclipsed by the average
intensity of nursing prevention.

The subclassification partitioned by the period within
or beyond 24 hours from ICU admission to PI attack

FIGURE 3 Calibration curves of the three machine learning-

based clinical models, Braden scale and integrative nomogram in

the training and test cohorts, respectively
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reflected the disparity of the feature mechanism. The
early-developed PIs always occurred in those who suf-
fered a long hospital encounter with chronic consump-
tive diseases as evidenced by the OR of 0.86 favouring a
chronic consumptive admission cause. The accumulation
of malnutrition and the break of homeostasis burst out at
the time point of analysis and provoked the PI outcome.
On the other hand, acute critical diseases contributed to
late-developed PIs. Injury markers less influential in the
early-developed subgroup, such as blood urea nitrogen
(BUN), played a majority role in the late-developed
subgroup.

Given the previous incomplete understanding of cau-
sality in the development of PI, the novel addition of
machine learning nourished the integrative competence
of the basic clinical models.31,32 Optimising the allocation
of nursing resources liberated nursing strengths from the
routine ineffective operation. In addition, the inclination
to a lower threshold of specificity and a compensating
high-sensitivity threshold signified the abandonment of

centralised nursing resources. Equilibrium assignment of
nursing preventions to every potential victim before PI
developed, although seeming like a simplified and crude
way, truly functioned in the refrainment of pressure inju-
ries. Our clinical model orchestrated relatively complete
clinical information in comparison with the previous
models and was well equipped to identify more risk fac-
tors extensively connected with PI in ICU.

There still existed some limitations to declare. Albeit
with the multicollinearity eliminated by the multivariate
analysis, the existing interrelationship between clinical
parameters obscured the causality. Another inescapable
point lied in the hard extrapolation of our model to other
medical institutions. The vigorous dependency of the fea-
ture extraction on the output port (including EHR and
nursing labour) rendered this model by no means
guaranteed to achieve a strong prognostic power. Fur-
thermore, a sequential prospective cohort to test the
model in the real world would be persuasive in favour of
the predictive model.

FIGURE 4 The nomogram for predicting the risk probability of PIs in ICU
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5 | CONCLUSIONS

The novel nomogram was equipped with excellent per-
formances regarding discrimination, calibration and clin-
ical utility. Fusion of Braden scale and machine learning-
based clinical model was validated to benefit the preven-
tion of PI in ICU.
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