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Abstract: Determining the optimal dosing regimen for pediatric patients is a challenge due to the
lack of dosing guidelines and studies. In addition, many developmental pharmacology changes that
occur throughout childhood that have profound impacts on the absorption, distribution, metabolism,
and elimination of medications are commonly used in palliative care. Adding to that complexity,
certain medications have different effects in the pediatric patient compared to the adult patient. Being
aware of the pharmacokinetic changes, impact on neurodevelopment and unique medication factors
that are present in pediatric patients helps clinicians treat the pediatric palliative care patient in the
best and safest way possible.
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1. Introduction

Working in pediatric palliative care (PPC) is very rewarding but is not without its
challenges, especially in the realm of pharmacotherapy. The treatment of pain in children
is complex. The first challenge faced by those in pediatrics is the vast neurodevelopmental
spectrum that leads to widely variable expressions of pain. Additionally, the lack of dosing
guidelines, studies, and commercially available formulations make creating the optimal
dosing regimen for pediatric patients a challenge, particularly when combined with the
many developmental pharmacology changes that occur throughout childhood. In addition,
certain medications have different effects on the pediatric patient compared to the adult
patient. Specific examples will be covered in this article, including fentanyl-related chest
wall rigidity, methadone prolongation of the corrected QT (QTc) interval, neurodevelop-
mental impairment from benzodiazepines, and tramadol effects on respiratory function.
Being aware of these unique factors helps clinicians treat the PPC patient in the best and
safest way.

2. Developmental Pharmacology

Large-scale, randomized clinical trials are rare, causing us to sometimes rely on
case series or case reports. This leads to hesitance to use medications that have not
been well studied due to lessons learned from past tragedies, such as birth defects from
thalidomide, gray baby syndrome from chloramphenicol, and kernicterus from trimetho-
prim/sulfamethoxazole. As a result, it is important to be familiar with the concepts of
developmental pharmacology and to be able to apply them to the medications commonly
used in palliative care.

Most clinicians that work with pediatrics have heard the statement “Children are
not just small adults”. Further, it is important to remember that neonates are not just
small children and premature neonates are not just small neonates. This is important to
understand because most of the changes in developmental pharmacology occur in the
first year of life, so neonates and infants will be the focus of this section. Developmental
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pharmacology concepts are broken down into absorption, distribution, metabolism, and
elimination (ADME) categories (Figure 1).
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2.1. Absorption

Intestinal Integrity: Premature neonates have immature intestinal integrity. Commer-
cially available formulations of oral medications often contain high amounts of sugars,
preservatives, and flavorings, which increases the osmolality of medications. In all age
patients, these high osmolar medications can cause diarrhea, cramping, abdominal disten-
tion, and vomiting. In the youngest population, it can also increase their risk of developing
necrotizing enterocolitis [1]. Therefore, these products are often avoided in premature
neonates until they can tolerate a good amount of their feeds.

Intestinal Permeability: Neonates also have altered permeability of intestinal mucosa,
which plays a role in medication absorption, notably increased absorption. Oral bioavail-
ability (BA) of morphine is 19–47% (23.9%) in adults but 45–50% in term neonates [2]. As a
result, neonates do not often need the 3–5 times dose when switching from IV to oral
morphine. Doubling the dose will usually suffice in neonates.

Gastric Transit Time: Gastric emptying time is prolonged in the premature neonate,
which can slow the absorption rate and onset of medication effect. As a clinical application
of this, clinicians need to make sure to give oral medications enough time to work when
using them for procedural pain or sedation.

2.2. Distribution

Volume of Distribution: Determining the dose needed to obtain certain plasma con-
centrations is the concept of volume of distribution. This is often affected by the fluid
status in a patient. The percentage of total body water and extracellular water is highest in
our premature neonatal population and decreases as they get larger such as term neonates
and young infants [3]. As a result of having a higher percentage of their weight be water,
the younger patients have a larger volume of distribution for hydrophilic medications,
since those medications have farther to spread out in the body. Since they have a lower
percentage of their weight as fat, they have a smaller volume of distribution for lipophilic
medications such as lorazepam.

Protein Binding: Only the free (unbound) portion of a medication can exert its effects.
Neonates not only have lower amounts of binding proteins but the proteins may have less
affinity for medications [3]. The result of these two factors means there may be increased
clinical effects of the same mg/kg dose of medication due to the increased free fraction of
medication. For example, morphine has 33–37% protein binding in adults but only 18–22%
of protein binding in neonates [4].
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Blood–Brain Barrier (BBB): Neonates have an immature BBB, which can result in
faster and greater medication uptake into the CNS. This can cause increased sensitivity to
both the therapeutic and toxic effects of a medication. For example, typically lipophilic
medications cross the BBB more easily than hydrophilic medications. Since morphine is a
hydrophilic medication, it does not cross over to a great extent in older patients; however,
it will cross over in neonates due to the immature BBB. This may be why neonates are more
sensitive to the CNS effects of morphine.

2.3. Metabolism

Metabolism occurs in many sites in the body, but the major site of drug biotransforma-
tion is the liver. Neonates are born with much lower amounts of cytochrome p450 system
enzymes compared to adults, which results in reduced clearance of some medications,
especially in the first weeks of life [3]. Even though it starts off very low, these enzymes
increase to over adult values by 1-year postnatal age, which is why dosing of some med-
ications is more frequent in children than in adults. Fentanyl is primarily metabolized
by CYP3A4 into inactive norfentanyl. Only a small amount is eliminated unchanged via
the kidneys. Plasma clearance of fentanyl correlates with gestational age, and to a lesser
degree body weight, and increases as patients get older and bigger [5]. As a result, lower
doses are recommended for at least the first two weeks of life in all patients, especially
the smallest and youngest of patients. Infants status post abdominal surgery also had
lower clearance than expected, which suggests the increased abdominal pressure may limit
fentanyl clearance [5]. Patients who are sicker often have a decrease in CYP3A4 activity.
Neonates whose mothers received steroids before delivery might have higher CYP3A4
activity, since dexamethasone induces this enzyme [6].

Morphine, acetaminophen, lorazepam, and dexmedetomidine all undergo 3-
glucuronidation. The activity of this process is reduced at birth and reaches close to
adult levels by 2–6 months of age [4]. Almost all morphine is converted to the 3- and 6-
glucuronide metabolites (M3G and M6G). M3G is an opioid antagonist, respiratory stimu-
lant, and contributes to the development of tolerance. M6G is a potent opioid agonist and
respiratory depressant. Preterm and young neonates produce mostly M3G at the beginning
of life, so if not responding to morphine, conversion to another opioid is warranted [4].
Since lorazepam also relies on glucuronidation to get to an inactive metabolite, its half-life
is much longer in younger patients. Neonates have a half-life of around 40 h compared to
children at around 17 h and adults at 12 h. Therefore, the dosing interval must be extended
in our younger patient population [7]. Infants also have reduced dexmedetomidine clear-
ance due to impaired glucuronidation and CYP-450 enzyme activity. For patients between
30 and 60 weeks’ postmenstrual age (PMA), clearance increased by approximately 5% for
every 1-week increase in PMA. Patients with recent cardiac surgery and on mechanical
ventilation also showed lower clearance values, possibly due to lower cardiac output and
blood flow to their organs [8].

Another pathway that is decreased in newborns is glycine conjugation, although it
does increase to adult levels around 8 weeks of age. In the first two months, products
that contain the preservative benzyl alcohol should be avoided if possible. Benzyl alco-
hol is oxidized to benzoic acid, conjugated with glycine, and excreted as hippuric acid.
Since conjugation is reduced, benzoic acid accumulates, causing metabolic acidosis and
possible neonatal gasping syndrome [9]. Some products do not have different options for
preservatives, such as lorazepam, so caution must be used in neonates.

Unlike glucuronidation and glycine conjugation, the sulfotransferase system is well
developed at birth such that it can compensate for the limited function of other pathways.
For example, acetaminophen is mostly metabolized by glucuronidation in adults; however,
neonates shift some of the metabolism to the sulfation pathway [10]. As a result, neonates
have a longer acetaminophen half-life, but not as prolonged as it would be if it was only
eliminated via glucuronidation.
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2.4. Elimination

After a medication is metabolized, it needs to be eliminated from the body. The most
common way is via the kidneys. Glomerular filtration rate (GFR) for full-term neonates at
birth is approximately 20% of adult values and doubles around Week 2 of age. Premature
neonates have an even lower GFR, since nephrogenesis is not complete until around 34 to
36 weeks’ gestation [11]. Serum creatinine is not an accurate marker of renal function in
neonates as it is in adults because it reflects maternal creatinine for the first 1–2 weeks of life
and because it is reabsorbed due to the neonate’s leaky tubules. The more premature a baby
is born, the lower their renal function is, and the longer it takes them to reach adult values.

As a result, many medications have much longer half-lives in neonates. For example,
the half-life of morphine can be as long as 10–12 h in preterm neonates yet decreases to
2–4 h in adults [4]. If dosing for a medication has not been studied in neonates and it is
eliminated renally, caution should be used because of the likelihood of reduced elimination.

3. Unique Characteristics of Common Medications Used to Treat Pain in Children
3.1. Neurodevelopmental Impairment with Analgesics and Sedatives

Animal studies have demonstrated that brain development is negatively affected by
benzodiazepines, and that is starting to be confirmed with neonatal studies [12]. Midazolam
use in preterm infants causes hippocampal alterations, which can affect memory formation.
Midazolam also binds to gamma-aminobutyric acid receptors, which are necessary for
neuronal connection and communication in the neonatal brain. Without those receptors
available, neuroapoptosis occurs [12]. This will have the most impact in the neonatal
period, since that is a period of rapid brain development. More will be learned about this
as studies are performed that follow these patients as they age, but benzodiazepines should
be used judiciously in this population.

3.2. Fentanyl

A concerning side effect of fentanyl is chest wall rigidity. This is commonly observed
in adult patients after administration of large doses and rapid infusions. However, in the
Neonatal Intensive Care Unit (NICU), it has been seen with commonly administered doses
for pain and sedation (3–6 mcg/kg) administered as a slow bolus over 2–3 min [13]. While
the percentage of NICU patients in whom this occurs is low (around 5% of patients), it is
something to be cautious about. Boluses should always be administered slowly, as should
the flush that follows the bolus to clear the line.

3.3. Tramadol

Tramadol is a medication that is typically viewed as an opioid, albeit a “weak” mu-
agonist. It is perceived to have the same potency as codeine and, as such, is often prescribed
when health care providers want to avoid “stronger” opioids such as morphine, oxycodone,
or hydromorphone. Pharmacological data suggest that the affinity of tramadol for the mu-
receptor is approximately 10 times less than codeine and 6000 times less than morphine [14].
The affinity of tramadol for the delta and kappa opioid receptors is even less. Given this, it
is difficult to attribute the pain-relieving qualities of tramadol solely to activation of the
mu-receptor.

So how does tramadol relieve pain? Essentially tramadol works in two ways. The first
is through an active metabolite of tramadol, O-desmethyltramadol. Tramadol is metab-
olized to O-desmethyltramadol via the CYP2D6 cytochrome P450 enzyme system, and
O-desmethyltramadol binds to mu-opioid receptors.

The second way tramadol relieves pain is by blocking the reuptake of serotonin and
norepinephrine, much duloxetine and venlafaxine, which are serotonin-norepinephrine
reuptake inhibitors (SNRIs). Both duloxetine and venlafaxine are used for neuropathic
pain, and there is some evidence that they may also have an anti-inflammatory effect.

In addition to its unique mechanisms of action, tramadol also has some safety concerns
in the pediatric population. As mentioned above, tramadol is metabolized by CYP2D6
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into its active metabolite. There is variable expression of CYP2D6 across humans. Some
people are ultrarapid metabolizers, some are poor metabolizers, and many have normal
metabolism. Ultrarapid CYP2D6 metabolizers are individuals who have more than two
copies of functional CYP2D6 alleles. In these patients, a higher percentage of tramadol
is metabolized to active metabolites, causing a greater risk of respiratory depression
and/or death.

From 1969 to 2016, the Federal Drug Administration (FDA) discovered nine cases
of respiratory depression in children less than 18 years of age, three of them involving
deaths. As a result, they released warnings and contraindications to the use of tramadol in
pediatric patients [15]. Contraindications include all children younger than 12 years and
children younger than 18 years who are receiving it to treat pain after surgery to remove
tonsils and/or adenoids. There was also a warning about use in adolescents between
12 and 18 years who are obese, have obstructive sleep apnea (OSA), or have severe lung
disease (SLD).

Commonly known side effects of tramadol include seizures, hypoglycemia, and
serotonin syndrome. Interestingly, despite its low affinity for opioid receptors, tramadol
has a somewhat higher risk of prolonged use compared with other short-acting opioids.

The potential benefits of tramadol must be weighed against its side effect profile before
administering.

3.4. Gabapentin

Gabapentin was initially developed in the 1970s to treat spasticity. It was approved
by the United States Federal and Drug Administration in the 1990s to treat postherpetic
neuralgia. Yet, there are thousands of citations on PubMed for the treatment of pain with
gabapentin. Gabapentin is extensively used in PPC, and children with severe neurologic
injury often utilize these services. Gabapentin has been shown to be helpful for neuropathic
pain and “neuroirritability”.

Gabapentinoids (gabapentin and pregabalin) function by binding to presynaptic
neuronal alpha-2-delta subunits of voltage-gated calcium channels. This leads to downreg-
ulation and decreased production of substance P, glutamate, and calcitonin-related gene
peptide, which are thought to initiate and maintain neuropathic pain states.

One of the more common side effects of gabapentinoids is somnolence. The drowsiness
associated with gabapentinoids is thought of as occurring in the initial days of treatment,
after which the patient becomes accustomed to the drug and somnolence improves. Due to
case reports of prolonged hypoventilation in postoperative patients receiving gabapenti-
noids [16], the product monograph was amended to include a warning that respiratory
depression may occur when given simultaneously with opioids. Recent population-based
studies report found an association between the coprescription of opioids and gabapenti-
noids and an increased risk of opioid-related death [17,18]. Patients with advanced cancer
and/or receiving palliative care, however, were excluded from this study.

There is limited evidence to support the use of gabapentinoids for cancer-related
neuropathic pain due to the low quality of published data and a lack of efficacy when
compared to opioids alone. In fact, the clinical practice guideline of the American Society
of Clinical Oncology recommends the use of duloxetine over tricyclic antidepressants and
gabapentinoids. Given the potential risk of unintentional overdose when gabapentinoids
are used with opioids, it may be prudent for palliative care physicians to consider alter-
native medications for the first-line treatment of neuropathic pain in patients with cancer
who also are taking opioids. For children 7 years of age or older, duloxetine is equally as
efficacious as gabapentin without the untoward side effect profile.

3.5. Methadone

Methadone is a unique opioid in that it modulates pain via multiple receptors.
Methadone provides agonist activity at the µ-, δ-, and κ-opioid receptors, antagonism
at the N-methyl-D-aspartate receptor, and is also a serotonin-norepinephrine reuptake



Children 2021, 8, 902 6 of 8

inhibitor. In addition to its high bioavailability, long half-life, and no active metabolites, it is
particularly attractive to those in pediatrics, as it is the only long-acting opioid that comes
as a liquid. This allows even the youngest patient, or one with impaired swallowing and
can only receive medications through a nasogastric or gastric tube, to access the benefits of
long-acting opioids.

Unfortunately, there is a great amount of trepidation in prescribing this opioid.
The long half-life leads many to believe it is a difficult medication to titrate—patience,
however, is often rewarded with superior analgesia than other pure mu-agonists, especially
in those with mixed nociceptive and neuropathic pain. Perhaps the biggest barrier to
prescribing methadone is its fabled association with a prolonged corrected QT interval
(QTc) that can lead to Torsade de Pointes, a fatal cardiac arrhythmia. There are generally
two misconceptions that perpetuate the concern with methadone: (1) what constitutes a
“normal” QTc interval and (2) the frequency of a prolonged QTc interval.

Most pediatric health care providers define a “prolonged” QTc interval as greater than
450 milliseconds (ms) [19]; data suggest, however, that the normal 99–99.5th percentile
values are 460 ms for prepubertal children, 470 ms for pubertal males, and 480 ms for
pubertal females [20]. The importance of these values cannot be understated. On the one
hand, the decision to not use methadone based on incorrect normative QTc values can
cause great suffering to a child who may benefit from this exceptional opioid, while on
the other hand, the decision to prematurely stop methadone in a child whose QTc is, for
example, 460 ms may be just as detrimental.

In general, methadone is exceedingly well tolerated in children, with little evidence of
clinically significant prolongation of the QTc interval. Caution, however, is warranted when
using in critically ill children, those on azole antifungal medications, or with electrolyte
abnormalities. In these children, vigilance with frequent ECG monitoring is recommended.

4. Opioid-Induced Hyperalgesia

Often, we escalate doses of opioids when a patient appears uncomfortable. This might
be the correct path if tolerance or untreated pain is present; however, keep in mind the
potential for opioid-induced hyperalgesia (OIH).

Hyperalgesia is hypothesized to occur via many mechanisms; one main contributor
may be glutamate-associated activation of NMDA receptors, which causes an augmented
excitatory response [21]. Risk factors for hyperalgesia include high doses of opioids, rapidly
escalated opioid doses, parenteral administration of opioids, use of short-acting opioids
compared to longer-acting ones, and receiving a phenanthrene opioid (such as morphine,
hydromorphone, or oxycodone) [21–23].

With hyperalgesia, the pain quality, location, and distribution pattern are likely to
be different from their original pain condition. The pain is usually diffuse, has neuroexci-
tatory effects, and may be accompanied by myoclonus, hyperesthesia, or allodynia [22].
Management of OIH is dose reduction and/or addition of adjunctive agents [23].

If OIH is suspected, the dose of the opioid should be reduced; however, it is usually a
challenge to get patients/caregivers to agree with this because the patient is often experi-
encing their highest peak of pain. Clinicians should always have a backup plan in place in
case the pain worsens.

Codeine, hydromorphone, morphine, and other structurally similar opioids in the
phenanthrene class undergo glucuronidation to a NMDA receptor-activating metabo-
lite. Since NMDA activation promotes hyperalgesia, switching to an opioid that is
structurally unique (outside of the phenanthrene class like fentanyl) could reduce the
hyperalgesia [24,25].

The use of adjunctive agents should also be considered in order to block the activation
of the NMDA receptor to reduce the spinal neuron sensitization. Methadone and ketamine
can block NMDA receptors and provide pain relief via different receptors than the opioid
from which the patient is experiencing OIH. Adding an adjunctive agent, even outside of
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NMDA antagonism such as acetaminophen or ketorolac, should be considered for the goal
of being able to administer lower opioid doses.

5. Conclusions

When one considers the aspects of developmental pharmacology as well as unique
metabolic patterns and the lack of clinical studies regarding medications that can be com-
monly used to treat pain in children, the treatment of pain can almost feel overwhelming.
As with most things in medicine, start with the initial conservative dose (never be ashamed
to consult your pharmacopeia of choice), assess the response, observe for side effects, and
titrate accordingly!

Author Contributions: Conceptualization, writing—original draft preparation, writing—review and
editing, J.P. and K.M. Both authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Srinivasan, L.; Bokiniec, R.; King, C.; Weaver, G.; Edwards, A.D. Increased osmolality of breast milk with therapeutic additives.

Arch. Dis. Child. Fetal Neonatal Ed. 2004, 89, F514–F517. [CrossRef]
2. Liu, T.; Lewis, T.; Gauda, E.B.; Gobburu, J.V.S.; Ivaturi, V. Mechanistic Population Pharmacokinetics of Morphine in Neonates

With Abstinence Syndrome After Oral Administration of Diluted Tincture of Opium. J. Clin. Pharmacol. 2015, 56, 1009–1018.
[CrossRef] [PubMed]

3. Allegaert, K.; Mian, P.; Anker, J.N.V.D. Developmental Pharmacokinetics in Neonates: Maturational Changes and Beyond.
Curr. Pharm. Des. 2018, 23, 5769–5778. [CrossRef]

4. Pacifici, G.M. Metabolism and pharmacokinetics of morphine in neonates: A review. Clinics 2016, 71, 474–480. [CrossRef]
5. Ziesenitz, V.C.; Vaughns, J.D.; Koch, G.; Mikus, G.; van den Anker, J.N. Pharmacokinetics of Fentanyl and Its Derivatives in

Children: A Comprehensive Review. Clin. Pharmacokinet. 2018, 57, 125–149. Correction in Clin. Pharmacokinet. 2018, 57, 393–417.
[CrossRef] [PubMed]

6. de Wildt, S.N.; Kearns, G.L.; Hop, W.C.; Murry, D.J.; Abdel-Rahman, S.M.; van den Anker, J.N. Pharmacokinetics and metabolism
of intravenous midazolam in preterm infants. Clin. Pharmacol. Ther. 2001, 70, 525–531. [CrossRef]

7. McDermott, C.A.; Kowalczyk, A.L.; Schnitzler, E.R.; Mangurten, H.H.; Rodvold, K.A.; Metrick, S. Pharmacokinetics of lorazepam
in critically ill neonates with seizures. J. Pediatr. 1992, 120, 479–483. [CrossRef]

8. Greenberg, R.G.; Wu, H.; Laughon, M.; Capparelli, E.; Rowe, S.; Zimmerman, K.O.; Smith, P.B.; Cohen-Wolkowiez, M. Population
Pharmacokinetics of Dexmedetomidine in Infants. J. Clin. Pharmacol. 2017, 57, 1174–1182. [CrossRef] [PubMed]

9. Hall, C.M.; A Milligan, D.W.; Berrington, J. Probable adverse reaction to a pharmaceutical excipient. Arch. Dis. Child. Fetal
Neonatal Ed. 2004, 89, 184F. [CrossRef] [PubMed]

10. Cook, S.F.; Stockmann, C.; Samiee-Zafarghandy, S.; King, A.D.; Deutsch, N.; Williams, E.F.; Wilkins, D.G.; Sherwin, C.M.T.;
Anker, J.N.V.D. Neonatal Maturation of Paracetamol (Acetaminophen) Glucuronidation, Sulfation, and Oxidation Based on a
Parent–Metabolite Population Pharmacokinetic Model. Clin. Pharmacokinet. 2016, 55, 1395–1411. [CrossRef]

11. Gallini, F.; Maggio, L.; Romagnoli, C.; Marrocco, G.; Tortorolo, G. Progression of renal function in preterm neonates with
gesta-tional age < or = 32 weeks. Pediatr. Nephrol. 2000, 15, 119–124.

12. Schiller, R.; Allegaert, K.; Hunfeld, M.; Bosch, G.V.D.; Anker, J.V.D.; Tibboel, D. Analgesics and Sedatives in Critically Ill Newborns
and Infants: The Impact on Long-Term Neurodevelopment. J. Clin. Pharmacol. 2018, 58, S140–S150. [CrossRef] [PubMed]

13. Fahnenstich, H.; Steffan, J.; Kau, N.; Bartmann, P. Fentanyl-induced chest wall rigidity and laryngospasm in preterm and term
infants. Crit. Care Med. 2000, 28, 836–839. [CrossRef]

14. Minami, K.; Sudo, Y.; Miyano, K.; Murphy, R.S.; Uezono, Y. µ-Opioid receptor activation by tramadol and O-desmethyltramadol
(M1). J. Anesthesia 2014, 29, 475–479. [CrossRef] [PubMed]

15. Rodieux, F.; Vutskits, L.; Posfay-Barbe, K.M.; Habre, W.; Piguet, V.; Desmeules, J.A.; Samer, C.F. When the Safe Alternative Is Not
That Safe: Tramadol Prescribing in Children. Front. Pharmacol. 2018, 9, 148. [CrossRef]

16. Ongley, D.; Hayward, A.K.; Allan, C. Severe respiratory depression associated with perioperative opioid-sparing gabapentin use.
Anaesth. Intensiv. Care 2014, 42, 136.

17. Gomes, T.; Juurlink, D.N.; Antoniou, T.; Mamdani, M.M.; Paterson, J.M.; van den Brink, W. Gabapentin, opioids, and the risk of
opi-oid-related death: A population-based nested case-control study. PLoS Med. 2017, 14, e1002396. [CrossRef]

18. Gomes, T.; Greaves, S.; Brink, W.V.D.; Antoniou, T.; Mamdani, M.M.; Paterson, J.M.; Martins, D.; Juurlink, D.N. Pregabalin and
the Risk for Opioid-Related Death: A Nested Case–Control Study. Ann. Intern. Med. 2018, 169, 732–734. [CrossRef]

http://doi.org/10.1136/adc.2003.037192
http://doi.org/10.1002/jcph.696
http://www.ncbi.nlm.nih.gov/pubmed/26712409
http://doi.org/10.2174/1381612823666170926121124
http://doi.org/10.6061/clinics/2016(08)11
http://doi.org/10.1007/s40262-017-0569-6
http://www.ncbi.nlm.nih.gov/pubmed/28688027
http://doi.org/10.1067/mcp.2001.120683
http://doi.org/10.1016/S0022-3476(05)80925-4
http://doi.org/10.1002/jcph.904
http://www.ncbi.nlm.nih.gov/pubmed/28444697
http://doi.org/10.1136/adc.2002.024927
http://www.ncbi.nlm.nih.gov/pubmed/14977910
http://doi.org/10.1007/s40262-016-0408-1
http://doi.org/10.1002/jcph.1139
http://www.ncbi.nlm.nih.gov/pubmed/30248203
http://doi.org/10.1097/00003246-200003000-00037
http://doi.org/10.1007/s00540-014-1946-z
http://www.ncbi.nlm.nih.gov/pubmed/25394761
http://doi.org/10.3389/fphar.2018.00148
http://doi.org/10.1371/journal.pmed.1002396
http://doi.org/10.7326/M18-1136


Children 2021, 8, 902 8 of 8

19. Madden, K.; Liu, D.; Bruera, E. Attitudes, Beliefs, and Practices of Pediatric Palliative Care Physicians Regarding the Use of
Methadone in Children With Advanced Cancer. J. Pain Symptom Manag. 2018, 57, 260–265. [CrossRef]

20. Johnson, J.N.; Ackerman, M.J. QTc: How long is too long? Br. J. Sports Med. 2009, 43, 657–662. [CrossRef]
21. Yang, D.Z.; Sin, B.; Beckhusen, J.; Xia, D.; Khaimova, R.; Iliev, I. Opioid-Induced Hyperalgesia in the Nonsurgical Setting:

A Sys-tematic Review. Am. J. Ther. 2019, 26, e397–e405. [CrossRef]
22. Yi, P.; Pryzbylkowski, P. Opioid Induced Hyperalgesia. Pain Med. 2015, 16 (Suppl. 1), S32–S36. [CrossRef] [PubMed]
23. Lee, M.; Silverman, S.M.; Hansen, H.; Patel, V.B.; Manchikanti, L. A comprehensive review of opioid-induced hyperalgesia.

Pain Physician 2011, 14, 145–161. [CrossRef]
24. Lötsch, J. Opioid metabolites. J. Pain Symptom Manag. 2005, 29, S10–S24. [CrossRef]
25. Skarke, C.; Lotsch, J. Morphine metabolites: Clinical implications. Semin. Anesthesia, Perioper. Med. Pain 2002, 21, 258–264.

[CrossRef]

http://doi.org/10.1016/j.jpainsymman.2018.11.009
http://doi.org/10.1136/bjsm.2008.054734
http://doi.org/10.1097/MJT.0000000000000734
http://doi.org/10.1111/pme.12914
http://www.ncbi.nlm.nih.gov/pubmed/26461074
http://doi.org/10.36076/ppj.2011/14/145
http://doi.org/10.1016/j.jpainsymman.2005.01.004
http://doi.org/10.1053/sane.2002.34194

	Introduction 
	Developmental Pharmacology 
	Absorption 
	Distribution 
	Metabolism 
	Elimination 

	Unique Characteristics of Common Medications Used to Treat Pain in Children 
	Neurodevelopmental Impairment with Analgesics and Sedatives 
	Fentanyl 
	Tramadol 
	Gabapentin 
	Methadone 

	Opioid-Induced Hyperalgesia 
	Conclusions 
	References

