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1  |  INTRODUC TION

Antiretroviral therapy (ART) is unable to cure HIV infection due to 
the persistence of a reservoir of long lived and proliferating latently 
infected cells. HIV latency occurs when the virus is integrated into 
the host cell DNA but does not produce viral proteins or virions, 
and therefore, the infected cells are not visible to immune- mediated 
clearance. One strategy to eliminate or reduce the pool of latently 
infected cells is termed shock and kill, where the latent provirus is 
activated leading to immune- mediated clearance or death through 
viral cytolysis (reviewed in1). A large number of latency- reversing 
agents (LRAs) have been identified, many of which can reverse 
HIV latency in vitro, ex vivo and in animal models.1,2 Despite this, 
in clinical trials in people with HIV (PWH) on ART, some but not all 
LRAs have been shown to induce virus transcription and/or virion 
production, but there has been minimal or no reduction in the res-
ervoir.2 An increase in virus transcription has been demonstrated in 
human clinical trials of histone deacetylase inhibitors (HDACi),3– 5 
the PKC agonist bryostatin- 1,6 the toll- like receptor- 9 (TLR) agonist 

Lefitolimod7 and immune checkpoint inhibitors.8– 10 There remains 
a need to enhance our understanding of the biology of the latent 
reservoir as well as develop novel LRAs that are more potent, more 
specific and can also induce cell death.

2  |  NE W INSIGHTS INTO FAC TORS THAT 
CONTROL HIV L ATENCY

2.1  |  Varying HIV transcriptional activity in T- cell 
subsets

HIV DNA can be found in multiple CD4+ T- cell subsets with recent 
evidence demonstrating that genetically intact HIV proviruses were 
more common and more likely to persist over time in effector mem-
ory CD4+ T cells compared to naive, central and transitional memory 
CD4+ T cells.11 More mature T- cell subsets also have a higher level 
of basal virus transcription12,13 and commonly used LRAs appear 
to have different levels of potency in different T- cell subsets, with 
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memory stem cells from PWH on ART being highly resistant to HIV 
activation.12,14 Latently infected cells from blood can also vary in 
their responsiveness to activation, with some infected cells requir-
ing multiple stimuli to reactivate the provirus; however, this feature 
was not related to the site of integration.15

Viral transcriptional activity also differs between blood and tis-
sue sites and may reflect the different cellular makeup of specific tis-
sues, such as lymph nodes or the gastrointestinal tract.16– 19 Recent 
evidence has shown that there are multiple blocks to completion of 
HIV transcription in latently infected cells, with specific blocks to 
transcriptional elongation and splicing.20 Furthermore, these blocks 
to completion of transcription differ between latently infected cells 
isolated from blood and tissue.18 It appears that most LRAs can 
induce initiation of viral transcription but are unable to overcome 
blocks to elongation and splicing, therefore limiting the potential for 
virion production and therefore cell death.21

2.2  |  Site of HIV integration influences 
transcriptional activity

Basal and inducible HIV transcriptional activity in latently infected 
cells has been recently shown to be partially controlled by the site of 
provirus integration.22 Using a new technique of parallel HIV RNA, 
integration site and proviral sequencing (PRIP- Seq) which can ana-
lyse single cells for integration site, viral sequence and viral RNA, the 
levels of basal transcription from intact virus in CD4+ T cells from 
PWH on ART were shown to decline on ART, raising the possibil-
ity that over time the reservoir is enriched for more deeply latent 

viruses.22 Using the same technique and cells from elite controllers 
(PWH who can naturally control HIV replication in the absence of 
ART), intact proviruses were preferentially found in transcriptionally 
inaccessible sites such as centromeric satellite DNA and sites with 
heterochromatin features,23 suggesting that in both elite controllers 
and long- term ART, there is selection for a less transcriptionally ac-
tive reservoir.

2.3  |  Extrinsic factors influencing HIV transcription

In addition to cellular factors that determine basal levels of HIV 
transcription, other extrinsic factors can impact viral transcription, 
including sex, time and stress. Women with HIV on ART have lower 
levels of plasma viraemia and cell- associated multiply spliced HIV 
RNA compared to men.24 This observation may potentially be ex-
plained by higher levels of the oestrogen receptor (ESR)- 1 in women 
which has been shown to repress proviral activation.25 Our group 
has recently demonstrated that cell- associated unspliced HIV RNA 
(which largely reflects evidence of transcription initiation) in PWH 
on ART varied temporally with a circadian rhythm.26,27 This is likely 
through regulation of HIV transcription by the circadian transcrip-
tion factors, circadian- locomotor- output- cycles- kaput (CLOCK) 
and brain- and- muscle- ARNT- like- 1 (BMAL1), which can bind to 
the E- box in the HIV long terminal repeat (LTR).27,28 We and others 
have also shown that psychological stress may also modulate viral 
transcription.27,29,30 Taken together, these findings demonstrate 
the complex multifactorial control of HIV transcription in HIV res-
ervoirs (summarised in Figure 1) but at the same time has identified 

F I G U R E  1  Factors modulating HIV transcription on ART and strategies to reverse HIV latency. Both intrinsic and extrinsic factors 
regulate HIV transcription within latently infected CD4+ T cells that persist in people with HIV on antiretroviral therapy. Understanding each 
of these factors will identify new targets to reverse HIV latency. Latency reversal has been demonstrated with small molecules (including 
histone deacetylase inhibitors (HDACis), bromodomain inhibitors and protein kinase C (PKC) agonists); immunomodulatory compounds 
(including toll- like receptor agonists (TLR7 and TLR9) and immune checkpoint blockers (ICB) and gene targeting (using dead Cas9 gene 
activation)). Future directions aimed at enhancing the potency and specificity of latency reversal include nanoparticle delivery, the induction 
of cell death and ultimately a combination of these approaches
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multiple new targets that could be exploited to enhance latency 
reversal.

3  |  ENHANCING POTENCY, FUNC TION 
AND SPECIFICIT Y OF LR A S

One key concern in relation to current LRAs is that they lack speci-
ficity as well as potency. Therefore, there is a large effort to identify 
novel targets, use immunomodulatory LRAs that have dual activities 
and/or increase the targeted delivery of these compounds.

3.1  |  Enhancing potency

Second mitochondria- derived activator of caspases mimetics 
(SMACm) are a new class of LRA that can activate the HIV LTR 
via the non- canonical nuclear factor kappa B (NFkB) pathway.31,32 
SMACm can also inhibit inhibitors of apoptosis and are being ac-
tively pursued as treatments for cancer.33 A large number of SMACm 
have been shown to potently reverse HIV latency in vitro using cell 
lines31,34,35 and two SMACm, AZD5582 and Ciapavir potently acti-
vated HIV latency in vivo using HIV- infected mice and SIV- infected 
non- human primates (NHP).34,35 There are currently no data on the 
activity of SMACm in vivo in PWH and it is unclear if off target ef-
fects of SMACm such as Bell's Palsy seen in the cancer setting36 will 
be a barrier to their use in the setting of HIV cure.

3.2  |  Enhancing function

Immunomodulatory LRAs have the benefit of dual function— 
reversing HIV latency and also enhancing HIV- specific immunity. 
Immune checkpoint (IC) inhibitor molecules such as programmed 
cell death protein 1 (PD- 1), Lymphocyte activation gene 3 (LAG- 3) 
and T- cell immunoreceptor with Ig and ITIM domains (TIGIT) are 
expressed on CD4+ T cells that are enriched for HIV latency.37,38 
Antibodies to immune checkpoints, either alone or in combina-
tion, have also been shown to reverse HIV latency using both in 
vitro models and patient- derived cells.38– 40 Blockade of PD- 1 with 
the anti- PD- 1 antibody pembrolizumab was recently shown in a 
clinical trial to induce expression of both cell- associated unspliced 
HIV RNA and plasma RNA in PWH on ART.41 Antibodies to im-
mune checkpoints can also increase HIV- specific T- cell function 
ex vivo42 and in vivo;43 however, whether this increase in HIV- 
specific T- cell function can also clear infected cells in vivo re-
mains unknown. Given the commonly reported immune- related 
adverse events following anti- PD- 1, that can be irreversible, there 
are some concerns about whether these antibodies can be safely 
pursued in PWH.44 Furthermore, a recent description of delete-
rious outcomes using anti- PD- 1 and a therapeutic vaccine in an 
SIV- infected non- human primate animal model highlights the ad-
ditional need for caution.45

Agonism of TLRs have also been shown to induce latency re-
versal and can enhance innate immune function.46– 49 TLR- 7 and 
TLR- 9 agonists induce latency reversal via stimulating type I in-
terferon release and interferon- stimulated genes without causing 
global immune activation.46– 49 TLR agonists combined with either 
broadly neutralising antibodies or a therapeutic vaccine induced a 
delay to viral rebound following cessation of ART in NHPs infected 
with SIV containing an HIV envelope (SHIV) and treated with ART 
during both acute infection and chronic infection.50– 52 Recently, 
combining both active and passive immunisation with a TLR- 7 
agonist induced virological control in 70% of SHIV- infected non- 
human primates following cessation of ART.53 Whether similar 
levels of virological control off ART can be achieved in PWH with 
similar combinations of interventions, remains to be determined. 
Importantly, the TLR- 7 agonist vesatolimod in PWH on ART was 
recently shown to be safe54 and also reduce intact proviruses and 
modestly delay viral rebound after cessation of ART.55 These stud-
ies provide the necessary data to now evaluate a TLR- 7 agonist in 
combination with other interventions. It is important to highlight 
that despite supportive in vitro data, it is unclear whether TLR ag-
onists truly reverse HIV latency in vivo or whether their additional 
beneficial activity observed in NHP studies was related to activa-
tion of innate immune function.

3.3  |  Increasing specificity

Nanoparticles provide a novel pathway to enhance the specificity 
and potency of LRAs. Nanoparticle formulations loaded with LRAs 
including the protein kinase C agonist Bryostatin- 2 and the his-
tone deacetylase inhibitor suberoylanilide hydroxamic acid have 
been shown to increase potency of latency reversal combined 
with targeted delivery to T cells.56,57 Furthermore, lipid coated 
polynanoparticles that were loaded with two LRAs, Ingenol- 3A 
(Ing3A) and JQ1, induced synergistic effects on latency reversal.58 
Conjugation of anti- CD4 monoclonal antibody to the nanoparticle 
also resulted in the successful delivery of drug to lymph nodes, 
when administered by the subcutaneous route.58 Other strategies 
to target resting T cells to enhance the potency and specificity of 
LRAs include modification of size, charge and antibody conjuga-
tion (reviewed in59). Another approach to enhance the specific-
ity of HIV latency reversal can be provided through Clustered 
Regularly Interspaced Short Palindromic Repeats (CRISPR) tech-
nology, such as the use of dead Cas9 activation to selectively bind 
and activate the HIV LTR.60,61

4  |  STR ATEGIES TO ENHANCE 
NON- IMMUNE- MEDIATED CELL DE ATH

An emerging concept in HIV latency is that infected cells are primed 
for survival and therefore targeting this survival mechanism will facil-
itate selective death of infected cells. Factors that regulate apoptosis 
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such as proteins from the B- cell lymphoma (BCL)- 2 family and in-
hibitors of apoptosis proteins (IAPs) have been shown to be over- 
expressed in latently infected CD4+ T cells.62– 66 Therefore, there is 
high interest in targeting these specific proteins, including the use 
of the BCL- 2 antagonist, Venetoclax, which can increase selective 
death of latently infected cells ex vivo.66,67 The IAP protein BIRC- 5 
has been shown to be over- expressed in latently infected cells,64 and 
inhibitors of this protein using either YM11564 or DDX3 inhibitors68 
can induce death of infected cells ex vivo. In addition, SMACm which 
are inhibitors of IAP can induce autophagy- dependent apoptosis in 
infected cells.62,63 Finally, the triple combination of latency reversal 
(using bryostatin or anti- CD3/anti- CD28) and HIV- specific CD8+ T 
cells with venetoclax reduced intact and inducible proviruses ex vivo 
using cells from PWH on ART.66

5  |  CONCLUSION

Our understanding of the complexity of HIV latency is rapidly ex-
panding. The level of HIV transcriptional activity on ART is influ-
enced by the HIV integration site, the differentiation status of the 
T- cell and its anatomical location, as well as extrinsic factors such as 
sex, time and stress. New approaches that combine latency reversal 
and enhancement of immunity show some promise in animal mod-
els; however, the success achieved to date is yet to be replicated in 
human clinical trials. There is now high interest in the combination 
of LRAs with pro- apoptotic agents, to specifically enhance elimina-
tion of latently infected cells. In conclusion, it is highly unlikely that 
latency reversal alone will eliminate the reservoir; however, this ap-
proach is critical to reduce the pool of infected cells and remains a 
core part of HIV cure strategies.
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