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Abstract: Solid-state reaction was used for Li7La3Zr2O12 material synthesis from Li2CO3, La2O3

and ZrO2 powders. Phase investigation of Li7La3Zr2O12 was carried out by x-ray diffraction (XRD),
scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS) methods.
The thermodynamic characteristics were investigated by calorimetry measurements. The molar
heat capacity (Cp,m), the standard enthalpy of formation from binary compounds (∆oxHLLZO) and
from elements (∆fHLLZO), entropy (S0

298), the Gibbs free energy of the Li7La3Zr2O12 formation
(∆f G0

298) and the Gibbs free energy of the LLZO reaction with metallic Li (∆rGLLZO/Li) were
determined. The corresponding values are Cp,m = 518.135 + 0.599 × T − 8.339 × T−2, (tem-
perature range is 298–800 K), ∆oxHLLZO = −186.4 kJ·mol−1, ∆fHLLZO = −9327.65 ± 7.9 kJ·mol−1,
S0

298 = 362.3 J·mol−1·K−1, ∆f G0
298 = −9435.6 kJ·mol−1, and ∆rGLLZO/Li = 8.2 kJ·mol−1, respectively.

Thermodynamic performance shows the possibility of Li7La3Zr2O12 usage in lithium-ion batteries.

Keywords: lithium-ion battery; solid-state electrolyte; lithium-ion thermodynamics; solid-state
synthesis

1. Introduction

The commercial history of the lithium-ion battery was started in 1991 by Sony [1].
Since then, a lot of effort has been directed to improving the electrochemical performance
of lithium-ion batteries [2]. One of the perspective methods of stabilizing lithium-ion
battery electrochemical characteristics and safety is to apply solid-state inorganic electrolyte
instead of liquid organic electrolyte as the traditional electrolyte for commercial lithium-ion
batteries [3–7]. Some solid-state electrolytes have high ionic conductivity in an order of
magnitude of ~10−3 S·cm−1 [8] in comparison to liquid electrolyte [9].

Between all types of the solid-state electrolytes (perovskite, NASICON- and LISICON-
type, LATP- and LAGP-type, garnet, sulfide and halide electrolytes, etc. [8]) garnet-type
electrolytes have the most attractive electrochemical performance in combination with
manufacturing costs and simplicity in commercial application. Garnet-type Li7La3Zr2O12
(LLZO) solid-state electrolyte has two modifications: cubic and tetragonal. The ionic
conductivities are ~10−4–10−3 S·cm−1 and ~10−7–10−6 S·cm−1, respectively [10].

LLZO solid-state electrolyte attracts high attention due to its relatively high elec-
trochemical properties. Though LLZO has lower ionic conductivity in comparison with
organic liquid electrolyte (~10−4 versus ~10−2 S·cm−1, respectively [9]), it provides high
safety performance, high chemical stability against metallic lithium, a wide electrochemical
potential window, low electronic conductivity, and high stability with moisture in the air;
LLZO prevents lithium dendrite growth due to high mechanical strength [11–15].

Since as LLZO was first synthesized by Murugan et al. [16], it was investigated to
improve its chemical and structural stability, long life cycle, electrode/solid electrolyte
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interface interactions, and high energy density at room temperature. Thus, heterovalent
substitution/doping with Al3+ from alumina crucible (or intentional incorporation) during
the synthesis process allows for the enhancement of ionic conductivity up to ~10−3 S·cm−1,
but it causes higher activation energy in lithium ion conduction, which limits Li+ mo-
bility [17–24]. Doped with Ga3+ also as Al3+ stabilize structure of LLZO [25–32]. The
substitution of Zr4+ with Ta5+ ions allowed for an increase of the ionic conductivity, stabi-
lization of the cubic structure, improved lithium-ion transport, lithium dendrite growth
prevention, and the current density [33–38]. Ultimately, the above-mentioned elements im-
prove electrochemical and structural stability, increase the ionic conductivity, and prevent
lithium dendrite growth and penetration at the solid electrolyte structure.

In this work, synthesis, structure studies and thermodynamics calculations of tetrago-
nal Li7La3Zr2O12 were performed.

2. Materials and Methods

Tetragonal LLZO electrolyte was produced by solid-state synthesis as one of the
commonly used synthesis methods for investigation and mass manufacture [39–47]. Initial
materials Li2CO3 (Xilong Sci., 99%), La2O3 (ReLAB, 99.99%), and ZrO2 (Sinopharm, 99.9%)
in stoichiometric ratio were used as sources for Li, La, and Zr, respectively. Excess of 10 wt.%
of lithium was initially added to precursor to avoid lithium loss during the synthesis process
at high temperatures. Lanthanum oxide was preliminarily dried at 900 ◦C for 24 h. The
mentioned materials were mechanically milled in an agate mortar and then dissolved in
acetic acid with subsequent magnetic stirring at 90 ◦C for 12 h to provide a homogeneous
solution. Excess acetic acid was evaporated at 110 ◦C to get dry precursor powder. Dried
precursor was then mechanically milled in an agate mortar and put into an alumina crucible
for heat treatment. A muffle furnace (Nabertherm, Lilienthal, Germany) was used for solid-
state reaction at air atmosphere. First, the precursor was slowly heated (heat rate was
0.5 ◦C/min) to 130 ◦C for 3 h to evaporate the remaining acetic acid. Then, the precursor
was heated (heat rate was 2 ◦C/min) to 900 ◦C for 8 h to provide solid-state reaction.

The solid-state reaction proceeds according to next formula:

4ZrO2 + 3La2O3 + 7Li2CO3 = 2Li7La3Zr2O12 + 7CO2 (1)

X-ray diffraction structural analysis (XRD) was performed by Bruker D8 Advance
(Bruker, Karlsruhe, Germany) equipment (diffraction angle step was 0.02◦, Cu Kα-radiation).
The Rietveld method was used for structure refinement. Diffraction angles for synthesized
LLZO powder were set from 15◦ to 60◦ (2
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Images of the microstructure performance of LLZO powder were taken with a scanning

electron microscope (SEM) Tescan MAIA3 (Tescan, Brno, Czech Republic) with secondary
electron detection. Bruker XFlash 6–10 (Bruker, Karlsruhe, Germany) was used for energy-
dispersive X-ray spectroscopy (EDS).

TAM IV Microcalorimeter (TA Instruments, Shanghai, China) was used for calorimet-
ric investigation. Measurement parameters were as follows: temperature is 298 K, volume
of the cell is 20 mL. An aqueous solution of 1 mol·dm−3 HCl was filled in the ampoule at
calorimetric cell. The dissolution process of the LLZO powder was started after thermal
equilibrium was established. Dissolution enthalpy value was obtained from thermoelectro-
motive force data during the dissolution process, providing the heat dissolution curve.

3. Results

The XRD pattern of synthesized LLZO is shown at Figure 1. According to diffraction
data, LLZO has a I41/acd space group. The vertical lines at the bottom are related to PDF
#00-064-0140. The peak indexes and interplanar distances are shown in the Supplementary
Materials (Table S1). Synthesized material contains 4 wt.% of La2O3 impurity after solid-
state reaction.
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Figure 1. X-ray diffraction pattern of the synthesized tetragonal Li7La3Zr2O12 by solid-state reaction.
Bottom vertical lines belong to PDF #00-064-0140.

SEM images of LLZO powder are shown in Figure 2, made at 2×, 3.5×, 10× and 11.5×
magnification, respectively. All images were performed at 10 keV landing energy.
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Figure 2. SEM images of synthesized LLZO powder at different magnification. The scale bar is (a,b)
20 µm and (c,d) 5 µm long.

EDS spectra images are shown at Figure 3. The scale bar is 80 µm long for all images
at Figure 3a–d. The green frame in Figure 3a shows the EDS analyzing field. Figure 3b–d
show the element distributions for the La, Zr, O and C at Figure 3b; La at Figure 3c; and Zr
at Figure 3d elements, respectively. The elements in Figure 3 are evenly distributed. The
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carbon in Figure 3b is electrically conductive carbon tape for sample holder. Elemental
analysis of EDS spectra is shown at Table 1.
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Table 1. Elemental EDS analysis of Li7La3Zr2O12 powder.

Element Mass, wt.%

Lanthanum 53.19

Oxygen 22.59

Zirconium 24.22

EDS elemental analysis of the LLZO powder shows lanthanum excess in the solid
electrolyte powder, expressed in terms of Li7La3Zr2O12 and La2O3 compounds. Elemental
analysis based on Table 1 shows an excess of 3.1 wt.% of lanthanum oxide (III).

4. Discussion
4.1. The Standard Formation Enthalpy

The formation enthalpy of Li7La3Zr2O12 (∆oxHLLZO) from Li2CO3, La2O3, and ZrO2
is calculated according to Equation (1) from the Experimental Section. The subscript ox
means “oxides”, which relates to the initial compounds from Equation (1).

The following thermodynamic cycle was used for enthalpy calculation, Figure 4:

Li7La3Zr2O12 + 24HCl(aq) → 7LiCl(aq) + 3LaCl3(aq) + 2ZrCl4(aq) + 12H2↑+ 6O2↑, (2)

Li2CO3+ 2HCl(aq) → 2LiCl + CO2 + H2O, (3)
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La2O3 + 6HCl(aq) → 2LaCl3 + 3H2O, (4)

ZrO2 + 4HCl(aq) → ZrCl4 +2H2O, (5)

the subscript (aq) indicates “aqueous”. The calorimeter was used for the standard enthalpy
(∆dHLLZO) measurement. The received value after calorimetry measurement was equal to
−1911 ± 37 J·g−1, Table 2.
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Table 2. The dissolution enthalpies values of the initial components and the Li7La3Zr2O12 compound
(p = 101 kPa, T = 298 K, 1 mol·dm−3 HCl(aq)).

Compound Molar Mass,
g·mol−1

Specific Enthalpy,
J·g−1

Molar Enthalpy
of Dissolution,

kJ·mol−1
Ref.

ZrO2 123.222 −2186 ± 19 −269.4 ± 2.34 this work

La2O3 325.837 −1927 ± 13 −627.9 ± 4.23 this work

Li2CO3 73.89 −683 ± 9 −50.5 ± 0.67 this work

Li7La3Zr2O12
(with La2O3

impurity)
- −1758 ± 34 - this work

Li7La3Zr2O12 839.741 −1752.6 ± 35 −1471.73 ± 29.39 this work
(recalculated)

It was shown in the Experimental Section that LLZO has 3.1 wt.% of unreacted La2O3
impurity. Thereby, measured ∆dHLLZO should be recalculated considering the amount
of La2O3:

∆d HLLZO =
∆d HLLZO+La2O3 −ω∆d HLa2O3

1−ω
, (6)

where ω is the mass fraction of La2O3. It should be noted that enthalpies, mentioned
in Equation (6), are supposed to be specific, not molar. The recalculated value of the
dissolution enthalpy of LLZO (with 3.1 wt.% of La2O3) is equal to −1917.7 J·g−1 or
−1607.75 kJ·mol−1, Table 2.

The formation enthalpy value of ∆oxHLLZO is estimated by the next formula:

∆ox HLLZO = 2∆dHZrO2 + 1.5∆dHLa2O3 + 3.5∆d HLi2CO3 − ∆d HLLZO (7)

The calorimetry-measured values of ∆dHZrO2 , ∆dHLa2O3 , and ∆dHLi2CO3 are shown
in Table 2. The recalculated value of the enthalpy of dissolution of Li7La3Zr2O12 was
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used for ∆oxHLLZO evaluation. The value of ∆oxHLLZO given by Equation (7) is equal to
−186.4 kJ mol−1. The negative value of the enthalpy of Li7La3Zr2O12 formation indicates
that Li7La3Zr2O12 is a stable phase; the chemical reaction of Li2CO3, La2O3, and ZrO2
is energetically favorable for Li7La3Zr2O12 synthesis. The values for various lithium
zirconates were added to Table 2 to compare with the measured and calculated values
in this work. The value of the formation enthalpy from binary oxides ∆oxHLLZO has the
same order as corresponding values for lithium zirconate compounds and complex oxides
(Table 3), thus it can be concluded that the measurements are correct.

Table 3. Standard enthalpies of formation of complex oxides from binary oxides (∆oxH0).

Compound ∆oxH◦298.15, kJ·mol−1 Reference

Li7La3Zr2O12 (s) −186.4 ± 7.3 this work

Li2ZrO3 (s) −304.1 ± 1.4 [48]

Li6Zr2O7 (s) −112.86 [49]

La2Zr2O7 (s) −135.6 [50]

Li2TiO3 (s) −238.5 ± 1.5 [48]

LiAlO2 (s) −209.0 ± 3.2 [4]

LiCoO2 (s) −143.99 ± 1.38 [51]

BaZrO3 (s) −114.6 [52]
The subscripts (s) mean “solid”.

Finally, the enthalpy of Li7La3Zr2O12 formation from elements can be calculated by
the following formula:

∆ f HLLZO = 3.5∆ f HLi2CO3 + 1.5∆ f HLa2O3 + 2∆ f HZrO2 + ∆ox HLLZO (8)

The corresponding handbook’s materials were used to define the standard enthalpies [53],
Table 4.

Table 4. Standard enthalpies of formation from elements (∆fH0).

Material ∆fH◦298.15, kJ·mol−1 Ref.

Li2CO3 (s) −1214.1 ± 1.0 [53]

La2O3 (s) −1794.2 ± 2.0 [53]

ZrO2 (s) −1100.3 ± 0.7 [53]

Li7La3Zr2O12 (s) −9327.65 ± 7.9 this work
The subscripts (s) mean “solid”.

The formation enthalpy value of the Li7La3Zr2O12 compound, calculated by formula (8)
is−9327.65± 7.9 kJ·mol−1, Table 4. The enthalpy of formation value, rated by Equation (8),
can be recommended for use in further thermodynamic calculations of Li7La3Zr2O12
reactivity.

4.2. The Isobaric Heat Capacity

Figure 5 shows the isobaric heat capacity of the Li7La3Zr2O12 as a function of temper-
ature (Cp = f (T)). Pay attention to the certain amount of La2O3 (Figure 1 and Table 1) in
LLZO synthesized powder material, the measured isobaric heat capacity for the two-phase
system must be recalculated by the following additive rule:

mCp = m(LLZO)Cp(LLZO) + m(La2O3)Cp(La2O3), (9)
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where Cp is a specific heat capacity (p = const), and m is mass. In our case, the two-phase
system consists of the solid electrolyte compound (LLZO) and La2O3. Thus, the heat
capacity of Li7La3Zr2O12 is expressed from Equation (9) as:

Cp(LLZO) =
mCp −m(La2O3)Cp(La2O3)

m(LLZO)
(10)
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The impurity compound weight can be recalculated from the total weight of the
sample, with the known mass fraction of lanthanum oxide, ω(La2O3):

m(La2O3) = mω(La2O3) (11)

and
m(LLZO) = m[1−ω(La2O3)] (12)

Considering Equations (11) and (12), Equation (13) can be expressed as follows:

Cp(LLZO) =
Cp − Cp(La2O3)ω(La2O3)

1−ω(La2O3)
(13)

Equation (13) shows, that the Li7La3Zr2O12 heat capacity Cp(LLZO) can be evaluated
by the measured heat capacity (Cp), tabulated heat capacity of La2O3 Cp(La2O3), and
La2O3 mass fraction ω(La2O3). The dependence of La2O3 specific heat capacity from
temperature is required for Equation (13) calculation. For this, tabular data is required
to define temperature dependence for the lanthanum oxide heat capacity [53]. The heat
capacity polynomial, commonly used for the low temperature range (for 300–800 K in our
case) can be expressed as follows:

Cp = a + bT − cT−2 (14)

where a, b, and c are empirical coefficients, and T is the absolute temperature. The La2O3
received coefficients are a = 119.604 J·mol−1·K−1, b = 14.514 × 10−3 J·mol−1·K−2, and
c = 13.452 × 105 J·mol−1·K. Considering the La2O3 impurity presence, the LLZO heat
capacity can be recalculated via Equations (13) and (14) for the 300–800 K temperature
interval. According to XRD and EDS data (Figure 1 and Table 1, respectively) LLZO contains
about 3.1 ± 0.12 wt.% La2O3. Figure 5 and Table 5 shows measured and recalculated LLZO
heat capacity temperature dependence. The Neumann-Kopp (N-K) rule was used for the
empirical value calculation of the heat capacity. The N-K rule approves “that the molecular
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heat capacity of a solid compound is the sum of the atomic heat capacities of the elements
composing it; the elements having atomic heat capacities lower than those required by the
Dulong–Petit law retain these lower values in their compounds.” [54]. This rule commonly
gives reproducible results for room temperatures, not for high temperatures. To achieve
more accurate results, binary materials were used instead of single elements (accurate
results are usually obtained for the same aggregate state of materials):

Cp(CO) = ∑ n(BO)Cp(BO) (15)

Cp is a molar heat capacity (p = const), n is a stoichiometric coefficient, and CO and BO are
complex and binary oxide, respectively. Equation (15), considering Equation (1), can be
expressed for LLZO as follows:

Cp(LLZO) = 3.5Cp(Li2CO3) + 1.5Cp(La2O3) + 2Cp(ZrO2) (16)

The calculated from tabular data [53] heat capacity from Equation (16) is shown on
Figure 5 and Table 5.

Table 5. The Li7La3Zr2O12 (s) heat capacities of experimental Cp(exp.), recalculated by Equation (15)
Cp(rec.) and calculated by the (N-K) rule Cp(N-K) values as a function of temperature.

T, K Cp(exp.), J·K−1·mol−1 Cp(rec.), J·K−1·mol−1 Cp(N-K), J·K−1·mol−1

300 - - 621.1

400 778.6 709.7 708.1

500 851.8 784.7 778.8

600 936.7 857.4 843.1

700 1002.8 925.0 904.3

800 1035.4 971.1 964.0

The Neumann-Kopp rule and recalculated heat capacity of Li7La3Zr2O12 are in good
correlation. Experimental data is for the LLZO compound with La2O3 impurity. The heat
capacity temperature dependence (Equation (16)) was calculated using tabular data [53,55].
XRD and EDS quantitative analysis gives accurate enough results to define a small quantity
of impurity compounds in the material.

4.3. Entropy

The Third Law of Thermodynamics states, “The entropy of a perfect crystal is zero
when the temperature of the crystal is equal to absolute zero (0 K).” Thus, the entropy
absolute value can be valued by the equation:

S(T) =
T1∫

0

Cp(T)
T

dT +
∆H1

T1
+

T2∫
T1

Cp(T)
T

dT +
∆H2

T2
+ . . . +

T∫
Tk

Cp(T)
T

dT, (17)

where S is entropy, Tk is temperature of the k-th phase transition (0 < Tk < T), and ∆Hk
is enthalpy of the k-th phase transition. The Neumann-Kopp rule for entropy calcula-
tion can be expressed as follows (considering absence of phase transition at calculating
temperature range):

S(T) =
T∫

0

∑ Cp(T, BO)

T
dT = ∑

T∫
0

Cp(T, BO)

T
dT = ∑ S(T, BO), (18)
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where BO is the binary oxide compound (see Equation (15)). Equation (18) can be rewritten
taking into account Equations (15) and (16):

S (LLZO) = 3.5S(Li2CO3) + 1.5S(La2O3) + 2S(ZrO2) (19)

The Li7La3Zr2O12 entropy is equal to 607.18 J·mol−1·K−1 (T = 298 K) by calculating
Equation (19) using tabulated data [53,55]. The additive rule for entropy calculation can be
used if the following term is met: the complex compound molar volume slightly differs of
the molar volumes sum of binary compounds [55]. Thus, the molar volume for Li2CO3 is
35.0 cm3·mol−1 (density is ρ = 2.11 g·cm−3 [56]), for La2O3 is 50.1 cm3·mol−1 (density is
ρ = 6.51 g·cm−3 [57]), for ZrO2 is 21.2 cm3·mol−1 (density is ρ = 5.56 g·cm−3 [57]), and for
Li7La3Zr2O12 is 165.0 cm3·mol−1 (density is ρ = 5.09 g·cm−3 [58]). The sum of the molar
volumes of Li2CO3, La2O3, and ZrO2 with their corresponding stoichiometric coefficients
is 240.05 cm3·mol−1 and differs about 45.5% of the LLZO molar volume, which does not
allow one to apply the additive rule.

Excepting the additive calculation rule, the W. Herz rule can be used for the LLZO
entropy calculation [59]:

S0
298 = KH

(
M/Cp,298

)1/3m, (20)

where KH is the Herz constant, M is molar mass, Cp,298 is isobaric heat capacity, and m is
atoms per formula.

The Herz constant KH has a good correlation with average values of anion molar
mass [60]:

KH =
33.5x2ex

(ex − 1)2 , (21)

where x = 42.4/MLa3Zr2O12 , and MA is an anion (La3Zr2O12
7−) molar mass. For Li7La3Zr2O12,

anion molar mass MLa3Zr2O12 is 791.154 g·mol−1. Thus, KH constant is equal to 33.5.
Considering Cp,298 from Table 5 and Equation (21), calculated by Equation (20) the

LLZO entropy is equal to 362.3 J mol−1·K−1. The calculated value of LLZO entropy by the
W. Herz rule is in good correlation with Ref. [60]. Hence, the N-K rule cannot be used for
the entropy calculations, as follows from molar masses principle.

4.4. The Standard Gibbs Free Energy

Calculated formation enthalpy and entropy allows one to rate the standard Gibbs free
energy (∆ f G0

298) of LLZO formation (T = 298 K):

∆ f G0
298 = ∆ f H0

298 − 298∆ f S0
298, (22)

For Equation (22), the ∆ f G0
298 value of LLZO is equal to −9435.6 kJ·mol−1.

The stability against metallic lithium can be estimated by the Gibbs free energy calcu-
lation of the following reaction at room temperature:

3Li + Li7La3Zr2O12 = 7.5Li2O + 1.5La2O3 + 2Zr (23)

The Gibbs free energy of reaction (∆rGLLZO/Li) can be expressed as the difference
between the and the Gibbs energy values of reactants and resultants of the reaction. The
∆ f G0

298 for single elements is equal to zero, for Li2O is −561.2 kJ·mol−1, and for La2O3

is −1706.7 kJ·mol−1 [53]. The Li7La3Zr2O12 Gibbs free energy has been calculated above.
Thus, the Gibbs free energy for reaction (23) is ∆rGLLZO/Li = 8.2 kJ·mol−1; this means
that the reaction is thermodynamically impossible. Finally, Li7La3Zr2O12 is stable against
metallic lithium at room temperature.

5. Conclusions

The thermodynamic characteristics were determined for Li7La3Zr2O12 solid-state
electrolyte material for lithium-ion battery. Solid-state reaction was used as the synthesis
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method of Li7La3Zr2O12 from Li2CO3, La2O3, and ZrO2. The synthesized material had
3.1 wt.% of the lanthanum oxide (La2O3) impurity according to XRD and EDS data. Proba-
bly, this amount of La2O3 is unreacted oxide from the synthesis process. The enthalpy of
Li7La3Zr2O12 formation from binary oxides (and from Li2CO3) ∆oxHLLZO and from the
elements ∆fHLLZO were calculated according to the measured enthalpy of dissolution of
reagents and the products of the Li7La3Zr2O12 formation reaction. The obtained values are
equal to −186.4 ± 7.3 kJ·mol−1 and −9327.65 ± 7.9, respectively. The formation enthalpy
from binary oxides ∆oxHLLZO is in good correlation with similar zirconate compounds,
which confirms the correctness of the measurements.

The recalculated LLZO heat capacity considering La2O3 presence is in good correlation
with that calculated by the Neumann-Kopp rule. Finally, the temperature dependence of
the LLZO heat capacity can be expressed by the formula Cp(T) = 518.135 + 0.599 × T −
8.339 × T−2 (T is absolute temperature). The LLZO entropy is S0

298 = 362.3 J·mol−1·K−1, the
Gibbs free energy of formation of Li7La3Zr2O12 is−9435.6 kJ mol−1. Li7La3Zr2O12 material
is stable against metallic lithium, according to the Gibbs free energy of the LLZO reaction
with metallic Li. All thermodynamic values and functions measured and calculated for
Li7La3Zr2O12 can be used for modelling and further calculations of all-solid-state batteries.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15010281/s1, Table S1: HKL indexes for XRD pattern (corre-
sponding to Figure 1).
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