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Understanding seasonal human mobility at subnational scales has important implications across 
sciences, from urban planning efforts to disease modelling and control. Assessing how, when, and 
where populations move over the course of the year, however, requires spatially and temporally 
resolved datasets spanning large periods of time, which can be rare, contain sensitive information, 
or may be proprietary. Here, we aim to explore how a set of broadly available covariates can describe 
typical seasonal subnational mobility in Kenya pre-COVID-19, therefore enabling better modelling of 
seasonal mobility across low- and middle-income country (LMIC) settings in non-pandemic settings. 
To do this, we used the Google Aggregated Mobility Research Dataset, containing anonymized 
mobility flows aggregated over users who have turned on the Location History setting, which is 
off by default. We combined this with socioeconomic and geospatial covariates from 2018 to 2019 
to quantify seasonal changes in domestic and international mobility patterns across years. We 
undertook a spatiotemporal analysis within a Bayesian framework to identify relevant geospatial 
and socioeconomic covariates explaining human movement patterns, while accounting for spatial 
and temporal autocorrelations. Typical pre-pandemic mobility patterns in Kenya mostly consisted of 
shorter, within-county trips, followed by longer domestic travel between counties and international 
travel, which is important in establishing how mobility patterns changed post-pandemic. Mobility 
peaked in August and December, closely corresponding to school holiday seasons, which was found 
to be an important predictor in our model. We further found that socioeconomic variables including 
urbanicity, poverty, and female education strongly explained mobility patterns, in addition to 
geospatial covariates such as accessibility to major population centres and temperature. These 
findings derived from novel data sources elucidate broad spatiotemporal patterns of how populations 
move within and beyond Kenya, and can be easily generalized to other LMIC settings before the 
COVID-19 pandemic. Understanding such pre-pandemic mobility patterns provides a crucial baseline 
to interpret both how these patterns have changed as a result of the pandemic, as well as whether 
human mobility patterns have been permanently altered once the pandemic subsides. Our findings 
outline key correlates of mobility using broadly available covariates, alleviating the data bottlenecks 
of highly sensitive and proprietary mobile phone datasets, which many researchers do not have access 
to. These results further provide novel insight on monitoring mobility proxies in the context of disease 
surveillance and control efforts through LMIC settings.

Human populations are connected now more than ever in human history, with worldwide travel booming 
over the last century1. Understanding these mobility patterns across subnational spatial and temporal scales 
has important implications across science, from urban planning and infrastructure development to disease 
transmission2,3. Seasonal international and domestic mobility patterns and corresponding changes in popula-
tion dynamics are difficult to capture in temporally-static surveys or censuses4, yet have crucial implications 
for vector-borne and respiratory infectious diseases1,5,6, as highlighted by the most recent coronavirus global 
pandemic7. Seasonality and subsequent changes in mobility can further impact and exacerbate disease outbreaks 
and epidemics4, including cholera, measles, malaria, Zika virus, influenza, etc.2,4,8–10, resulting from increased 
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travel during holidays or mass gatherings. More recently, emergent changes in population mobility throughout 
2020 due to non-pharmaceutical interventions (e.g. lockdowns) aimed at curbing the COVID-19 pandemic 
have further highlighted the need to understand seasonal population movement patterns and measure mobility 
quickly and comprehensively1,7,11.

Human movement is generally characterized by frequent trips travelled over short distances, interspersed 
with longer distances which occur more occasionally3,12. A number of factors may influence these trips, ranging 
from short-term movements due to factors such as job and family priorities3, to seasonal migration driven by 
cyclical climatic variations2,13, to long-term migration and displacements resulting from catastrophes and natu-
ral disasters4. Quantifying human mobility patterns over highly resolved spatial and temporal scales, however, 
has proven difficult, owing to a lack of sufficient spatially-resolved datasets spanning long periods of time1,3,8,14. 
Historically, studies have used high spatial resolution satellite imagery data such as night-time lights to assess 
temporal variations in population densities2, but these data are only a proxy for quantifying population metrics4. 
Traditional mobility data such as travel history surveys15, traffic surveys16, migration surveys and censuses17 have 
been used to more directly quantify population movements spanning both short and long-term movements, but 
such surveys and censuses are typically not spatially resolved, and/or can further suffer from limitations such as 
recall bias. Alternatively, studies using global positioning system (GPS) trackers can provide insight into highly 
localized movement patterns18, but are typically worn for only short periods of time, such as weeks or months, 
among participants representing a sample size which may not be representative of national and international 
populations14,19. Recently, researchers are increasingly employing call data records (CDRs) to explore population 
movements at both high spatial and temporal scales4, where mobile phones collect locational information from 
cell phone towers whenever a billable event (such as a call or text message) occurs. These datasets therefore offer 
locational data at relatively high temporal and spatial resolutions, with the latter depending upon a country’s 
cell phone tower infrastructure, but again suffer from limitations including the inability to track cross-border 
movements and a lack of data for time periods between billable events14,19.

Over recent years, passively collected data from mobile phone technology has filled a novel niche in quantify-
ing human mobility patterns at high spatial resolutions, across international borders, and spanning wide temporal 
periods such as years1. The Google Aggregated Mobility Research Dataset (GAMRD) represents one such form 
of passively collected data, aggregated over users who have turned on the Location History setting, which is off 
by default. The applicability of this data has been shown to be comparable with more traditional forms of mobil-
ity signals, such as travel history surveys14,20. While these data are likely biased in terms of wealth, gender, and 
urbanicity21,22, mobile penetration rate and smartphone ownership within sub-Saharan Africa have been steadily 
increasing over the decades, with nearly half a billion people currently subscribing to mobile services and an 
estimated 65% of the population having access to a smartphone device by 202522. More recently, GAMRD data 
have further shown to be strongly predictive of human mobility patterns as measured through call data records, 
with a Pearson correlation coefficient nearing 0.90 between Google data and Vodafone mobility data for parts of 
Europe7. These data have proven timely and responsive in quickly informing reductions in mobility and social 
contacts as a result of non-pharmaceutical interventions, such as lockdown and social distancing measures, in 
the context of the 2019 coronavirus disease (COVID-19) pandemic7,23. These studies suggest that while GAMRD 
data are subject to similar sociodemographic biases inherent to mobile phone data, they are highly accurate and 
representative of movement patterns captured among the study population.

Despite its utility in describing population movement patterns, exploiting these large mobility datasets may 
be challenging for many researchers due to restrictive data sharing policies put in place to protect individual 
privacy9. This often necessitates the use of freely available proxy data, such as satellite-derived imagery or mod-
elled socioeconomic surfaces to approximate changes in population densities, yet few studies have explored the 
ability of these correlates to explain seasonal population movements2. The need for publicly available data that can 
be used to study mobility patterns has become more apparent as a result of the COVID-19 pandemic. Researchers 
have emergently explored mobility patterns using proprietary mobile datasets, and found that although mobility 
patterns reduced globally as a result of the pandemic, the extent of these reductions varied both by country and 
pandemic waves11. Corporations across the world have recognized the utility in understanding the effectiveness 
of restricted mobility in preventing subsequent pandemic waves, and have increasingly begun to release openly 
available data for researchers to more easily study mobility patterns, including Facebook, Apple, Google, and 
OpenSky24. Towards this, understanding how openly available socioeconomic and geographic datasets explain 
mobility patterns pre-pandemic is vital to establish a baseline for understanding how mobility changed as a result 
of the pandemic, as well as how mobility might be permanently altered once the pandemic subsides.

Here, we aim to address this knowledge gap by (1) measuring pre-pandemic seasonal patterns of domestic 
and international population movements using GAMRD data from smartphones, using Kenya as a case study, 
and (2) explaining population mobility patterns using a suite of geospatial and socio-economic covariates within 
a spatiotemporal Bayesian framework. Specifically, we firstly describe overall monthly changes in population 
movements across 2018 and 2019, including differences in between-country, within-country, and within-county 
movements. Secondly, we utilise a hierarchical Bayesian modelling approach to identify key correlates of overall 
monthly movement patterns while accounting for spatial and temporal autocorrelations.

Methods
Study area.  As of 2019, Kenya had a population of 52.5 million people, with a population density of 92.4 per 
km225. According to data collected through the Malaria Indicator Survey conducted through the Demographic 
and Health Surveys Program, over 90% of households within Kenya owned a mobile telephone in 2015, rang-
ing from 85% in the eastern portion of Kenya to almost 95% in the central portions of Kenya containing urban 
areas like Nairobi26. Of note, Kenya adopted a new form of geographic administration in 2013 as a result of 
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the Constitution of 2010, where administrative divisions were devolved into 47 counties (e.g., administrative I 
level)27. While the analyses performed here were conducted at the county level, internal movement patterns are 
also presented at the provincial level to facilitate broad mobility patterns across the country. Figure 1 shows the 
47 counties and 8 provinces used in these analyses, as well as the estimated population distribution in 2018, as 
gathered through WorldPop (https://​www.​world​pop.​org/)28,29.

Human mobility data.  The Google Aggregated Mobility Research Dataset contains anonymized mobility 
flows aggregated over users who have turned on the Location History setting, which is off by default. This is 
similar to the data used to show how busy certain types of places are in Google Maps—helping identify when 
a local business tends to be the most crowded. The dataset aggregates flows of people from region to region, 
which is here further aggregated at county, province, and country levels. In 2016, this dataset represented over 
300 million users from nearly all countries around the world, with sufficient data to cover ~ 40% of the world’s 
population30.

To produce this dataset, machine learning is applied to logs data to automatically segment it into semantic 
trips31. Briefly, location data points are triangulated using a variety of GPS, WiFi and cell phone tower signals, and 
converted to trips using a variety of signals, including timing and location of data points (e.g., stopping at airports 
when travelling internationally), dwell times, and other factors30,32. These trips have been shown to be spatially 
equivalent to GPS data within 100 m, and capture more international movements, where traditional mobile phone 
operators may lack location data across international borders14. Regardless, this approach is limited by the user’s 
data availability; if, for example, a user tends to frequently turn their location services on and off (for example to 
save phone battery), this may lead to biased results for that individual. To provide strong privacy guarantees, all 
trips were anonymized and aggregated using a differentially private mechanism33 to aggregate flows over time 
(see https://​polic​ies.​google.​com/​techn​ologi​es/​anony​mizat​ion). Briefly, this process provides privacy guarantees 
by (1) bounding the posterior probability that any individual’s data was used in producing an output; and (2) 
only flows representing a sufficiently large sample size (e.g., greater than 100 devices) are processed within the 
model30. This research is done on the resulting heavily aggregated and differentially private data. No individual 
user data was ever manually inspected, only heavily aggregated flows of large populations were handled.

Figure 1.   Provinces (labelled, white, n = 8) and counties (grey, n = 47) in Kenya, with population counts per km2 
as of 2018. R software, version 4.0.4, https://​www.r-​proje​ct.​org/.

https://www.worldpop.org/
https://policies.google.com/technologies/anonymization
https://www.r-project.org/
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All anonymized trips are processed in aggregate to extract their origin and destination location and time. 
For example, if users travelled from location a to location b within time interval t, the corresponding cell (a, b, t) 
in the tensor would be n ∓ err, where err is Laplacian noise. The automated Laplace mechanism adds random 
noise drawn from a zero mean Laplace distribution and yields ( ǫ , δ)-differential privacy guarantee of ǫ = 0.66 and 
δ = 2.1 × 10−29 per metric. Specifically, for each week W and each location pair (A,B), we compute the number 
of unique users who took a trip from location A to location B during week W. To each of these metrics, we add 
Laplace noise from a zero-mean distribution of scale 1/0.66. We then remove all metrics for which the noisy 
number of users is lower than 100, following the process described in33, and publish the rest. This yields that 
each metric we publish satisfies (ε,δ)-differential privacy with values defined above. The parameter ǫ controls 
the noise intensity in terms of its variance, while δ represents the deviation from pure ǫ-privacy. The closer they 
are to zero, the stronger the privacy guarantees.

This dataset represents monthly domestic mobility flows at the county level in Kenya over the course of 
2018–2019, in addition to international mobility flows. We further explored the different types of movement 
within these data, comprised of within-county travel (where the origin and destination counties remained the 
same); domestic travel (where the origin county differed from destination county, but was still within Kenya); 
and international travel (where the destination was outside of Kenya). Figure S1 shows these types of movement 
patterns across months (combined for 2018 and 2019), as represented by box plots. Within-county trips (blue) 
across shorter distances tended to comprise the majority of travel across months, followed by domestic travel 
(red) and international travel (green). Similar datasets have been described further in7,23,30.

To measure seasonal movement patterns across the time period, we quantified the change in monthly popula-
tion flows. This change was calculated for each month as the total outward mobility flow from each source county 
to all domestic and international destinations (denoted as monthly mobility flows), which was compared to Janu-
ary of the corresponding year (denoted as the baseline mobility flow). Of note, January represents an arbitrary 
baseline, chosen for its intuitive comparison of mobility patterns throughout the rest of the calendar year. We 
then calculated the monthly change in population flows as a ratio for each subsequent month (February through 
December) by dividing the monthly mobility flows by the corresponding baseline mobility flow of the equivalent 
year. For example, if the average outward population flow out of Nairobi for February 2019 was double the aver-
age outward population flow for January 2019, the change in mobility would be quantified as 2. Values close to 1 
therefore represent no change in mobility patterns for that month as compared to the January baseline mobility 
flow, while values greater than 1 represent an increase in mobility and values less than 1 represent a decrease in 
mobility. This is represented by the following equation,

where y represents the change, � , in mobility for a given county, i, and x represents total outward mobility flow 
at the county level. These calculations result in a dataset with n = 1128 observations, representing 24 data points 
for the months of January through December across 2018 and 2019, multiplied by 47 counties within Kenya.

Covariate data.  We used a combination of socioeconomic and geospatial covariates to explore the change 
in mobility patterns over time. Table 1 shows the covariates used in these models, as well as sources, temporal 
coverage, and native spatial resolution.

Socioeconomic covariates used at the county level in these analyses included the proportion of population 
living in urban areas, the proportion of the population living in poverty, proportion of women with no primary 
level education, accessibility to the nearest urban centre, and the number of school holidays over 2018 and 2019. 

�yi,Feb,Mar,Apr...Dec =
xi,Feb,Mar,Apr...Dec

xi,Jan

Table 1.   Covariate data, sources, spatial resolution, and temporal resolution/coverage. 1 Poverty is defined as 
proportion of residents living in MPI-defined poverty. 2 Urban centre defined as a contiguous area with 1500 or 
more inhabitants per square kilometre, or a majority of built-up land cover coincident with a population centre 
of at least 50,000 inhabitants. 3 Available at: https://​world​clim.​org/​data/​month​lywth.​html.

Covariate Range (SD) Native spatial resolution Temporal resolution Temporal coverage Source

% population living in urban extent 0.001–0.947 (0.175) 1 km2 Year 2015 GHS-SMOD34

% people living in povertyy1 0.099–0.917 (0.185) 1 km2 Year 2008 WorldPop35

% women with no primary education 0.032–0.17 (0.03) 5 km2 Year 2017 Local Burden of Disease36

Travel time (minutes) to the nearest 
urban centre2 4.37–380.66 (98.92) 1 km2 Minutes 2015 Malaria Atlas Project37

# school holidays (days) 0–31 (9.8) National

Month

2018–2019 Lai et al.38

Aridity index 96.65–223.1 (20.8)
30 arc-seconds 1970–2000

Global Aridity Index and Potential 
Evapotranspiration Climate Database 
v239

Enhanced Vegetation Index (EVI) 1325–4914 (838.4) MODIS40

Precipitation (mm)3 1.70–266.9 (55.85)
2.5 arc-minutes 2010–2018 WorldClim v241

Temperature (°C)3 14.7–28.8 (3.17)

VIIRS Night-time lights 0.246–15.27 (1.96) 15 arc-seconds (~ 500 m2) 2012–2018 NOAA/NGDC Earth Observation 
Group42

https://worldclim.org/data/monthlywth.html
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These covariates were included in our analyses as mobile phone ownership and use have been shown to be biased 
towards wealthier populations, which in turn correlates with increased education and urbanicity43. Further, the 
distance travelled and number of trips taken have been shown to vary by sociodemographic factors, includ-
ing wealth and education30,37. Yet despite socioeconomic biases in mobile phone ownership, mobility patterns 
as estimated through mobile phone data have proven robustly representative of population-level movements, 
specifically within Kenya43.

Geospatial and climatic covariates used in these analyses included aridity, temperature, precipitation, an 
enhanced vegetation index (EVI), and night-time lights. Briefly, aridity represents a measure of climatic moisture, 
while EVI is a measure of vegetation greenness. The night-time lights dataset quantifies light emission during 
the night-time at the daily level, which has been used as a measure of dynamic population density. These covari-
ates have been shown to correlate and predict population-level movements, both at the global scale and within 
sub-Saharan Africa2,30. Specifically, climatic variables such as aridity, precipitation and EVI have been shown 
to correlate with agricultural and crop seasons, where seasonal labour migration occurs44,45, while temperature 
can correlate with increased travel due to seasonal holidays, including school holidays46 and religious holidays 
such as Christmas. Lastly, night-time lights have been shown as an important proxy for seasonal fluctuations in 
population density, suggesting human movements into and out of cities2.

The proportion of the Kenyan population living within urban extents was calculated using the Global Human 
Settlement (GHS) Settlement Model grid (SMOD)47, classifying settlement typologies into Degree of Urban-
ization (e.g., ‘rural’, ‘peri-urban’, and ‘urban’ clusters)47–49. Peri-urban and urban clusters were combined to 
form ‘urban’ versus ‘rural’ extents, which was applied to 2018 and 2019 population data, as obtained through 
WorldPop29. The population living within urban clusters was therefore quantified, and divided by total population 
within the county to estimate the proportion of population within the county living within an urban extent. The 
proportion of population living in poverty at a 1 km2 spatial resolution was also obtained via WorldPop35, and 
averaged across counties to obtain the proportion of population living in poverty per county. The proportion 
of women having no primary level education at a spatial resolution of 5 km2 was obtained via the Local Burden 
of Disease project36, while accessibility to the nearest urban centre (as measured via travel time) was obtained 
via the Malaria Atlas Project37, and both were similarly averaged across counties. Lastly, the number of school 
holidays within Kenya over the course of 2018 and 2019 was obtained via Lai et al.46, capturing the number of 
country-specific holidays observed among primary and secondary schools for the corresponding year.

Monthly aridity was obtained from the Global Aridity Index and Potential Evapotranspiration Climate Data-
base v239, while precipitation and temperature data were obtained from the WorldClim v2 datasets41, representing 
mean aridity, precipitation and temperature at the county level for each month from 2012 through 2018, thereby 
reducing yearly fluctuations in estimates. The aridity index can be used to “quantify precipitation availability 
over atmospheric water demand”, representing a confluence of precipitation, temperature and evapotranspiration 
processes, which measures the ability of the atmosphere to remove moisture39. Monthly enhanced vegetation 
indices were obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Index 
Products available through the National Aeronautics and Space Administration40, measuring vegetation green-
ness through satellite derived imagery. These similarly represent mean EVI for each month over the course of 
2012 through 2018, which have been shown to correlate with seasonal movements as a proxy for crop seasons44,45. 
Lastly, Visible Infrared Imaging Radiometer Suite (VIIRS) data were obtained at a spatial resolution of 15 arc-
seconds (or approximately 500 m at the equator) through the National Oceanic and Atmospheric Administration 
and National Geospatial Data Clearinghouse’s Earth Observation Group42. These data detect electric lighting on 
the Earth’s surface and can be used to quantify night-time lights50, with implications for changes in population 
densities2. Data were similarly obtained for months between 2012 and 2018, and averaged at the county level.

Statistical modelling framework.  In these analyses, we aimed to infer whether a suite of covariates have 
a scientifically meaningful and statistically significant relationship with human mobility, as quantified through 
the GAMRD, representing an explanatory modelling analysis51. To do this, we utilized a Bayesian spatiotem-
poral modelling approach within the R-INLA package52 to investigate seasonal population mobility patterns 
using a suite of geospatial and socio-economic covariates while accounting for spatial and temporal autocor-
relation inherent in the mobility data. Similar models have been used previously to describe spatiotemporal 
dynamics in malaria prevalence and incidence53,54, as well as geographic heterogeneity in subnational mortality 
rates due to sparse events such as suicide and lung cancer across the USA55,56. By employing a spatiotempo-
ral Bayesian framework, both fixed effects and spatially structured and unstructured random effects can be 
added to the model, as well as time-dependent covariates and effects, and interactions between space and time 
variables52,53,55,57, allowing for exploration of patterns at the spatial, temporal, and spatiotemporal level53.

The general structure of the Bayesian spatiotemporal model utilized in these analyses can be defined as57:

where yit represents the change in population movement in county i at time t, where a log transformation was 
performed to satisfy Gaussian assumptions; β0 represents the model intercept; Ai represents the spatial autocor-
relation component, modelled using a bym2 family structure; Bt represents the fixed a effects in the model, while 
incorporating the temporal component, t, modelled with an ar1 structure; Cit represents the interaction between 
the spatial and temporal components Ai and Bt ; and X ′

it represents the spatially and time-varying covariates in 
the model (described above), β represents the regression parameters53, and ǫit represents the Gaussian error term.

log
(

yit
)

= β0 + Ai + Bt + Cit + X
′

itβ + ǫit
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Results
Figure 2 shows monthly mobility flows, across 2018 and 2019, in all Kenyan counties (Fig. 2a) and in Nairobi and 
Mombasa (Fig. 2b), which comprise a large proportion of Kenya’s population. In Fig. 2a, coloured lines represent 
monthly mobility flows for each of the 47 counties within Kenya, while the darker red line represents the overall 
mean of monthly mobility flows across all counties. Overall, monthly mobility flows varied between 0.672 in 
Mandera county to 7.515 in Samburu county (mean 1.424; SD 1.061) for 2018, and 0.110 in Tana River county 
to 25.866 in Elgeyo-Marakwet county (mean 1.464; SD 2.18) for 2019. Movement patterns in Fig. 2b represent 
mobility flows for Nairobi (left) and Mombasa (right) counties, and further show mobility flows using Loess 
smoothing, as indicated by the dark blue line and grey confidence intervals. This smoothing method employs 
smoothed conditional means, and is useful in visualizing seasonal mobility patterns devoid of monthly noise. 
Using this smoothing technique among these two counties clearly outlines the variability observed in movement 
patterns between populous counties. For example, in Nairobi mobility tended to increase and peak in late sum-
mer for both 2018 and 2019, while in Mombasa, inverse patterns were observed across both years, with a peak 
in mobility in June of 2018 but a trough in June of 2019.

Figure S3 outlines international destinations from Kenya across 2018 and 2019, where mobility flows were 
log transformed to better highlight spatial variability. Unsurprisingly, four of the top five international destina-
tions observed fell within Africa, with the top three destinations comprised of Tanzania, Uganda and Ethiopia, 
respectively, within Eastern Africa. Other top destinations included Middle Eastern hubs such as the United Arab 
Emirates and Qatar, South Africa, and European countries including Great Britain, France and the Netherlands.

We similarly explored domestic travel destinations within these datasets, as represented in Fig. 3. This circle 
plot represents bidirectional movement between Kenyan counties, broadly grouped by provinces (Figure S2). 
For example, green represents movement corresponding to Nairobi, with arrows representing proportional 
outward movement from Nairobi to other regions such as the Central and Rift Valley provinces. This means that 
roughly half of outward movement originating within the Nairobi province travelled to the Central province, 
while approximately one-quarter of outward movement travelled to the Rift Valley province, and another quarter 
to the Eastern province. Conversely, nearly half of the inward movement to Nairobi consisted of movements 
originating within the Central province (orange), while similarly a quarter of inward flows originated in the Rift 
Valley (brown) and Eastern (pink) provinces.

Model results.  Lastly, we aimed to identify key socioeconomic and geospatial correlates of monthly mobil-
ity flows by employing a Bayesian modelling framework. Table 2 shows posterior marginal effects for the fixed 
effects within the model, as well as model hyperparameters. Lower and upper 95% credible intervals for fixed 
model effects are also shown, with values crossing 0 indicating no significant effect within the model. Peak 
density estimates of posterior distributions among fixed effects included in the model are shown in Fig. 4. The 
further peak densities are from zero, the more influence the effect has on the model58.

We firstly explored the correlation between geospatial covariates to investigate potential multi-collinearity. 
We found that aridity, EVI, and precipitation were strongly correlated with temperature (Fig. 5), and therefore 
included only temperature in the model to improve model fit. We found that accessibility to the nearest urban 
centre, education, number of school holidays, and temperature had significant effects on the model. Specifi-
cally, greater accessibility to urban centres, higher education, and greater number of school holidays explained 
increased mobility, where decreasing temperature explained less mobility (Fig. 4). Night-time lights and poverty 
had slight effects on the model, but 95% CI estimates overlapped with zero, suggesting these effects were not 
significant. Lastly, model validation statistics are reported, including mean absolute error (MAE), root mean 
square error (RMSE) and pseudo-R2 values. MAE and RMSE represent model precision and bias, with values 
closer to zero representing better model fit, while pseudo-R2 values represent variance explained by the model59,60.

Finally, we visualised mobility as a result of the spatiotemporal model used, presenting ‘smoothed’ estimates of 
observed mobility patterns for 2018 and 2019 (Fig. 6), representing overall mobility flows devoid of noise. Similar 
to Fig. 2a, these estimates represent the monthly mobility flows, as compared to a January baseline mobility flow 
for the corresponding year. Coloured lines represent monthly mobility flows for each county within Kenya, while 
the red line represents the average monthly mobility flow across all counties. Throughout both years, mobility 
tended to decrease in February, and increase throughout the spring and summer months, peaking in August. A 
sharp decrease in mobility was observed in the fall months before preceding another increase in mobility around 
the holidays in December.

Discussion
Establishing baseline mobility patterns and understanding the proxies and correlates of population movements 
across space and time are fundamental across a variety of disciplines, from infrastructure planning to disease 
surveillance30. However, such analyses have rarely been performed with a robust dataset spanning many years 
at high spatial resolutions, and have timely implications, given the recent COVID-19 global pandemic. Taking 
Kenya as an example, here, we address this research gap using a novel mobile phone dataset by establishing 
monthly mobility patterns across multiple years and exploring key sociodemographic and geospatial correlates 
of this mobility. We found that a set of commonly available covariates can capture these patterns well, offering 
the possibility of estimating and mapping seasonal mobility in LMIC settings.

We found that the majority of trips tended to occur along shorter distances within counties, while longer 
distance trips between counties and across countries occurred less frequently within the dataset (Figure S1), in 
line with other studies1,14,30. We further found that between-county and between-country trips tended to occur 
between spatially proximate counties and countries, with the majority of domestic mobility comprised of move-
ments between Nairobi and Kiambu counties (Central province), Kajiado county (Rift Valley province), and 
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Figure 2.   (a) Observed change in monthly population flows for 2018 and 2019, as compared to the baseline 
mobility flow in January of the corresponding year. Coloured lines represent seasonal mobility patterns for each 
county within Kenya, and the red line represents the average seasonal mobility pattern for all counties over 
the year. (b) Observed mobility patterns (as shown in the top panel) among selected counties, overlaid with 
smoothed Loess curves.
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Machakos county (Eastern province), comprising nearly 75% of the overall movement into Nairobi (Figure S4). 
These patterns were unsurprising, given the close spatial proximity of these counties to each other (Figure S2). 
We similarly found the majority of international mobility destinations were other East African countries, such 
as Tanzania, Uganda, and Ethiopia, again suggesting that these countries are highly interlinked by mobility. 
These results have particular implications for disease surveillance and monitoring efforts within the context of 
the COVID-19 pandemic, where coordination between counties and countries will be vital in stemming further 
regional outbreaks and resurgent waves7.

Lastly, we identified key correlates of mobility across years, and found that socioeconomic variables including 
urbanicity, poverty, and female education strongly explained mobility patterns, in addition to geospatial covari-
ates such as accessibility to major urban centres and temperature. We found that the number of school holidays 
significantly explained mobility patterns, with greater mobility occurring on months with a higher number of 
school holidays, such as August. However, our model validation results suggest that the observed changes in 
mobility patterns over the course of the study period are only partly explained by the covariates selected in our 
model, with a pseudo-R2 value of 0.203, suggesting other individual level socioeconomic covariates (for exam-
ple access to transportation or occupation) might be important to explore in future analyses. As these analyses 

Figure 3.   Bidirectional domestic mobility flows between Kenya provinces. Arrows indicate directionality of 
movement.
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involved anonymized mobility data at the county level, individual level demographics linked to mobility patterns 
were not able to be included in our model. Regardless, while the socioeconomic factors used are likely subject 
to general biases in mobile phone ownership, such as wealth and urbanicity43, previous studies have found that 
mobility estimates from such datasets still robustly represent population-level movement, further suggesting 
that these variables are necessary to include in any model exploring human movement.

Temperature was found to explain mobility in our analyses, and was further not statistically correlated with 
school holidays, as determined by a pairwise t-test with Bonferroni correction (Fig. 5). Further, temperature has 
previously been shown to correlate with seasonal mobility patterns, having important implications on disease 
transmission such as dengue and influenza5,61. Regardless, school holidays were found to be the most important 
predictor of mobility in our analyses, and represent an important factor for non-pharmaceutical interventions 
(such as extended school holidays and lockdowns) in curbing the spread of COVID-19 or other transmittable 
disease including influenza. While the number and timing of school holidays will vary by country, other stud-
ies have found that seasonal patterns of both domestic and international travel were consistent with public and 
school holidays across more than 90 countries46.

Recent studies using the mobility data used in these analyses have demonstrated that mobility can robustly 
predict disease spread (or a reduction in disease spread), and are on par with more comprehensive travel surveys 
such as commuter surveys or GPS devices7,14,20. Regardless, these data can require extensive technical expertise 
to work with, and can be difficult to obtain due to privacy concerns and anonymity. Further, many countries and 
populations may not be represented by mobile phone data due to sociodemographic biases. Towards this, openly 
available and freely accessible data estimating human mobility are increasingly being released, predominantly in 
response to the need for such data in understanding the effectiveness of control strategies in containing pandemic 
spread24. Here, we aim to demonstrate that a suite of standardly available covariates can be used to proxy changes 
in mobility patterns within LMIC settings using broadly and freely available data. While these covariates do 
not explain all the variance in observed mobility patterns, they represent an important set of predictors which 
can be used in combination with less comprehensive but more readily available mobility data, such as air travel 
statistics62. Similar models can be easily scaled to other LMICs where mobility data from mobile phones are 
lacking, and are particularly timely to establish baseline patterns of mobility as the global coronavirus pandemic 
subsides and travel returns to a new normal. For example, researchers have used novel and openly available data 
sources to study changes in mobility in Europe as a result of the pandemic24. Often these datasets represent only 
mobility over the course of the pandemic (e.g., 2020), however, representing the need for openly available data 
before and after COVID-19. Quantifying mobility patterns pre- and post-pandemic is vital in understanding 
when and whether mobility has returned to typical patterns seen pre-pandemic, or if mobility has indeed been 
permanently altered moving into the future.

Table 2.   Marginal effects of the fixed effects and hyperparameters of the posterior distributions, plus model 
statistics.

Parameter Mean Lower 95% CI Upper 95% CI

Intercept 1.037 0.369 1.756

Accessibility to urban centre 0.002 0.001 0.004

Education 5.337 1.996 8.867

School holidays 0.007 0.004 0.01

Night-time lights 0.04 − 0.036 0.117

Poverty − 1.098 − 2.25 − 0.017

Temperature − 0.052 − 0.082 − 0.022

Urbanicity − 0.236 − 0.913 0.437

Mean SD 95% CI

Hyperparameters

PrecisionGaussian 3.838 0.0167 0.655

PrecisionSpatial 12.875 3.35 13.087

PrecisionTemporal 18,791.484 1.20e + 5 1.28e + 5

φ 0.209 0.163 0.599

ρSpatial 0.995 0.005 0.002

ρTemporal − 0.229 0.524 1.757

DIC 1744.04

PD 59.39

Marginal likelihood − 528.36

Model validation

MAE 0.573

RMSE 1.532

Psuedo-R2 0.203
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Limitations.  These results should be interpreted in light of several important limitations. First, the Google 
mobility data is limited to smartphone users who have opted in to Google’s Location History feature, which is off 
by default. These data may not be representative of the population as whole, as biases in mobile phone owner-
ship exist, and furthermore their representativeness may vary by location. Further, while the Google Aggregated 
Mobility Research Dataset represents movement at high spatial resolutions, our analyses are performed at the 
county level, and do not utilize this spatial granularity. Future work should explore the role of spatial resolution 
on mobility predictors, and whether some covariates are useful at some spatial scales, but not others. Impor-
tantly, these limited data are only viewed through the lens of differential privacy algorithms, specifically designed 
to protect user anonymity and obscure fine detail. Moreover, comparisons across rather than within locations are 
only descriptive since these regions can differ in substantial ways.

Further, these analyses are also subject to limitations inherent to the geospatial data and statistical modelling 
framework used. Firstly, because movement data are aggregated to county levels, it is not possible to identify 
the sociodemographic characteristics of the actual individuals moving. While this aggregation is crucial to pro-
tect confidentiality in analyses, it represents a limitation for these analyses, as individual or household survey 
data are not linked to mobility data, and therefore may not be representative of the population moving. Future 
research should aim to link individual movement patterns with sociodemographic questionnaires, where pos-
sible, or explore mathematical and statistical models linking these datasets. Towards this, the socioeconomic 
and geospatial covariates used in these analyses are often temporally lagged, and may not adhere exactly with 
the mobility data used. However, we aimed to mitigate this limitation by utilizing data aggregated at the monthly 
level. Lastly, these analyses are limited to the study region, and while they potentially represent major urban 
sub-Saharan hubs well (such as Nairobi), they may not be representative of other study countries or regions, 
particularly outside of Africa. Future work will aim at upscaling these modelling efforts to include additional 
sub-Saharan countries across the continent.

Conclusions
How, when and where people move has important implications across disciplines, from urban planning to health 
and disease transmission7,46. The data used in these analyses represent movement before the global coronavirus 
pandemic emerged in the early months of 2020, and therefore are important for establishing baseline movement 

Figure 4.   Posterior densities of modelled fixed effects. Parameters with peak densities further away from zero 
indicate a stronger influence on the model. NTL night-time lights.
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patterns in a non-pandemic setting. Future research should explore how seasonal movement patterns reduced 
or altered as a result of the pandemic, specifically within these study settings. Further, while previous research 
has demonstrated that human populations move predictably along seasonal gradient2,4, little has been done to 
quantify variability in these movement patterns at fine temporal and spatial scales, primarily owing to a lack of 
data spanning long periods of time at high spatial resolutions14,30.

Here, we used passively collected mobile phone data to describe seasonal movement patterns in Kenya across 
2018 and 2019. We found that movement tended to peak in August and late December, strongly corresponding 
with school holidays. We found that neighbouring countries and provinces were highly interconnected, with 
primary international destinations in the Eastern African region surrounding Kenya, and primary domestic 
destinations between the Nairobi, Central and Eastern provinces. We further found that the number of school 
holidays was the strongest correlate of human mobility, followed by sociodemographic factors such as education, 

Figure 5.   Correlation plots between (a) temperature (°C) and number of school holidays per month; (b) 
temperature (°C) and aridity; (c) temperature (°C) and precipitation (mm); and, (d) temperature (°C) and 
enhanced vegetation index.
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poverty, and accessibility to the nearest city. These results have important implications as the world returns to 
post-coronavirus movement patterns, particularly in monitoring and surveillance efforts of disease transmission.

Received: 9 April 2021; Accepted: 13 July 2021

References
	 1.	 Lai, S., Farnham, A., Ruktanonchai, N. W. & Tatem, A. J. Measuring mobility, disease connectivity and individual risk: A review 

of using mobile phone data and mHealth for travel medicine. J. Travel Med. [Internet] 26(3) (2019). https://​acade​mic.​oup.​com/​
jtm/​artic​le/​26/3/​taz019/​53804​77 [cited 2020 Jan 7].

	 2.	 Bharti, N. et al. Explaining seasonal fluctuations of measles in Niger using nighttime lights imagery. Science 334(6061), 1424–1427 
(2011).

	 3.	 González, M. C., Hidalgo, C. A. & Barabási, A.-L. Understanding individual human mobility patterns. Nature 453(7196), 779–782 
(2008).

	 4.	 Erbach-Schoenberg, E. et al. Dynamic denominators: The impact of seasonally varying population numbers on disease incidence 
estimates. Popul. Health Metrics 14(1), 35 (2016).

	 5.	 Charu, V. et al. Human mobility and the spatial transmission of influenza in the United States. PLoS Comput. Biol. [Internet]. 13(2) 
(2017). https://​www.​ncbi.​nlm.​nih.​gov/​pmc/​artic​les/​PMC53​49690/ [cited 2020 Nov 10].

	 6.	 Ewing, A., Lee, E. C., Viboud, C. & Bansal, S. Contact, travel, and transmission: The impact of winter holidays on influenza dynam-
ics in the United States. J. Infect. Dis. 215(5), 732–739 (2017).

	 7.	 Ruktanonchai, N. W. et al. Assessing the impact of coordinated COVID-19 exit strategies across Europe. Science [Internet]. (2020). 
https://​scien​ce.​scien​cemag.​org/​conte​nt/​early/​2020/​07/​16/​scien​ce.​abc50​96 [cited 2020 Jul 20].

	 8.	 Finger, F. et al. Mobile phone data highlights the role of mass gatherings in the spreading of cholera outbreaks. Proc. Natl. Acad. 
Sci. 113(23), 6421–6426 (2016).

	 9.	 Buckee, C. O., Wesolowski, A., Eagle, N. N., Hansen, E. & Snow, R. W. Mobile phones and malaria: Modeling human and parasite 
travel. Travel Med. Infect. Dis. 11(1), 15–22 (2013).

	10.	 Wesolowski, A. et al. Quantifying seasonal population fluxes driving rubella transmission dynamics using mobile phone data. 
PNAS 112(35), 11114–11119 (2015).

	11.	 Lai, S. et al. Assessing the effect of global travel and contact restrictions on mitigating the COVID-19 pandemic. Engineering 
(Beijing) [Internet] (2021). https://​www.​ncbi.​nlm.​nih.​gov/​pmc/​artic​les/​PMC80​99556/ [cited 2021 Jun 21].

	12.	 Brockmann, D., Hufnagel, L. & Geisel, T. The scaling laws of human travel. Nature 439(7075), 462–465 (2006).
	13.	 Ferrari, M. J. et al. The dynamics of measles in sub-Saharan Africa. Nature 451(7179), 679–684 (2008).
	14.	 Ruktanonchai, N. W., Ruktanonchai, C. W., Floyd, J. R. & Tatem, A. J. Using Google Location History data to quantify fine-scale 

human mobility. Int. J. Health Geogr. 17(1), 28 (2018).

Figure 6.   Modelled monthly mobility flows for 2018 and 2019, as compared to the baseline mobility flow for 
January. Coloured lines represent seasonal mobility patterns for each county within Kenya, and the red line 
represents the average seasonal mobility pattern for all counties over the year.

https://academic.oup.com/jtm/article/26/3/taz019/5380477
https://academic.oup.com/jtm/article/26/3/taz019/5380477
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5349690/
https://science.sciencemag.org/content/early/2020/07/16/science.abc5096
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8099556/


13

Vol.:(0123456789)

Scientific Reports |        (2021) 11:15389  | https://doi.org/10.1038/s41598-021-94683-7

www.nature.com/scientificreports/

	15.	 Perkins, T. A. et al. Theory and data for simulating fine-scale human movement in an urban environment. J. R. Soc. Interface 11(99), 
20140642 (2014).

	16.	 Tatem, A. J., Hay, S. I. & Rogers, D. J. Global traffic and disease vector dispersal. PNAS 103(16), 6242–6247 (2006).
	17.	 Abel, G. J. & Sander, N. Quantifying global international migration flows. Science 343(6178), 1520–1522 (2014).
	18.	 Vazquez-Prokopec, G. M. et al. Using GPS technology to quantify human mobility, dynamic contacts and infectious disease 

dynamics in a resource-poor urban environment. PLoS One 8(4), e58802 (2013).
	19.	 Tatem, A. J. Mapping population and pathogen movements. Int. Health 6(1), 5–11 (2014).
	20.	 Venkatramanan, S. et al. Forecasting influenza activity using machine-learned mobility map. Nat. Commun. 12(1), 726 (2021).
	21.	 Hecht, B. & Stephens, M. A tale of cities: Urban biases in volunteered geographic information. In Eighth International AAAI 

Conference on Weblogs and Social Media [Internet] (2014). https://​www.​aaai.​org/​ocs/​index.​php/​ICWSM/​ICWSM​14/​paper/​view/​
8114 [cited 2020 Jul 16].

	22.	 GSM Association. The mobile economy: Sub-Saharan Africa 2020 [Internet]. GSMA (2020). https://​www.​gsma.​com/​mobil​eecon​
omy/​wp-​conte​nt/​uploa​ds/​2020/​09/​GSMA_​Mobil​eEcon​omy20​20_​SSA_​Eng.​pdf [cited 2020 Oct 23].

	23.	 Lai, S. et al. Assessing the effect of global travel and contact reductions to mitigate the COVID-19 pandemic and resurgence. Engi-
neering. https://​doi.​org/​10.​1016/j.​eng.​2021.​03.​017 (2021).

	24.	 Islind, A. S., Óskarsdóttir, M. & Steingrímsdóttir, H. Changes in mobility patterns in Europe during the COVID-19 pandemic: 
Novel insights using open source data. arXiv:​2008.​10505 [cs] [Internet] (2020). [cited 2021 Jun 21].

	25.	 United Nations Statistics Division. UN Data Country Profiles [Internet]. UNData (2020). https://​data.​un.​org/​en/​iso/​ke.​html [cited 
2020 Jul 20].

	26.	 National Malaria Control Programme - NMCP/Kenya, Kenya National Bureau of Statistics - KNBS, ICF International. Kenya 
Malaria Indicator Survey 2015 [Internet]. Nairobi, Kenya: NMCP, KNBS, and ICF International (2016). http://​dhspr​ogram.​com/​
pubs/​pdf/​MIS22/​MIS22.​pdf.

	27.	 Macharia, P. M., Joseph, N. K. & Okiro, E. A vulnerability index for COVID-19: spatial analysis at the subnational level in Kenya. 
BMJ Glob Health. 5(8), e003014. https://​doi.​org/​10.​1136/​bmjgh-​2020-​003014 (2020).

	28.	 Tatem, A. J. WorldPop, open data for spatial demography. Sci. Data 4(1), 170004 (2017).
	29.	 WorldPop (www.​world​pop.​org), Center for International Earth Science Information Network (CIESIN), Columbia University. 

Global High Resolution Population Denominators Project [Internet]. https://​doi.​org/​10.​5258/​SOTON/​WP006​60 (2018).
	30.	 Kraemer, M. U. G. et al. Mapping global variation in human mobility. Nat. Hum. Behav. 18, 1–11 (2020).
	31.	 Bassolas, A. et al. Hierarchical organization of urban mobility and its connection with city livability. Nat. Commun. 10(1), 1–10 

(2019).
	32.	 Kirmse, A., Udeshi, T., Bellver, P. & Shuma, J. Extracting patterns from location history. In Proceedings of the 19th ACM SIGSPATIAL 

International Conference on Advances in Geographic Information Systems [Internet], 397–400 (GIS ’11) (Association for Computing 
Machinery, 2011). https://​doi.​org/​10.​1145/​20939​73.​20940​32 [cited 2021 Jun 21].

	33.	 Wilson, R. J. et al. Differentially private SQL with bounded user contribution. Proc. Privacy Enhanc. Technol. 2020(2), 230–250 
(2020).

	34.	 Pesaresi, M., Florczyk, A., Schiavina, M., Melchiorri, M., & Maffenini, L. GHS settlement grid, updated and refined REGIO model 
2014 in application to GHS-BUILT R2018A and GHS-POP R2019A, multitemporal (1975–1990–2000–2015), R2019A. [Internet]. 
European Commission, Joint Research Centre (JRC); 2019. Report No. https://​doi.​org/​10.​2905/​42E8B​E89-​54FF-​464E-​BE7B-​BF9E6​
4DA52​18. http://​data.​europa.​eu/​89h/​42e8b​e89-​54ff-​464e-​be7b-​bf9e6​4da52​18.

	35.	 Tatem, D. A., Gething, D. P., Pezzulo, D. C., Weiss, D. D. & Bhatt, D. S. Development of pilot high-resolution gridded poverty 
surfaces: Methods working paper [Internet] (University of Southampton, 2013). https://​www.​world​pop.​org/​resou​rces/​docs/​pdf/​
World​Pop-​pover​ty-​mappi​ng-​metho​ds.​pdf.

	36.	 Graetz, N. et al. Mapping disparities in education across low- and middle-income countries. Nature 577(7789), 235–238 (2020).
	37.	 Weiss, D. J. et al. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 553(7688), 333–336 

(2018).
	38.	 Lai, S., Sorichetta, A., WorldPop & Bondarenko, M. Monthly time series of global public and school holidays 2010–2019 [Internet]. 

University of Southampton (2020). https://​www.​world​pop.​org/​doi/​10.​5258/​SOTON/​WP006​93 [cited 2021 Feb 3].
	39.	 Trabucco, A. & Zomer, R. Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v2 [Internet] (2019). 

https://​figsh​are.​com/​artic​les/​datas​et/​Global_​Aridi​ty_​Index_​and_​Poten​tial_​Evapo​trans​pirat​ion_​ET0_​Clima​te_​Datab​ase_​v2/​75044​
48 [cited 2020 Jul 21].

	40.	 Didan, K. MYD13A3 MODIS/Aqua Vegetation Indices Monthly L3 Global 1km SIN Grid V006 (2015). https://​lpdaac.​usgs.​gov/​
produ​cts/​myd13​a3v006/ [cited 2020 Jul 21].

	41.	 Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12), 
4302–4315 (2017).

	42.	 National Oceanic and Atmospheric Administration, National Geospatial Data Clearinghouse. NOAA/NGDC—Earth Observation 
Group—Visible Infrared Imaging Radiometer Suite (VIIRS) [Internet]. Visible Infrared Imaging Radiometer Suite (VIIRS) (2019). 
https://​ngdc.​noaa.​gov/​eog/​viirs/ [cited 2020 Jul 23].

	43.	 Wesolowski, A., Eagle, N., Noor, A. M., Snow, R. W. & Buckee, C. O. The impact of biases in mobile phone ownership on estimates 
of human mobility. J. R. Soc. Interface 10(81), 20120986 (2013).

	44.	 Kouadio, L., Newlands, N. K., Davidson, A., Zhang, Y. & Chipanshi, A. Assessing the performance of MODIS NDVI and EVI for 
seasonal crop yield forecasting at the ecodistrict scale. Remote Sens. 6(10), 10193–10214 (2014).

	45.	 Kibret, K. S., Marohn, C. & Cadisch, G. Use of MODIS EVI to map crop phenology, identify cropping systems, detect land use 
change and drought risk in Ethiopia—An application of Google Earth Engine. Eur. J. Remote Sens. 53(1), 176–191 (2020).

	46.	 Lai, S. et al. Assessing spread risk of Wuhan novel coronavirus within and beyond China, January–April 2020: a travel network-
based modelling study. medRxiv [Preprint]. Feb 5. https://​doi.​org/​10.​1101/​2020.​02.​04.​20020​479 (2020).

	47.	 Pesaresi, M., Florczyk, A., Schiavina, M., Melchiorri, M. & Maffenini, L. GHS-SMOD R2019A—GHS settlement layers, updated and 
refined REGIO model 2014 in application to GHS-BUILT R2018A and GHS-POP R2019A, multitemporal (1975–1990–2000–2015) 
(2019). http://​data.​europa.​eu/​89h/​42e8b​e89-​54ff-​464e-​be7b-​bf9e6​4da52​18 [cited 2020 Nov 10].

	48.	 EuroStat. Degree of urbanisation classification—2011 revision—Statistics Explained [Internet] (2011). https://​ec.​europa.​eu/​euros​
tat/​stati​stics-​expla​ined/​index.​php/​Degree_​of_​urban​isati​on_​class​ifica​tion_-_​2011_​revis​ion [cited 2020 Nov 10].

	49.	 Dijkstra, L. & Poelman, H. A harmonised definition of cities and rural areas: The new degree of urbanisation (Directorate General 
for Regional and Urban Policy, European Commission, 2014).

	50.	 Elvidge, C. D., Baugh, K., Zhizhin, M., Hsu, F. C. & Ghosh, T. VIIRS night-time lights. Int. J. Remote Sens. 38(21), 5860–5879 
(2017).

	51.	 Burzykowski, P. B. Model Development | Explanatory Model Analysis [Internet]. https://​ema.​drwhy.​ai/​model​Devel​opmen​tProc​
ess.​html [cited 2021 Jun 21].

	52.	 Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace 
approximations. J. R. Stat. Soc. Ser. B (Stat. Methodol.). 71(2), 319–392 (2009).

	53.	 Rouamba, T., Samadoulougou, S., Tinto, H., Alegana, V. A. & Kirakoya-Samadoulougou, F. Bayesian spatiotemporal modeling of 
routinely collected data to assess the effect of health programs in malaria incidence during pregnancy in Burkina Faso. Sci. Rep. 
10(1), 2618 (2020).

https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/view/8114
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/view/8114
https://www.gsma.com/mobileeconomy/wp-content/uploads/2020/09/GSMA_MobileEconomy2020_SSA_Eng.pdf
https://www.gsma.com/mobileeconomy/wp-content/uploads/2020/09/GSMA_MobileEconomy2020_SSA_Eng.pdf
https://doi.org/10.1016/j.eng.2021.03.017
http://arxiv.org/abs/2008.10505
https://data.un.org/en/iso/ke.html
http://dhsprogram.com/pubs/pdf/MIS22/MIS22.pdf
http://dhsprogram.com/pubs/pdf/MIS22/MIS22.pdf
https://doi.org/10.1136/bmjgh-2020-003014
http://www.worldpop.org
https://doi.org/10.5258/SOTON/WP00660
https://doi.org/10.1145/2093973.2094032
https://doi.org/10.2905/42E8BE89-54FF-464E-BE7B-BF9E64DA5218
https://doi.org/10.2905/42E8BE89-54FF-464E-BE7B-BF9E64DA5218
http://data.europa.eu/89h/42e8be89-54ff-464e-be7b-bf9e64da5218
https://www.worldpop.org/resources/docs/pdf/WorldPop-poverty-mapping-methods.pdf
https://www.worldpop.org/resources/docs/pdf/WorldPop-poverty-mapping-methods.pdf
https://www.worldpop.org/doi/10.5258/SOTON/WP00693
https://figshare.com/articles/dataset/Global_Aridity_Index_and_Potential_Evapotranspiration_ET0_Climate_Database_v2/7504448
https://figshare.com/articles/dataset/Global_Aridity_Index_and_Potential_Evapotranspiration_ET0_Climate_Database_v2/7504448
https://lpdaac.usgs.gov/products/myd13a3v006/
https://lpdaac.usgs.gov/products/myd13a3v006/
https://ngdc.noaa.gov/eog/viirs/
https://doi.org/10.1101/2020.02.04.20020479
http://data.europa.eu/89h/42e8be89-54ff-464e-be7b-bf9e64da5218
https://ec.europa.eu/eurostat/statistics-explained/index.php/Degree_of_urbanisation_classification_-_2011_revision
https://ec.europa.eu/eurostat/statistics-explained/index.php/Degree_of_urbanisation_classification_-_2011_revision
https://ema.drwhy.ai/modelDevelopmentProcess.html
https://ema.drwhy.ai/modelDevelopmentProcess.html


14

Vol:.(1234567890)

Scientific Reports |        (2021) 11:15389  | https://doi.org/10.1038/s41598-021-94683-7

www.nature.com/scientificreports/

	54.	 Alegana, V. A. et al. Estimation of malaria incidence in northern Namibia in 2009 using Bayesian conditional-autoregressive 
spatial–temporal models. Spat. Spatio-temporal Epidemiol. 1(7), 25–36 (2013).

	55.	 Khana, D., Rossen, L. M., Hedegaard, H. & Warner, M. A Bayesian spatial and temporal modeling approach to mapping geographic 
variation in mortality rates for subnational areas with R-INLA. J. Data Sci. 16(1), 147–182 (2018).

	56.	 Utazi, C. E., Afuecheta, E. O. & Nnanatu, C. C. A Bayesian latent process spatiotemporal regression model for areal count data. 
Spat. Spatio-temporal Epidemiol. 1(25), 25–37 (2018).

	57.	 Lawson, A. B. Statistical Methods in Spatial Epidemiology (Wiley, 2013).
	58.	 Wang, X., Yue, R. & Faraway, J. Bayesian regression with INLA [Internet]. Chapman and Hall/CRC (2018). http://​julia​nfara​way.​

github.​io/​brinla/ [cited 2020 Sep 3].
	59.	 Bosco, C. et al. Exploring the high-resolution mapping of gender-disaggregated development indicators. J. R. Soc. Interface 14(129), 

20160825 (2017).
	60.	 Ruktanonchai, C. W. et al. Temporal trends in spatial inequalities of maternal and newborn health services among four east African 

countries, 1999–2015. BMC Public Health 18(1), 1339 (2018).
	61.	 Zhu, G. et al. Effects of human mobility, temperature and mosquito control on the spatiotemporal transmission of dengue. Sci. 

Total Environ. 15(651), 969–978 (2019).
	62.	 Lai, S., Sorichetta, A., WorldPop & Bondarenko, M. Monthly Volume of Airline Passengers in 90 countries 2010–2018 [Internet]. 

University of Southampton (2020). https://​eprin​ts.​soton.​ac.​uk/​445195/ [cited 2021 Feb 10].

Author contributions
C.W.R. wrote the main manuscript of the text and performed data analysis. S.L., A.S., A.S., C.E.U., and A.J.T. 
provided substantial manuscript feedback and analytic support. A.D.C., P.K., and G.E.R. contributed to data 
management and processing. N.W.R., D.W., and J.E.S. provided manuscript edits and feedback. All authors 
reviewed and approved this manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​021-​94683-7.

Correspondence and requests for materials should be addressed to C.W.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

http://julianfaraway.github.io/brinla/
http://julianfaraway.github.io/brinla/
https://eprints.soton.ac.uk/445195/
https://doi.org/10.1038/s41598-021-94683-7
https://doi.org/10.1038/s41598-021-94683-7
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Practical geospatial and sociodemographic predictors of human mobility
	Methods
	Study area. 
	Human mobility data. 
	Covariate data. 
	Statistical modelling framework. 

	Results
	Model results. 

	Discussion
	Limitations. 

	Conclusions
	References


