
66

AIF = apoptosis-inducing factor; Apaf-1 = apoptotic protease activating factor-1; Bad = Bcl-2 antagonist of cell death; Bax = Bcl-2 associated X
protein; Bcl = B-cell lymphoma; BH = Bcl-2 homology; Bid = BH3 interacting death domain agonist; CNS = central nervous system; CSF = cere-
brospinal fluid; DEVD = N-benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethylketone; ER = endoplasmic reticulum; MAPK = mitogen-activated protein
kinase; Mcl-1L = myeloid cell leukemia-1 long; PARP = poly(ADP-ribose) polymerase; PKB = protein kinase B; TBI = traumatic brain injury; TNF =
tumor necrosis factor; TUNEL = terminal deoxynucleotidyl transferase-mediated nick-end labeling.
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Introduction
Each year in the USA, more than 1 million patients undergo
medical evaluation and treatment for acute head injury [1]. In
the USA there were an average of 53,288 annual traumatic
brain injury (TBI)-related deaths from 1989 to 1998, or 19.3
per 10,000 [2]. In Germany, the TBI death rate in 1996 was
11.5 per 10,000, with a total of 9415 deaths [3]. A 15-year
study in Denmark showed that the mortality of children after
TBI was 22%, and among those survivors of severe head
injury, significant numbers were found to have serious
neurological disabilities [4]. A regional population-based
study in France showed that the mortality of hospitalized TBI

patients was as high as 30.0% [5]. Similar data can be found
in studies from a variety of demographic and cultural settings
[6,7]. Acute and long-term care of TBI patients has become a
significant social and economic burden around the world
[8–10].

The neurological outcome of TBI victims depends on the
extent of the primary brain insult caused by trauma itself, and
on the secondary neurochemical and pathophysiological
changes occurring as a consequence of the mechanical
injury, which leads to additional neuronal cell loss. Although a
long list of experimental studies suggest that reduction or
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Abstract

Apoptosis, or programmed cell death, is a physiological form of cell death that is important for normal
embryologic development and cell turnover in adult organisms. Cumulative evidence suggests that
apoptosis can also be triggered in tissues without a high rate of cell turnover, including those within the
central nervous system (CNS). In fact, a crucial role for apoptosis in delayed neuronal loss after both
acute and chronic CNS injury is emerging. In the current review we summarize the growing evidence
that apoptosis occurs after traumatic brain injury (TBI), from experimental models to humans. This
includes the identification of apoptosis after TBI, initiators of apoptosis, key modulators of apoptosis
such as the Bcl-2 family, key executioners of apoptosis such as the caspase family, final pathways of
apoptosis, and potential therapeutic interventions for blocking neuronal apoptosis after TBI.
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prevention of secondary brain injury after TBI is possible,
clinical trials have failed to show benefit from therapeutic
strategies proven to be effective in the laboratory [11–13].
This might reflect the diverse nature of clinical TBI and/or
perhaps an incomplete understanding of the mechanisms of
secondary neuronal loss.

Two waves of neuronal cell death occur after TBI.
Immediately after mechanical trauma due to impact or
penetration, neurons can die by necrosis caused by
membrane disruption, irreversible metabolic disturbances
and/or excitotoxicity [14]. Early application of neuroprotective
protocols seems critical for any possibility of reducing
neuronal necrosis; however, this is beyond the scope of the
current review. The second wave of neuronal death occurs in
a more delayed fashion, with morphological features of
apoptosis (or programmed cell death). This second wave of
neuronal cell death presents within a time window that may
be responsive to targeted therapies [15]. The current review
summarizes clinically related investigation of apoptosis after
TBI, as well as potential therapeutic interventions for altering
apoptosis to improve neurological outcome.

Apoptosis: historical overview
Apoptosis has long been identified as an evolutionarily
conserved process of active cell elimination during develop-
ment. Its phenotypic features include DNA fragmentation and
chromatin condensation, cell shrinkage, and formation of
apoptotic bodies, which are cleared by phagocytosis without
initiating a systemic inflammatory response. The execution of
apoptosis requires novel gene expression and protein
synthesis [16–18]. Apoptosis has evolved as an intricate and
critical mechanism for balancing cell proliferation and for the
active remodeling of tissues during development.

The identification of apoptosis under pathological settings
dates back to the 1960s, when John FR Kerr was studying
ischemic liver damage [19]. He observed a novel cell death
phenotype that was morphologically distinct from classical
necrosis. Dying hepatocytes in the ischemic penumbra were
found to have shrunk to form small round masses of
cytoplasm containing condensed nuclear chromatin. These
dying cells were taken up by neighboring hepatocytes and
phagocytes without initiating a broader inflammatory
response. This phenomenon was also recognized in normal
rat livers. This distinct type of cell death, temporarily named
‘shrinkage necrosis’ [20], was also found to occur in cancer
[21] and during normal development [22]. The term
‘apoptosis’ was subsequently coined to replace shrinkage
necrosis [23], and has later been used interchangeably with
programmed cell death, albeit loosely, because of similar
requirements for genetic programming and new protein
synthesis, as well as morphological similarities [24].

The identification of post-developmental apoptosis in
Huntington’s disease opened a new avenue of research in

acute and chronic neurological diseases [25]. Although
histological descriptions of apoptosis after experimental TBI
[26] were reported in the same era as the seminal reports by
Kerr and colleagues noted above, the characterization of
neuronal apoptosis after experimental TBI occurred less than
a decade ago [27–29]. Histological descriptions of apoptosis
after human head injury [30,31] actually predate those by
Kerr and colleagues, but similarly to experimental studies,
characterization of apoptosis after TBI in humans has
occurred only recently [32].

Pathways of apoptosis
The endpoint of neuronal apoptosis after brain injury is the
systematic fragmentation of cellular DNA and the collapse of
nuclear structure, followed by the formation of membrane-
wrapped apoptotic bodies [29,33] that are subsequently
cleared by macrophages/microglia signaled by phosphatidyl-
serine exposure on the cell membrane surface [34]. The
process of apoptosis can occur by multiple pathways that may
be independent; however, crosstalk between these pathways
can also occur [15] (Fig. 1). In broad terms, neuronal apoptosis
can at present be segregated into two pathways, one involving
the activation of a family of cysteine proteases termed
‘caspases’, and one involving the caspase-independent release
of apoptotic factors from mitochondria [35].

Caspase-dependent apoptosis
Caspase family proteases include 14 currently identified
members that are synthesized as pro-enzymes [36]. After
proteolytic cleavage into large and small subunits, they are
capable of forming active tetrameric proteases [37]. Initiator
caspases, including caspase-8, -9, and -10, are activated by
auto-cleavage and aggregation. Caspase-3, -6, and -7, referred
to as ‘executioner’ caspases, are cleaved and activated by
initiator caspases. The proteolytic cleavage of caspase substrates
produces the phenotypic changes characteristic of apoptosis,
including cytoskeletal disintegration, DNA fragmentation, and
disruption of cellular and DNA repair processes, all of which
have been reported after experimental TBI [38–40].

Caspase-dependent apoptosis can occur via extrinsic or
intrinsic pathways. Extrinsic pathways involve cell surface
receptors present on multiple cell types including neurons
[41]. The coupling of cell surface tumor necrosis factor (TNF)
with extracelluar TNF or Fas receptors with extracellular Fas
ligand induces trimerization of the receptors that form
complexes with intracellular signaling molecules: TNF receptor
associated death domain protein and Fas-associated protein
with death domain. This death-inducing signaling complex
then binds and induces the auto-cleavage and activation of
caspase-8 [42] or caspase-10 [43]. Caspase-3 is
subsequently cleaved and activated by these initiator
caspases, whereupon the process of apoptosis is irreversible.

The intrinsic pathway is initiated by stress on cellular
organelles, including mitochondria and endoplasmic reticulum
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(ER). Caspase-dependent apoptosis can be triggered by the
mitochondrial release of cytochrome c induced after mito-
chondrial membrane depolarization and formation of
mitochondrial permeability transition pores. Cytosolic
cytochrome c interacts with apoptotic protease activating
factor-1 (Apaf-1), ATP, and pro-caspase-9 to form a complex
termed an ‘apoptosome’. Apaf-1, a mammalian homologue of
the Caenorhabditis elegans gene product CED-4, contains a
caspase recruitment domain that binds pro-caspase-9. The
multiple WD-40 repeats in Apaf-1 permit self-oligomerization
and auto-activation of caspase-9, which in turn cleaves and
activates caspase-3 [44]. Recent data indicate that after
being released from mitochondria, cytochrome c can
translocate to the ER to block the inositol-(1,4,5)-
trisphosphate receptor, amplifying calcium signaling and the
release of cytochrome c from mitochondria [45]. ER stress,
including the disruption of ER calcium homeostasis and

accumulation of excess proteins, induce apoptosis by the
activation of ER-localized caspase-12. The ER-stress-related
activation of caspase-12 has been detected in experimental
models of neurodegenerative disease [46] and TBI [47],
although in humans caspase-12 seems to have a role in
inflammation but not in apoptosis [48,49].

Other important enzyme families also contribute to apoptotic
cell death after brain injury. Calpains are calcium-dependent
proteases with many cellular targets including cytoskeletal
elements. Calpain activation occurs after TBI and colocalizes
with caspase-3 cleavage [39,50]. Calpain inhibitors have
been shown to reduce neuropathological damage after TBI in
rats [51,52]. The lysosomal enzymes, cathepsins, might also
contribute to apoptotic cell death after brain injury [53],
although studies showing a prominent role for cathepsins
after TBI are lacking.

Figure 1

Simplified schematic representation of the initiation and regulation of neuronal apoptosis after traumatic brain injury (TBI). Pathologic mechanisms
triggering apoptosis after TBI include ischemia, oxidative stress, energy failure, excitotoxicity (primarily excess glutamate), axonal injury, trophic
factor withdrawal, ER stress, and/or death receptor-ligand binding (for example TNF, Fas). Regulation of apoptosis occurs through multiple
pathways including kinase-dependent intracellular signaling pathways and Bcl-2 family proteins. Execution of apoptosis involves the caspase
cascade and/or release of apoptogenic factors from organelles such as mitochondria and lysosomes. Ultimately DNA fragmentation, cytoskeletal
disintegration, and externalization of membrane phosphatidylserine occurs, signaling macrophages and microglia to engulf cellular debris. Potential
therapeutic targets discussed in this review are highlighted within the dashed yellow lines. AIF, apoptosis-inducing factor; Apaf-1, apoptotic
protease activating factor-1; Bcl, B-cell lymphoma; CAD, caspase-activated deoxyribonuclease; casp, caspase; cyto c, cytochrome c; DISC, death-
inducing signaling complex; Endo G, endonuclease G; ER, endoplasmic reticulum; iCAD, inhibitor of CAD; ROS, reactive oxygen species; tBid,
truncated Bid; TNF, tumor necrosis factor; TNFR, TNF receptor; TRAF2, TNF receptor associated factor.



69

Caspase-independent apoptosis
Several mitochondrial proteins are capable of inducing
apoptosis without activation of caspases, or without being
affected by caspase inhibition. Apoptosis-inducing factor
(AIF) is an evolutionarily conserved mitochondrial flavoprotein
that can be released from mitochondria after mitochondrial
membrane depolarization [54]. The subsequent translocation
of AIF into the nuclei induces the formation of large-scale
DNA fragmentation (more than 50 kilobase pairs), a signature
event of AIF-mediated cell death. AIF-mediated apoptosis
occurs in neurons under conditions of oxidative stress [55],
as well as in experimental TBI [56] and brain ischemia [57] in
vivo. Other apoptosis-related mitochondrial proteins include
endonuclease G [58], Htr2A/Omi [59], and Smac/Diablo
[60]; however, their roles in neuronal apoptosis after brain
injury remain undefined. Studies [59,61,62] showing
powerful detrimental effects of mitochondrially released
proteins with important intramitochondrial functions illustrate
the importance of cellular compartmentalization.

It was recently discovered that poly(ADP-ribose) polymerase
(PARP) activation, previously felt to contribute solely to
necrotic cell death, could also contribute to caspase-
independent apoptosis [55,63]. Under conditions of severe
injury, depletion of cellular NAD+ via PARP activation
exacerbates energy failure, resulting in membrane leakage
and necrosis [64]. However, under conditions of incomplete
energy failure, as can be seen in pericontusional regions in
models of TBI, PARP activation can contribute to
mitochondrial depolarization, AIF release, and apoptosis
[55,56]. Thus, PARP inhibitors represent a therapeutic
strategy targeting both necrosis, if administered early enough,
and apoptosis after TBI [65].

Regulation of apoptosis
Both caspase-dependent and caspase-independent apoptosis
are regulated by the B-cell lymphoma-2 (Bcl-2) family of
proteins, which include both pro-death and pro-survival
members [66]. Bcl-2 family proteins regulate the permeability
of the mitochondrial outer membrane and permeability
transition pore formation [67]. They contain highly conserved
Bcl-2 homology domains (BH 1–4) essential for homo-
complex and heterocomplex formation [66]. Complexes
formed between proteins containing BH-3 domains such as
Bax, truncated Bid, and Bad, can facilitate the release of
cytochrome c from mitochondria [66]. Upregulation of Bax
with subsequent mitochondrial translocation can be induced
by the tumor suppressor p53, which is increased in injured
regions after TBI in rats [68,69]. The anti-apoptotic members
Bcl-2, Bcl-xL, and Mcl-1L prevent the release of mitochondrial
proteins, including cytochrome c [70], endonuclease G [58],
and AIF [54], by inhibiting the pore-forming function of BH-3
domain-containing Bcl-2 proteins [71]. Recent studies have
identified the existence of crosstalk between the extrinsic and
intrinsic cell death pathways by means of the BH3 domain-
only protein Bid [72]. The anti-apoptotic gene bcl-2 and its

protein product are upregulated in injured cortex and
hippocampus after TBI in rats, and cells expressing Bcl-2
protein seem morphologically normal [73]. Data from human
studies suggest that Bcl-2 family proteins might also
participate in the regulation of the stress response by
interacting with heat shock proteins [74].

Apoptosis can also be regulated by intracellular signal
transduction pathways. Perturbations in mitogen-activated
protein kinase (MAPK) signal-transduction pathways occur
after TBI [75]. Several components of the MAPK pathway –
extracellular regulated kinase-1/2, c-Jun N-terminal kinase,
and p38 pathways – are differentially activated depending on
the region of brain and timing after injury [75,76]. Activation
of the protein kinase C signaling pathway has also been
reported after experimental TBI [77]. Pro-survival intracellular
signal transduction pathways are also activated after brain
injury. These include activation of the growth factor-induced
protein kinase B (PKB) signaling pathway, which can directly
inhibit apoptosis through the phosphorylation and inactivation
of apoptosis-related proteins Bad and caspases-8 and -9
[78]. Phosphorylation of PKB is not seen in cells that are
positive for terminal deoxynucleotidyl transferase-mediated
nick-end labeling (TUNEL) after TBI, providing indirect
evidence that PKB inhibits cell death in vivo [79]. PKB might
also promote cell survival through the regulation of nuclear
factor-κB and gene expression related to cyclic-AMP
response element binding [78].

Evidence for apoptosis in humans after
traumatic brain injury
Although phenotypic descriptions of apoptosis after TBI in
humans date back to the 1940s [30,31], biochemical
evidence of the reactivation of the apoptotic cascade after
TBI in humans has been reported only within the past
decade. Injured brain tissue samples obtained from TBI
patients requiring decompressive craniectomy for the
treatment of life-threatening intracranial hypertension were
found to have evidence of DNA fragmentation by TUNEL and
cleavage of caspase-1 and -3, suggesting activation of
caspase-dependent apoptosis [32]. Activation of caspase-3
is also supported by studies demonstrating cellular
alterations of one of its substrates, PARP, within brain tissue
from TBI patients [80]. Recently, the upregulation of caspase-
8 in human brain after TBI at both the transcriptional and
translational levels has been reported [81]. In this study,
caspase-8 was found predominantly in neurons. In addition,
relative protein levels of both caspase-8 and cleaved
caspase-8 correlated with relative protein levels of Fas death
receptor, providing evidence of the formation of a death-
inducing signaling complex and activation of the extrinsic
pathway of apoptosis within neurons. Increases in Fas and
Fas ligand have also been reported in cerebrospinal fluid
(CSF) from TBI patients, with Fas levels correlating with
intracranial pressure [82,83]. Evidence for participation of the
intrinsic pathway after TBI in humans also exists. Consistent
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with experimental TBI models is the observation that
upregulation of Bcl-2 occurs in human brain from adults and
in CSF from infants and children after TBI [32,84]. In
pediatric patients, lower concentrations of Bcl-2 were
detected in patients that died than in those that survived,
supporting a pro-survival role for Bcl-2 [84]. The pro-death
Bcl-2 family protein Bax is also detectable in contused brain
tissue in TBI patients. Patients with detectable Bax but not
Bcl-2 had a less favorable outcome than patients in whom
both Bax and Bcl-2 were detectable [85]. Although these
studies demonstrate the acute initiation of apoptosis in
human brain after injury, protracted apoptosis also occurs.
TUNEL-positive cells have been detected in autopsy
specimens from patients dying up to 12 months after their
injury [86], perhaps suggesting that a relatively wide
therapeutic window exists for the administration of treatments
aimed at reducing apoptosis after TBI.

In human head injury, apoptotic neuronal cell death has been
identified in the pericontusional gray matter [32,81] and in
oligodendrocytes within white matter [84]. In terms of
defining brain regions where apoptosis occurs after TBI,
these studies using biopsy tissue were limited by the focused
location (lesion and peri-lesion area or non-dominant
temporal lobe). However, autopsy studies also localize
apoptotic, and TUNEL-positive, non-apopoptic cellular
phenotypes, to the contusion or within close proximity to the
contusion [87].

Parallels and differences between apoptosis
after TBI and ischemia
Given the highly conserved nature of the apoptotic cascade,
it is not surprising that there are several similarities in terms of
initiation and reactivation of the apoptosis between acute
brain injuries such as trauma and ischemia. In fact, all of the
processes discussed above have been shown to occur in
experimental models of both cerebral trauma and ischemia
(reviewed by Liou et al. [15]). Similarities might also be
related in part to the fact that the pathophysiology of trauma
includes an ischemic component [88], although after trauma
this usually involves hypoperfusion or ‘trickle flow’ rather than
complete ischemia with reperfusion. One important difference
seems to be related to the heterogeneity of the disease
process in TBI compared with ischemia, in which in addition
to hypoperfusion, conditions of contusion necrosis, excito-
toxicity, axonal injury, and inflammation coexist (see Fig. 1). An
important biochemical distinction might be an increased
contribution of caspase-independent apoptosis after TBI in
comparison with ischemia. A spectrum of cell death
phenotypes, ranging from classic apoptosis to necrosis, has
been described after TBI [27,29]. However, retrospectively it
seems that some cell death phenotypes previously described
as necrotic might represent AIF-mediated apoptotic
phenotypes, with peripheral chromatin condensation, less
cellular and nuclear shrinkage (in comparison with caspase-
dependent apoptosis), and large-scale DNA fragments.

Indeed, large-scale DNA fragments identified with pulsed-
field DNA gel electrophoresis are much more readily
detectable than classic DNA laddering after experimental TBI
[56,89].

Overall contribution of apoptosis after TBI
At present several unanswered questions remain. What is the
relative proportion of neurons dying via apoptosis (as
opposed to necrosis) after TBI, and is this proportion clinically
meaningful? No study has directly measured the proportion of
necrotic to apoptotic cell death in experimental TBI; however,
information can be extrapolated from previous studies. For
example, a 30% reduction in lesion volume is seen in rats
treated with the caspase-3 inhibitor N-benzyloxycarbonyl-Asp-
Glu-Val-Asp-fluoromethylketone (DEVD) measured 3 weeks
after TBI compared with vehicle-treated controls [38]. In
transgenic mice overexpressing Bcl-2, in which both caspase-
dependent and caspase-independent pathways, but less
probably necrosis, would be inhibited, a 60% reduction in
lesion volume is seen in comparison with wild-type mice [90].
Thus, although speculative, in experimental models of TBI
roughly one-third of cell death might be attributable to
caspase-dependent apoptosis, one-third to caspase-
independent apoptosis, and one-third to necrosis. This
degree of programmed cell death would seem to represent a
sizeable therapeutic target, and might be underestimating the
total amount of apoptosis occurring after TBI, given the
clinical studies showing protracted cell death extending
months after injury [86]; whether or not this represents
apoptotic cell death remains to be strictly defined.

What cells undergo apoptosis after TBI? Although most
research, including our own, has focused on neuronal
apoptosis after TBI, other resident brain cells also undergo
apoptosis. Astrocytes, important in glutamate uptake and in
the production of lactate and antioxidants after injury [91,92],
demonstrate DNA fragmentation without classic apoptotic
phenotypes after TBI, although to a much smaller degree than
neurons [93,94]. Oligodendrocytes also undergo apoptosis
after TBI in rats and humans [84,94]. Current opinion is that
the order of vulnerability to apoptosis after TBI is neurons ≥
oligodendrocytes > astrocytes > microglia [95]. The reasons
behind this differential vulnerability remain speculative, but
might involve higher metabolic rates and therefore higher
potential for relative ischemia in neurons.

It would also be interesting to determine whether there is a
relationship between apoptosis and other prevalent clinical
conditions seen after TBI. Temporal patterns of apoptosis
[29] are similar to those seen for edema [96] and
inflammation [97], with ‘peak levels’ seen between 24 and
72 hours after injury. Whereas in developmental apoptosis
these conditions are felt to be mutually exclusive, ischemia
resulting from edema-related increases in intracranial
pressure could trigger apoptosis, as could inflammation.
Hemorrhage generally precedes the occurrence of apoptosis
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after TBI, blood components are potent stimulators of
apoptosis experimentally, and apoptosis is seen in humans
with subarachnoid hemorrhage [98]. In addition, caspase
inhibitors reduce endothelial apoptosis and prevent
vasospasm after subarachnoid hemorrhage in dogs [99].

Does classic developmental apoptosis occur after TBI in the
mature mammalian brain? This topic is quite controversial,
and partly depends on semantics [100]. Certainly there are
caveats related to evaluating mechanisms of programmed
cell death after brain injury. This is in part related to imprecise
tools for identification. The most publicized example is that of
TUNEL to identify DNA fragmentation, given that TUNEL will
label both apoptotic and necrotic cells [101]. In models of
cerebral ischemia, electron microscopic examination of
injured brain has led some investigators to conclude that
apoptosis does not contribute to cell death [102]. What is
clear is the heterogeneous CNS diseases such as TBI and
ischemia often result in a continuum of cell death phenotypes
[103] that span from classic apoptosis to necrosis, and that
many components of the programmed cell death cascade
can be identified in multiple contemporary CNS injury models
and in humans after TBI.

Should apoptosis be targeted after TBI? Inhibiting apoptosis
after pathological insults remains controversial because
apoptosis is an evolutionarily conserved and vital mechanism
for biological systems to eliminate abnormal or aging cells.
This is essentially the opposite biological predicament to that
seen with the use of chemotherapeutic agents designed to
kill cells. However, experimental studies still support a
beneficial effect of treatment with strategies that inhibit
apoptosis after acute brain insults such as TBI. Molecular
approaches that interrupt the apoptosis cascade have been
enlightening and have provided proof of principle [90];
however, at present these seem to be far from clinical
application. Preclinical studies interrupting apoptosis using
contemporary models of TBI have shown promise
[38,40,104]. Although pharmacologic therapies targeting
apoptosis after TBI might not quite be ready for the clinic, they
are in rapid development and could be in clinical trials soon.

Potential therapeutic interventions targeting
apoptosis after TBI
The complexity of the apoptotic cascade provides many
opportunities, or perhaps more so challenges, for the design
of interventions that might attenuate cell death (Fig. 1).
Several hypothetical therapeutic approaches for reducing
apoptosis after brain injury exist: first, inhibiting key initiators
(for example with soluble inactive TNF-family receptors, anti-
excitotoxic agents, or anti-oxidants); second, blocking key
components of the apoptotic cascade (for example with anti-
apoptotic Bcl-2 mimetic proteins, caspase inhibitors, PARP
inhibitors, other protease and/or endonuclease inhibitors);
third, inhibiting multiple components of the apoptotic
cascade (for example with hypothermia [105,106]); and

fourth, enhancing pro-survival factors (for example
upregulating stress proteins or facilitating PKB signal
transduction pathways). In our opinion, the two most
promising strategies in terms of biological potential based on
key positioning within the apoptotic cascade and on the
availability of pharmacological agents are caspase inhibitors
to target caspase-dependent apoptosis and PARP inhibitors
to target caspase-independent cell death.

Caspase inhibitors
Caspase inhibitors include a group of small (typically one to
four amino acids) peptide derivatives as well as novel non-
peptide pharmacologic agents [107]. The peptide derivatives
have been tested in models of brain injury and are
competitive inhibitors designed according to specific amino
acid target sequences at the cleavage site of the respective
caspase substrates (reviewed in [68, 69]). A relatively
selective tetrapeptide caspase-3 inhibitor has been shown in
independent studies to inhibit caspase enzyme activity,
reduce brain tissue loss, and improve neurological outcome
after experimental TBI [38,40]. Similarly a pan-caspase tri-
peptide inhibitor has been shown to improve functional
outcome after TBI in adult rats [36,108] and to reduce
apoptotic neurodegeneration in the developing rat brain after
TBI [36,108]. A potential drawback of the tripeptide or
tetrapeptide caspase inhibitors is that they might not
penetrate the intact blood–brain barrier, unless delivered
early after injury, when the blood–brain barrier is disrupted
(typically hours after injury [109]). A unipeptide pan-caspase
inhibitor Boc-aspartyl fluoromethylketone, which is capable of
penetrating the blood–brain barrier, has been shown to
reduce ischemic brain damage after systemic administration
[110] but has not yet been reported in models of TBI.
Important caveats aside from the potential for delayed tumor
development exist in terms of treatment with caspase
inhibitors. First, inhibition of caspase-dependent apoptosis
might shift the mode of cell death to caspase-independent
apoptosis or necrosis [111,112]. Second, caspase activity
might have an important homeostatic function in cytoskeletal
remodeling and other physiologic processes [113]. Third,
caspase inhibitors might lead to the survival of dysfunctional
cells, resulting in survival without functional benefit.
Consistent with this was our report that treatment with DEVD
reduced tissue damage without improvement in functional
outcome after TBI in rats [38].

PARP inhibitors
PARP is an important enzyme for the repair of DNA damage
and maintenance of genomic integrity; however, increased
PARP activity can exacerbate the depletion of cellular energy
stores under certain conditions promoting cell death [114].
Although it is primarily felt to contribute to necrosis, a direct
contribution of PARP activation to caspase-independent
apoptosis mediated by AIF has recently been demonstrated
[55,63]. PARP inhibitors therefore represent one therapeutic
strategy that might reduce caspase-independent apoptosis
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(and perhaps necrosis). Systemic administration of the PARP
inhibitor 5-iodo-6-amino-1,2-benzopyrone at moderate dosing
improved functional outcome after TBI in mice; however,
higher doses that further inhibited PARP activity worsened
performance in a memory paradigm [65]. Other PARP
inhibitors have also been shown to afford protection in
experimental models of TBI [115,116]. None of these studies
have directly assessed the affect of PARP inhibitors on
apoptosis.

Other pharmacological strategies
Another potential strategy would be to block both caspase-
dependent and caspase-independent apoptosis by
mitochondrial stabilization after TBI, either directly or through
the regulation of the Bcl-2 family of proteins. Prevention of
mitochondrial permeability transition with cyclosporine A or
other immunophilins would attenuate the release of both
cytochrome c and AIF [117]. Cyclosporine A and FK506
have been shown to be protective in models of TBI, at least in
part by reducing mitochondrial dysfunction and traumatic
axonal injury [118–122]. Recently, the novel p53 inhibitor
pifithrin α was shown to improve histological and functional
outcome in rats after cerebral ischemia [123].

Conclusion
Although apoptosis clearly contributes to secondary neuronal
death after TBI both in experimental models and in humans,
present studies have not been sufficient to confirm that
apoptosis after brain injury is solely detrimental. Thus, there
might be physiologic, as well as technical, limitations in
approaches designed to reduce neuronal and glial apoptosis
after TBI. The quiet elimination of cell debris and non-
functional cells might be equally important for structural and
functional recovery after TBI, being essentially ‘molecular
débridement’. That said, intuitively one would suspect that
salvaging neurons after acute injury would optimize chances
for maximal neurological recovery. Thus, it remains logical to
continue the development of clinically relevant strategies
targeting the selective reduction of apoptosis after TBI.
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