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Abstract

Despite the rapid increase in the number and applications of plankton imaging systems in

marine science, processing large numbers of images remains a major challenge due to

large variations in image content and quality in different marine environments. We con-

structed an automatic plankton image recognition and enumeration system using an

enhanced Convolutional Neural Network (CNN) and examined the performance of different

network structures on automatic plankton image classification. The procedure started with

an adaptive thresholding approach to extract Region of Interest (ROIs) from in situ plankton

images, followed by a procedure to suppress the background noise and enhance target fea-

tures for each extracted ROI. The enhanced ROIs were classified into seven categories by

a pre-trained classifier which was a combination of a CNN and a Support Vector Machine

(SVM). The CNN was selected to improve feature description and the SVM was utilized to

improve classification accuracy. A series of comparison experiments were then conducted

to test the effectiveness of the pre-trained classifier including the combination of CNN and

SVM versus CNN alone, and the performance of different CNN models. Compared to CNN

model alone, the combination of CNN and SVM increased classification accuracy and recall

rate by 7.13% and 6.41%, respectively. Among the selected CNN models, the ResNet50

performed the best with accuracy and recall at 94.52% and 94.13% respectively. The pres-

ent study demonstrates that deep learning technique can improve plankton image recogni-

tion and that the results can provide useful information on the selection of different CNN

models for plankton recognition. The proposed algorithm could be generally applied to

images acquired from different imaging systems.

Introduction

Zooplankton play a pivotal role in marine ecosystems by feeding on phytoplankton and serv-

ing as important food for fish larvae [1]. Understanding their spatial and temporal dynamics

and interactions with their environment remain fundamental questions in plankton ecology

[2]. In recent years, imaging techniques have contributed greatly to our understanding of fine-
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scale plankton distributions and their interactions with their environments [3]. The number of

imaging systems and applications have greatly increased in recent years, e.g., Video Plankton

Recorder(VPR) [4], Underwater Vision Profiler (UVP) [5], ZOOplankton VISualization sys-

tem (ZOOVIS) [6], Shadow Image Particle Profiling Evaluation Recorder (SIPPER) [7], and

the In Situ Ichthyoplankton Imaging System (ISIIS) [8]. However, in situ plankton images are

often acquired under sub-optimal conditions, e.g., particulates, turbidity and currents, which

can affect light attenuation and scattering and lead to less than ideal image quality [9]. More-

over, imaging systems are capable of generating very large numbers of unique image files [10].

Extracting useful information from a large number of in situ plankton images acquired by

underwater imaging systems in a timely manner remains a challenge [10, 11]. This latter chal-

lenge is essential if in situ imaging systems are to achieve their full potential as operational

sampling, monitoring, and forecasting tools.

The need for automated plankton recognition and enumeration has spurred the develop-

ment of new image processing techniques in the past two decades. A typical procedure

involves identification and extraction of Regions of Interest (ROIs), feature description, and

finally classification into taxonomic categories [10]. For ROI extraction, a common approach

is the Otsu global threshold method [12], in which in situ images were converted to binary

images based on a single threshold value and then connected pixels, i.e., potential targets, were

segmented. Another common approach for ROI extraction is the local threshold method rep-

resented by the Sauvola’s method [13] in which in situ images are converted to binary images

using threshold values estimated for different regions. Some techniques also incorporate spa-

tial filtering [14] and color information [15–18] to facilitate ROI extractions. However, for

images acquired from highly turbid water, a more complex approach is required. Bi et al. [9]

demonstrated that it is more effective to combine Maximally Stable Extremal Regions (MSER)

[19] for relatively large targets like jellyfish and the Sauvola’s method to segment small targets

like copepods.

Effective feature extraction and description are essential to ensure the success of an auto-

mated plankton recognition procedure. Early work often applied feature descriptions based on

plankton morphology, for example, a combination of different geometric features [20–22],

which appeared to perform well for images acquired under laboratory conditions. Zheng et al.

[23] used a basic Local Binary Pattern (LBP) method to describe the texture features of plank-

ton and achieved reasonable results on the microscopic benchmark plankton dataset. Recently

many feature descriptors based on local features have been applied in plankton recognition,

for example, Histogram of Oriented Gradient (HOG) [9, 23], Scale-Invariant Feature Trans-

form (SIFT) [23, 24] and Shape Context [25].

Classification is the final step in automated plankton recognition in which, each ROI is

assigned into one of a number of different classes. Early classification was often based on dif-

ferential distance measurement, e.g., distance between eigenvectors of feature descriptors [20].

With the recent developments in machine learning, more sophisticated approaches such as

Artificial Neural Networks (ANN) [26], random forest classifiers [27], Bayesian approaches

[28], and Support Vector Machines (SVM) [9, 29, 30] have been applied to plankton classifica-

tion. Almost all these existing methods are customized descriptors that achieve the invariance

by pre-selected rules and are consequently, not flexible enough to accommodate large varia-

tions in image quality and content in plankton images, e.g., morphological variation in the tar-

get objects caused by non-uniform illumination. Deep learning methods have been used

effectively to provide substantial improvements in image processing and feature extraction

and appeared to be good candidates for plankton recognition.

Convolutional Neural Networks (CNN) are a common, deep learning approach, which

combines feature description and classification to achieve better performance in various
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classification tasks. CNN is a weight-sharing network based on image convolution [31]. The

convolution result contains a convolution kernel and output. The kernel matches the image

features and can be activated for amplification and the output can be used for image classifica-

tion. The number of CNN models and their capabilities of processing complex images have

increased rapidly since the first CNN model (LeNet) was introduced by LeCun et al. [32]. In

the past few years, CNNs have moved towards deeper networks to extract complex features

and increase accuracy, but increasing network depth often leads to gradient diffusion, which is

problematic [32–35]. To overcome the gradient diffusion problem, He et al. [36] introduced a

residual block in the neural network, the ResNet. In this new model, convergence speed and

identification accuracy were increased by introducing shortcut connections between parame-

ter layers. Another recent development in CNN models is the Dense Convolutional Network

(DenseNet) [37], which connects each layer to every other layer in a feed-forward fashion.

This alleviates gradient loss and reuses features learned before as depth increases. The disad-

vantage is that DenseNet implementation can require a large amount of memory.

The application of CNNs to plankton recognition and enumeration is still relatively new.

Ouyang et al. [38] implemented a multi-size image sensing module and a deep CNN to identify

121 plankton species from 2015 National Data Science Bowl. Li et al. [39] employed deep

ResNet to identify these 121 types of plankton, too. However, both studies used images

acquired under ideal imaging conditions. In contrast, processing in situ plankton images is

more challenging. Luo et al. [40] applied a sparse CNN model to process images acquired from

the In Situ Ichthyoplankton Imaging System (ISIIS). The advantage of a sparse CNN is that

each sparse convolutional layer can be performed with a few convolution kernels followed by a

sparse matrix multiplication, which leads to higher computation efficiency [41].

The effectiveness of a CNN model for plankton recognition could affected by the presence

of substantial noise due to less than ideal imaging conditions, and ambiguous features in the

descriptors, boundaries, and internal features. Meanwhile, low plankton abundances, i.e., low

number of occupied pixels by potential target objects would clearly exacerbate the feature

problem. For example, an in situ image from the ZOOplankton VISualization (ZOOVIS) sys-

tem has dimensions of 2448×2044 pixels and even large planktonic organisms such as small

jellyfish have average pixel dimensions < 200×200 [42]. After multiple layers of convolution

and pooling, the detailed features will continuously disappear, resulting in a gradual reduction

in the number of valid features retained. Lastly, the diversity of plankton in the oceans is high

and many plankton species share similar morphological features. The lack of clearly defined

features could be exacerbated by the less than ideal imaging conditions which makes it difficult

to apply a model with a deep network structure. CNNs have an unrivaled feature description

capability, and the key for an successful implementation of a CNN for in situ plankton images

is to reduce the impact of unambiguous features at the input end of CNNs, i.e., improve mor-

phological feature for better feature description, and adopt a more plankton-targeted classifier

at the output end of CNNs.

In this paper, we implemented an end-to-end in situ plankton image identification and

enumeration method. To reduce the impact of unambiguous features, we developed a special-

ized adaptive ROI extraction and feature enhancement procedure. For better classification, we

built a multi-class SVM model to achieve global optimization of the learned feature among dif-

ferent target groups. To identify the proper CNN model for plankton recognition, we com-

pared the performance of several readily available CNNs on the same plankton dataset

including AlexNet [31], VGGNets [43], GoogleNet [44], and ResNet. AlexNet model [31] was

proposed in 2012, which contains 5 convolution layers and 3 fully connected layers, and this

model used big data, Graphics Processing Unit (GPU), Rectified Linear Units (ReLU), and

dropout techniques to accelerate network convergence speed while simultaneously preventing
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overfitting. VGGNets [43] have fewer parameters by performing multiple continuous small-

scale convolutions instead of one step of large-scale convolution to gain more non-linear

expressions and achieve a better performance with less parameters. GoogLeNet model [44]

used the inception structure to replace simple traditional operations of convolution and activa-

tion to better tackle the large variation in ROIs to achieve better performance. The core idea of

this model is to use wide inception structure to make models automatically adapt to features at

different scales. ResNet implemented shortcut connections and showed advantages in conver-

gence speed and identification accuracy [35, 36]. The introduction of shortcut guarantees that

the model makes full use of network residual information, which makes the topology of the

network more complex, and improves the performance of the model with a much deeper

layers.

Methods

Data description

The plankton images used in this study were obtained by the ZOOVIS underwater in situ
imaging system that was deployed in the southeastern Bering Sea in May 2017. The datasets

used for training and testing were obtained from these in situ images (685,520 in total) using

the ROI extraction procedure described below. The segmented images were manually sepa-

rated into different taxa and verified by one of the authors (HB). The sample datasets (Fig 1)

used in the experiments included 6 plankton categories (chaetognatha, copepoda, medusae,

euphausiids, fish larvae, and limacina) and an ‘other’ category to accommodate zooplankton

other than the six primary categories and non-zooplankton particles. Constructing and train-

ing CNN models requires tens of thousands of images which is problematic for rare plankton

classes. For example, there were insufficient chaetognatha, medusae, euphausiids and fish lar-

vae present in the data to establish a training set with an adequate number of images. Under

these circumstances, we rotated and mirrored existing ROIs and artificially created ROIs to

mimic real ROIs. For example, the back view of a copepods could be rotated to represent dif-

ferent orientations. The treatment details for rare classes varied slightly due to difference in

their occurrence (euphausiids > chaetognatha and medusae > fish larvae). Each euphausiid

ROI was rotated by 90 degree and 180 degree clockwise, and mirrored from up to down,

which led to a threefold increase in sample size. Each chaetognatha and medusae ROI of them

was rotated by 90 degree and 180 degree, and mirrored from up to down and left to right,

which leads to a fourfold increase in sample size. The number of fish larvae ROI had the least

occurance, so in addition to the rotation by 90 degree and 180 degree, and mirror from up to

down and from left to right, the contrast of each ROI of this category is adjusted with a wider

dynamic range of grayscale so as to mimic different imaging environment, which led to a five-

fold increase in sample size. All this sample expansion methods are best chosen to mimic the

real underwater in situ imaging environment. Using this approach we were able to ensure that

Fig 1. Example images of 7 classes in our in situ plankton dataset. (a) chaetognatha; (b)copepoda; (c) medusae; (d) euphausiids; (e) fish larvae; (f)
Limacina; (g) other zooplankton or objects.

https://doi.org/10.1371/journal.pone.0219570.g001
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there were 2048 ROIs in the training set and 512 ROIs in the testing set for each class and

therefore we could train a balanced and unbiased classifier. To ensure an independent test, all

the samples used in the training set did not appear in the testing set. The expanded training

data set and testing test are to take into account various motion patterns, different oritenta-

tions and various underwater imaging environment. A more inclusive sample library could

mimic plankton details in real water bodies and allow more accurate and realistic plankton fea-

ture description. Finally, we adjusted the contrast level (δ) to mimic different imaging condi-

tions. We chose 5 contrast levels: 3.1, 3.3, 3.5, 3.7, and 3.9 based on imaging conditions

presented in the dataset. At this point, the number of samples in the training set was 10,240 for

each class. The dataset of in situ plankton images is available online: DOI: 10.6084/m9.

figshare.8146283.

Description of the procedure

Image convolution is a key process in CNNs in which image features are activated, amplified,

and outputted under suitable convolution kernel parameters. The effectiveness of features of

the image will directly affect the final output. To overcome the problems of in situ plankton

images discussed previously, the proposed procedure started from designing an algorithm that

can effectively extract potential target objects from images with highly variable contents and

different levels of edge sharpness and object contrast ratio (Fig 2). The potential target objects

(ROIs), were first located and segmented. Subsequently, local grayscale values were used to

enhance the local features of ROIs to allow more effective feature description and reduce gra-

dient loss during the convolution process. Through the image convolution, the features of the

enhanced ROIs were extracted after the fully connected layer was achieved in the network.

The extracted feature was used as the input for the SVM model classification. In summary, the

procedure includes 4 modules: adaptive ROI extraction, ROI enhancement, feature extraction

by the CNN, and the multi-class SVM model.

Adaptive ROI extraction

The objective of ROI extraction is to separate the target object from a complex and noisy back-

ground and to reduce the interference of the background noise and improve the feature extrac-

tion in the subsequent image convolution within the CNNs (Fig 3(a)). Low levels of edge

Fig 2. A flow chart illustrating the different steps and modules in the proposed automated plankton identification and enumeration procedure.

https://doi.org/10.1371/journal.pone.0219570.g002
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sharpness and ambiguous morphological features make it difficult to extract ROIs. For exam-

ple, the commonly used Otsu’s global threshold method missed many target objects (Fig 3(b)).

A combination of Maximally Stable Extremal Regions (MSER) [19] and Sauvola’s local binari-

zation method [13] appeared to a good choice [9]. A caveat is that both methods need to

manually specify parameters to extract ROIs. MSER requires manual specification of the maxi-

mum area variation between extremal regions and step size between intensity threshold levels.

Sauvola’s local binarization requires a manual specification of suitable window size and a fixed

coefficient k in Sauvola’s method (Eq 3) to obtain intact target regions. Another problem is

that both MSER and Sauvola’s method have trouble in segmenting targets with multi-parts

and different levels of edge intensity. Uneven illumination and varying contrast ratio within

the same image can lead to excessive ROIs for both methods.

To overcome these issues, we described the image contrast ratio using Mean Signal-to-

Noise Ratio (MSNR), which is defined by Eqs 1 and 2.

M ¼
ðx1 þ x2 þ . . .þ xnÞ

n
; ð1Þ

MSNR ¼ maxðM � xiÞ
2
; i ¼ 1; 2; . . . ; n; ð2Þ

where n represents the number of pixels, M represents the mean value of pixels in the entire

image, xi represents the i-th pixel, and max is the maximum pixel value. For in situ plankton

images, when the MSNR is small, the changes in the contrast ratio and the sharpness of the

whole image are low, and it is not easy to distinguish target objects from the background and

particulates. When the MNSR is large, the whole image is clear, and it is relatively easy to

extract target objects.

In the present study, we used a threshold value of 0.1 for MSNR. For images with a high

contrast ratio, MSNR>0.1, we used the MSER method to segment these images. For images

with a low contrast ratio, MSNR�0.1, which is often the case for in situ plankton images, we

used the Sauvola’s method, a local threshold segmentation approach to extract ROIs. First,

each pixel was considered as a center, and a sliding window was used for pixel-by-pixel sliding

on the image with a step of 1 pixel. The length and width of the sliding window was 1~3% of

the entire image size. Within every sliding window, we first employed the Sauvola’s method to

Fig 3. Examples of binarization with global threshold and local threshold methods. (a) Original image with uneven illumination, the contrast of

which is adjusted only for illustration purpose due to the heavy darkness of original image, and the procedure directly use the original image; (b) Result

from binarization with global threshold method; (c) Result from binarization with Sauvola’s method based on sliding window.

https://doi.org/10.1371/journal.pone.0219570.g003
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obtain the local threshold value within the sliding window (Eq 3).

Tðx; yÞ ¼ mðx; yÞ½1þ kð
dðx; yÞ

R
� 1Þ�; ð3Þ

where T(x, y) represents the threshold value for the sliding window at (x, y) calculated from

the local contrast ratio, R represents the maximum standard deviation of all pixels in the

image that may occur which is 128 for a grayscale image [13], k is a fixed coefficient which

usually has a value of 0.34, m(x, y) is the mean pixel value of all pixels in the sliding window

and δ(x, y) is the standard deviation of all pixels in the sliding window. The necessary source

codes in MATLAB language for ROI extraction are available here: https://github.com/

KaichangCHENG/PIE-MC/tree/master/EnhancedCNN.

The standard Sauvola’s method only binarizes the central pixel during each sliding and

the sliding step length is 1 pixel and each window has overlapping positions. Based on the anal-

ysis, when the changes in pixel values within the region are large, the contrast ratio is large,

and the regional standard deviation δ(x, y) will approach the maximum standard deviation R,

i.e., T(x, y)�m(x, y). However, in regions with a lower contrast ratio, T(x, y) is significantly

lower than m(x, y). The single-pixel sliding Sauvola’s method allows an adaptive threshold

value, ensuring that the threshold value is between the potential target object and background

noise and distinguish them effectively. For example, we applied this technique on the same in
situ image for Otsu’s global thresholding approach and the single-pixel Sauvola’s method per-

formed much better in which the ROIs were separated and extracted from the background

effectively (Fig 3(c)).

ROI enhancement

After extracting the ROIs for the potential target objects, we implemented a procedure to

enhance the morphological features of ROIs and suppress background noise.

Target feature enhancement. Due to the complexity of plankton images, conventional

spatial domain filtering and frequency domain filtering were not effective. The main inherent

problem was too many breakpoints in the target region, making it difficult to extract intact tar-

gets. To solve this problem, we employed a denoising algorithm based on breakpoint connec-

tions in the spatial domain to achieve target feature enhancement. Based on using the above

method for ROI extraction, we took every pixel as a center and use a small rectangular window

that was 1~3% of the complete ROI to segment it into many small units. Subsequently, Eq 4

was used to calculate threshold values for every small unit. White pixels were considered as

valid pixels and the number of valid pixels within this rectangular region (labeled as Nvalid) was

compared with the threshold value to determine whether this central pixel is a biological

boundary feature point:

Tvalue ¼ floorð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2½floorð
ffiffiffiffiffiffiffiffi
Nrect

p
Þ�

2

q

Þ � 2; ð4Þ

where Tvalue represents the adaptive threshold value, Nrect is the number of all pixels in the rect-

angular window that we set, and the floor equation represents a rounding down. The valid pix-

els in 0.75Nvalid had to lie within one of the rectangular windows or between two adjacent

rectangular windows, otherwise that region was regarded as background or noise (Fig 4(a)).

The reasons for these settings are twofold. When a valid pixel is the boundary or internal

feature point of plankton, there will be many identical feature points nearby. Therefore, the

number of valid pixels will be greater than the length of the diagonal line of the rectangular

window. From the perspective of pixel density, this can be interpreted as a form of expression

for high frequency information. Secondly, if that pixel is a feature point, then its surrounding
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pixels will be distributed around it according to specific rules and will not be scattered ran-

domly within the rectangular window. Therefore, we can carry out filter denoising of the

image from the angle of the spatial domain. Fig 4(c) and 4(d) shows the raw extracted ROI

using the sliding window described in the previous section and the results after thickening of

the target boundaries through determination of valid pixels, respectively.

Background suppression. After obtaining the intact plankton feature image, the pixel

intensity for the segmented ROI was stored in an array Pback and the locations of target object

in array Pback were all set to 0. The remaining nonzero pixel intensity in Pback, denoted as p,

were arranged according to the pixel values, and the boundary threshold Tb was set (Eq 5).

Tb ¼ pmin þ
pmax � pmin

d
; d 2 ½3; 4�; ð5Þ

where pmin represents the lowest pixel value in the region, pmax represents the largest pixel

intensity value in the region, and δ is the boundary parameter, which is usually a number

between 3 and 4.

Grayscale transformation p0 = p + 5 �(p − Tb)�(δ − 3) was carried out based on the difference

between the pixel value and the threshold value Tb to get new background intensity p0, where p
is the nonzero pixel values in Pback. Pixel values lower than the threshold value were suppressed

and pixel values greater than threshold value were artificially amplified due to the changes in

relative intensity. Through this approach, the differences between different pixels were

enhanced and morphological features were better reflected. Finally, the new transformed pixel

intensity p0 were used to replace p that were recorded in array Pback. Note that changes in

boundary parameter affect morphological features. For example, when the boundary parame-

ter ranged from 3.1 to 3.9, the morphological features of potential object were enhanced sub-

stantially (Fig 5). In the present study, we set the boundary parameter to 3.7 to achieve an

optimum result for ROI enhancement (Fig 6). The necessary source codes in MATLAB lan-

guage for ROI enhancement are also available here: https://github.com/KaichangCHENG/

PIE-MC/tree/master/EnhancedCNN.

CNN models for feature learning

CNNs are commonly used in pattern recognition with superior feature learning capabilities.

When applied to plankton recognition, it is important to determine the best suitable network

structure to overcome issues in plankton recognitions. For example, many plankton are small

Fig 4. Enhancing target features. (a) Illustration of valid pixel. The black point in the center of the black rectangle is the pixel to be confirmed, and the

0.75Nvalid valid pixels (other black points) around it lie within one of the rectangular windows or between two adjacent rectangular windows, so the

central pixel is a part of the target; (b) Original ROI, the contrast of which is adjusted only for illustration purpose due to the heavy darkness of original

ROI, and the procedure directly use the original ROI; (c)Example from binarization with Sauvola’s method; (d) Example after enhancement with the

edge roughening method.

https://doi.org/10.1371/journal.pone.0219570.g004
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with mesozooplankton ranging from 200 μm to 2,000 μm and microzooplankton ranging

from 20 μm to 200 μm. They can have a wide range of morphological features and sometimes

it is difficult to distinguish them from non-living particulates in the water column. In the pres-

ent study, we tested common network structures for plankton recognition including AlexNet,

VGG16, VGG19, GoogLeNet, and ResNet and compared their performance. To examine the

impact of ROI enhancement at the front end of the model and the multi-class SVM model at

the back of the model, we directly used the convolutional and fully connected layers in CNN

models for the feature learning and we used samples in our training set to fine-tune the CNNs.

In the back end of the classification model, we used the output of the fully connected layer in

these classical CNNs as extracted ROI features, the input for the multi-class SVM model train-

ing and classification.

Multi-class SVM classification

The advantage of SVM is that it uses support vectors to identify optimal hyperplanes in a fea-

ture space so that the distance between positive and negative samples in the training set is max-

imized. In addition, flexible intervals can be used to increase fault tolerance and improve the

robustness and classification accuracy. Regarding plankton recognition, species within the

same class may show large variation, e.g., different copepod species vary in size and morpho-

logical features, and therefore a model with high fault tolerance would be beneficial for

Fig 5. Effects of different δ on ROI enhancement. (a) Original ROI, the contrast of which is adjusted only for illustration purpose due to the heavy

darkness of original ROI, and the procedure directly use the original ROI; (b) δ = 3.1; (c) δ = 3.3; (d) δ = 3.5; (e) δ = 3.7; (f) δ = 3.9.

https://doi.org/10.1371/journal.pone.0219570.g005
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classification. In this paper, we employed a multi-class SVM model (Fig 7) to classify target

objects using features extracted from selected CNNs.

In the proposed multi-class SVM, a one vs. one classification will train 1 classifier between

every two classes. Therefore, there will be k(k − 1)/2 classifier functions for a problem with k
classes. We used a simple linear classifier, f(X) = WTX + b to map each ROI to different classes,

where W is a weight vector, X is a feature vector, and b is the bias. When the trained model is

used for classification of unknown samples, every classification function will be used to deter-

mine its class and the probability of its class. The class of the unknown sample corresponds to

the class with the highest probability. As a multi-class SVM model will carry out a 1 vs. 1 com-

parison between every two classes, it will increase computational demands for identification

but effectively increase classification accuracy as compared with a one vs. all SVM model.

There were 7 different groups of plankton in the present study groups. Therefore, the compu-

tational demand for the 1 vs. 1 multi-class SVM in this study was not increased too much.

More importantly, the structural diversity of non-target objects was extremely high, which

required a classification model with high accuracy.

Results and discussion

To validate the accuracy and efficiency of the enhanced CNN proposed in this study, we con-

ducted multi-group comparison and validation experiments. The experiments were conducted

Fig 6. Effects of ROI enhancement with different steps. (a) Original plankton image, the contrast of which is adjusted only for illustration purpose

due to the heavy darkness of original image, and the procedure directly use the original image; (b) The effect of binarization with Sauvola’s method; (c)
The effect of denoising and edge roughening; (d) Extraction of ROIs based on connected domain; (e) Extraction of ROIs with rectangular merging

method based on RPN [45]; (f) Final enhanced ROI after background suppression, δ = 3.7.

https://doi.org/10.1371/journal.pone.0219570.g006
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using MATLAB (Release 2018a). The accuracy, recall, and elapsed time were the mean values

of 5 replicates.

The first experiment (Table 1) was designed to examine whether incorporate the multi-

class SVM would improve the performance of the CNN models. The fully connected layers

from the selected CNN models were used to describe sample features and were used as the

input for the multi-class SVM model. For CNNs with fully connected layers (AlexNet, Goo-

gLeNet, VGG16 and VGG19), the output of corresponding fully connected layers is a one-

dimensional feature vector, which was used as the input of multi-class SVM model. While

there is no real fully connected layer in ResNet50 model, the output of the last dropout layer in

this model is a one-dimensional feature vector, which could be used as the input of multi-class

SVM model. The baseline based on Histogram of Oriented Gradient (HOG) features and

SVM classifier had relatively low performance on in situ plankton ROIs with precision and

recall rates of approximately 60%. The selected classic CNN models without the multi-class

SVM performed much better on the same set in situ plankton training set with both precision

and recall rates ranging 85% ~ 88%. Within this group, the ResNet50 model performed the

best. Model128_5 and model48_5 proposed by Ouyang py et al. [38] designed for the classifi-

cation of 2015 National Data Science Bowl with a good imaging quality and did not perform

well for in situ plankton images, which is only 71.26% and 67.16%, respectively. When the

selected CNN models were combined with the multi-class SVM, i.e., some fully connected lay-

ers and Softmax classification layer in classic CNN models were replaced by the multi-class

SVM model, both the precision and recall rates increased to 88% ~ 92%. We did not use the

last fully connected layer of each classic CNN model because it was a special vector that

included the corresponding scores of all the classes to be predicted in the model, not the

learned features. From Table 1, we can see that the classification performance of experiment

using specified features learned from rear fully connected layers were not as good compared

with those that directly used the first layer, except for the AlexNet Model. Therefore, we used

Fig 7. Illustration the multi-class SVM model starting from pairwise classification to the final output.

https://doi.org/10.1371/journal.pone.0219570.g007
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the output from the fully connected layer of the classical CNN, which was proved to have a bet-

ter performance in Models 7 to 14, as the input for the multi-class SVM model. The necessary

pre-trained models in MATLAB language are also available from https://doi.org/10.6084/m9.

figshare.8146283.

Because the original ROIs contained a lot of noise, the second experiment (Table 2) was

performed to examine the impact of ROI enhancement on the precision and recall rates using

Table 1. Results of model performance.

Treatments Model

(Detailed structure)

Precision

(%)

Recall

(%)

Time

(ms/sample)

Baseline HOG + Multi-class SVM 61.33 60.24 16.82

CNN models without SVM AlexNeta 85.55 85.06 25.95

GoogLeNetb [38] 86.87 87.01 84.10

VGG16b [38] 86.18 86.87 341.59

VGG19b [39] 87.03 87.11 410.76

ResNet50b [39] 88.22 88.46 172.26

model128_5b [38] 71.26 71.87 186.32

model48_5b [38] 67.16 67.89 92.45

CNN models with SVM AlexNet-fc1 + Multi-class SVM 88.63 88.15 29.05

AlexNet-fc2 + Multi-class SVM 89.01 88.62 33.09

GoogLeNet-fc´ + Multi-class SVM 90.45 90.15 87.70

VGG16-fc1 + Multi-class SVM 91.33 91.13 371.27

VGG16-fc2 + Multi-class SVM 90.18 90.75 375.62

VGG19-fc1 + Multi-class SVM 91.86 91.42 425.72

VGG19-fc2 + Multi-class SVM 90.88 90.99 428.81

ResNet50-fc´ + Multi-class SVM 92.47 92.76 176.76

Note: Symbol fc1 and fc2 indicate that learned features are from the corresponding fully connected layers according to the order in CNN models. Some models only

have one fully connected layer, and outputs of this fully connected layer are the corresponding scores of all the classes to be predicted in the model, not learned features.

For GoogLeNet and ResNet50, we use fc´ to indicate that the learned features are from the last dropout layer in the CNN, the output of which is a vector and similar to

the output features of fully connected layer in other CNN models. HOG indicates histogram of gradients as feature descriptor and SVM represents support vector

machine for classification.
aNo one used this model to identify plankton images before, and the result reproduced based on in situ plankton dataset made by our own group is only for reference.
bThese models were used for the classification of 2015 National Data Science Bowl with a good imaging quality firstly, and the results in the table were reproduced based

on in situ plankton dataset made by our own group.

https://doi.org/10.1371/journal.pone.0219570.t001

Table 2. Effect of ROI enhancement in plankton identification and enumeration.

No. Model

(Detailed structure)

Precision

(%)

Recall

(%)

Time

(ms/sample)

1 OriginalROI + AlexNet-fc2 + Multi-class SVM 89.01 88.62 33.09

2 OriginalROI + GoogLeNet-fc´ + Multi-class SVM 90.45 90.15 87.70

3 OriginalROI + VGG16-fc1 + Multi-class SVM 91.33 91.13 371.27

4 OriginalROI + VGG19-fc1 + Multi-class SVM 91.86 91.42 425.72

5 OriginalROI + ResNet50-fc´ + Multi-class SVM 92.47 92.76 175.76

6 EnhancedROI + AlexNet-fc2 + Multi-class SVM 90.44 90.13 34.13

7 EnhancedROI + GoogLeNet-fc´ + Multi-class SVM 92.04 92.15 88.90

8 Enhanced ROI + VGG16-fc1 + Multi-class SVM 93.65 93.43 411.25

9 EnhancedROI + VGG19-fc1 + Multi-class SVM 93.99 93.48 427.57

10 EnhancedROI + ResNet50-fc´ + Multi-class SVM 94.52 94.13 178.42

https://doi.org/10.1371/journal.pone.0219570.t002
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the same selected CNNs, feature output and the SVM classifier. We used different δ values to

enhance the original ROI, and then the original samples and all the enhanced samples were

combined together to train the classifier. Note that the spatial domain-based breakpoint con-

nection ROI enhancement method was only applied on samples in the training set, while sam-

ples in testing set used for performance test were not enhanced. The classification precision,

recall, and time consumed generally increased by 1~2% (Fig 8).

When compared to the original classical CNN model, the combination of feature enhance-

ment and multi-class SVM classification layers can increase the classification accuracy and

recall of the model by 3~6%, while the computing time increased only by 7~10%. Results sug-

gested that ResNet50 combined with the multi-class SVM performed the best with precision

and recall rates >94% and average processing time ~176.764 ms/sample. The misclassification

rates among the selected 7 classes also declined using the proposed procedure, i.e., Enhance-

dROI + ResNet50-fc´ + Multi-class SVM when compared to the results using ResNet50 model

alone. Fig 9 showed the corresponding confusion matrix of 7 classes for original finetuned

ResNet50 Model and the optimal-performance model proposed in this paper, namely, Enhan-

cedROI + ResNet50-fc’ + Multi-class SVM. Clearly, the latter had a much better performance.

From the confusion matrix, we can see that limacine is the easiest to identify due to its simple

and fixed shape. Copepoda, medusae and euphausiids are relatively harder to identify for their

various motion patterns. Chaetognatha, fish larvae and other category are the hardest to iden-

tify because of their flexible shapes and motion patterns. Detailly, chaetognatha and fish larvae

always have a long and thin body, behaviors of which are always similar and indistinguishable,

so the identification results were relatively poor. Other category contains zooplankton other

than the six primary categories and non-zooplankton particles which have various behaviors

and shapes, so the identification performance is the worst of the 7 classes.

Conclusions and prospects

In summary, we examined the effectiveness of different CNNs models in describing plankton

features and results suggested that the ResNet50 performed the best among the 6 selected

CNN models. The advantage of ResNet50 in describing plankton likely rises from its relatively

wide network structure which allows a better description of plankton, often with relatively

Fig 8. Impacts of multi-class SVM and enhanced ROIs. (a) Precision of different models with the proposed method; (b) Recall of different models

with the proposed method; (c) Elapsed time of different models, the increasement of elapsed time (in light coral) is the average of corresponding models

based on original ROIs and enhanced ROIs.

https://doi.org/10.1371/journal.pone.0219570.g008
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small size and < 100 pixels. The inclusion of a multi-class SVM classification model improved

the robustness and classification accuracy of the proposed procedure. Finally, a dedicated ROI

enhancement helped to remove the background nose and allows more effective feature

description which subsequently improved the performance of the proposed procedure with

both precision and recall rates >94%. We concluded that the selected ResNet50 model struc-

ture combined with the ROI enhancement and the multi-class SVM classification model could

effectively identify and enumerate plankton for optical plankton imaging systems like ZOOVIS

and other in situ plankton imaging systems.
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