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Abstract: The autonomic nervous system delicately regulates the function of several target organs,
including the gastrointestinal tract. Thus, nerve lesions or other nerve pathologies may cause
autonomic dysfunction (AD). Some of the most common causes of AD are diabetes mellitus and
α-synucleinopathies such as Parkinson’s disease. Widespread dysmotility throughout the gastroin-
testinal tract is a common finding in AD, but no commercially available method exists for direct
verification of enteric dysfunction. Thus, assessing segmental enteric physiological function is recom-
mended to aid diagnostics and guide treatment. Several established assessment methods exist, but
disadvantages such as lack of standardization, exposure to radiation, advanced data interpretation,
or high cost, limit their utility. Emerging methods, including high-resolution colonic manometry,
3D-transit, advanced imaging methods, analysis of gut biopsies, and microbiota, may all assist in the
evaluation of gastroenteropathy related to AD. This review provides an overview of established and
emerging assessment methods of physiological function within the gut and assessment methods of
autonomic neuropathy outside the gut, especially in regards to clinical performance, strengths, and
limitations for each method.

Keywords: autonomic dysfunction; gastrointestinal; motility; investigations; manometry; breath test;
imaging; Parkinson’s disease; diabetes mellitus

1. Introduction

Autonomic disorders may involve the parasympathetic, sympathetic, and enteric
nervous systems with extensive, multisystemic consequences [1]. Among several other
organ manifestations, pan-enteric gastrointestinal (GI) dysmotility is frequently seen [2].
Not only do the motility disturbances contribute to GI symptoms, they may also affect the
absorption of medication used to treat the underlying disease [3,4].

Methods for assessment of GI motility are generally applicable across autonomic
dysfunction (AD) etiologies despite different underlying pathophysiology. Verification
of the extent of GI involvement is important to support diagnosis and guide effective
treatment, especially because gastrointestinal symptoms and objective measures correlate
poorly [5–8]. However, commercially available assessment methods have different inherent
limitations, and better techniques are needed for evaluating GI dysfunction. Thus, the
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main focus of this review is to describe established and emerging methods for assessment
of enteric dysfunction in patients with AD.

2. Clinical Presentation
2.1. Autonomic Neuropathy in Neurological Disorders

The autonomic nervous system involves sympathetic and parasympathetic neural
structures in the central and peripheral nervous systems that innervate all internal or-
gans [1]. Moreover, and often under-recognized, is the enteric nervous system that is
also part of the autonomic nervous system [9]. Centrally, the autonomic nervous system
is regulated by areas localized at the forebrain pontomescencephalic and bulbopontine
level, and in the spinal cord. The peripheral autonomic nervous system acts via the post-
ganglionic parasympathetic and sympathetic nervous systems, which interact with the
enteric nervous system in a complex and delicately coordinated network [10,11]. Thus,
central and peripheral nerve lesions and pathology may induce AD [1]. Pure AD can
manifest acutely or sub-acutely such as seen in autoimmune autonomic ganglionopathy or
treatment-induced neuropathy of diabetes mellitus (DM). The latter can be caused by a too
fast downregulation of blood glucose in a dysregulated DM patient [12]. On the other hand,
the presentation can be slowly progressing as seen in α-synucleinopathies or neuropathy
of various etiologies. α-synucleinopathies are neurodegenerative diseases characterized by
abnormal accumulation of aggregates of α-synuclein protein in nerve fibers or glial cells.
The main types of α-synucleinopathies are Parkinson’s disease (PD), dementia with Lewy
bodies, multiple-system atrophy, and pure autonomic failure [13]. Large and small fiber
sensory and autonomic neuropathy is seen in metabolic disorders (DM, hypothyroidism,
uremia), cobalamin deficiency, infections, immune-mediated conditions (gammopathies,
vasculitis, and coeliac disease), neurotoxic exposure (alcoholism, and pharmacological
treatment), and in hereditary conditions (hereditary sensory and autonomic neuropathy,
Fabry’s disease, and hereditary transthyretin-mediated amyloidosis) [14]. Autonomic
dysfunction is also seen in patients with postural orthostatic tachycardia syndrome (POTS)
defined by an abnormal increase in heart rate of at least 30 beats/min within 10 min of
standing or during a tilt table test. The rise in heart rate is seen in the absence of ortho-
static hypotension and symptoms of orthostatic intolerance must be present for at least
6 months [15]. POTS has been associated with small fiber neuropathy, Ehlers–Danlos
syndrome and mast cell activation syndrome [16,17].

2.2. Clinical Presentation of Autonomic Neuropathy in General

The symptoms of autonomic neuropathy are numerous and the condition is multisys-
temic due to the extensive parasympathetic and sympathetic innervation of multiple organs
and structures such as the cardiovascular, gastrointestinal, thermoregulatory, respiratory,
urogenital, pupillomotor, and sudomotor systems [2]. Thus, diagnosis, treatment, and
follow-up may involve multiple specialties. Parasympathetic dysfunction may cause the
sicca syndrome with dry eyes and mouth, light intolerance due to dilated non-responding
pupils, urine retention, erectile dysfunction, resting tachycardia, and reduced GI motility.
Sympathetic dysfunction is characterized by miotic pupils, orthostatic intolerance with
dizziness or syncope, exercise intolerance, anhidrosis, and heat intolerance [18]. GI dys-
function may cause gastroparesis and enteropathy with constipation, diarrhea, and fecal
incontinence, and may affect absorption of oral medication, see below.

Recognizing AD is important because of the increased morbidity and mortality associ-
ated with reduced heart rate variability, arrhythmias, increased blood pressure variability,
and neurogenic orthostatic hypotension [19,20]. Acute development of AD can be the
first sign of an underlying paraneoplastic condition. Furthermore, early recognition is
important to ensure early initiation of conservative or pharmacological treatments targeting
orthostatic or postprandial hypotension, supine hypertension, erectile dysfunction, and
gastroenteropathy as these conditions may have a negative impact on the quality of life if
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left untreated. Finally, autonomic testing can monitor the course of dysautonomia and the
response to treatment.

2.3. Clinical Presentation of Gastrointestinal Autonomic Neuropathy

Studies of GI function in patients with AD have mainly included patients with DM
or PD. However, pan-enteric autonomic neuropathy is also seen in the less commonly
described etiologies, and principles for clinical evaluation and treatment will be largely
similar across etiologies. All segments of the GI tract may be affected, contributing to
a highly variable inter-individual clinical presentation and intra-individual symptom
fluctuation with time, the latter especially seen in patients with DM [21]. Common GI
symptoms, such as dysphagia, nausea, vomiting, bloating, early satiety, abdominal pain,
constipation, diarrhea, weight loss, and fecal incontinence may be present, combined or
solitary, and they may substantially affect the quality of life [22–24]. In patients with DM,
symptoms of gastroparesis are present in up to 18%, diarrhea in 20%, and constipation in
up to 60%. Furthermore, fecal incontinence is frequently reported [25,26]. The prevalence
of symptoms of gastroparesis and constipation in PD reaches 50%. Furthermore, 72% have
anorectal dysfunction expressed as straining for defecation, but also incomplete emptying,
with symptoms becoming more severe during disease progression [27,28]. Constipation
is reported in 50% of patients with pure autonomic failure and in up to 82% of patients
with multiple system atrophy [3]. Orthostatic symptoms in POTS often coexist with
severe GI symptoms, with nausea, abdominal pain and constipation reported in more
than 70% [29,30]. Prominent multi-segmental GI symptoms are also commonly seen in the
hypermobile Ehlers–Danlos syndrome and in the mast cell activation syndrome, which
is relevant as a differential diagnosis [16,17]. However, prevalence measures vary across
studies in all the above-mentioned disorders. While several AD etiologies are associated
with GI symptoms, studies on motility across multiple GI segments are primarily performed
in PD and DM. Thus, motility disturbances in PD and DM will gain most attention in this
review, but dysmotility findings in other diseases will be mentioned when available.

Pan-enteric dysmotility has been documented, and the abnormalities in each segment
of the GI tract are presented in Figure 1. Aperistalsis and uncoordinated contractions are
common in the esophagus [7,31]. Gastric dysmotility presents as delayed or accelerated
gastric emptying time and reduced postprandial accommodation [21,30]. Dysmotility,
prolonged transit time, and a higher prevalence of small intestinal bacterial overgrowth
(SIBO) are seen within the small intestine [32,33]. Delayed colonic transit time is frequently
seen in PD and primarily caused by a combination of slow transit constipation and anorectal
outlet obstruction [27]. Anorectal dysfunction in PD is primarily due to dystonia and
pathological contractions of the external sphincter during defecation [27]. Both colonic
hypo- and hypermotility have been shown in DM and a dysfunctional internal sphincter
combined with rectal hyposensitivity contributes to fecal incontinence [34–36].

Widespread dysmotility and varying transit times, especially prolonged gastric emp-
tying time, can make the absorption of oral medication unpredictable and reduce the
effectiveness of some drugs [3,4]. Additionally, abnormal postprandial fluctuations in
blood glucose, related to a mismatch between insulin administration and food availability
in the small intestine, may be harmful to patients with DM [21]. Postprandial hypotension,
mainly related to autonomic neuropathy, is also more frequent in patients with DM than in
healthy controls [37].

No commercially available in vivo diagnostic test of enteric neuropathy exists. Fur-
thermore, GI symptoms are generally not predictive of the objective motility dysfunction,
with objective dysmotility occurring more frequently than subjective symptoms. This neces-
sitates objective assessment to verify the extent of GI dysmotility to support the diagnosis
of enteric neuropathy and guide treatment [5–8]. However, even though a verification of GI
dysmotility in a patient with AD significantly increases the likelihood of enteric neuropathy,
some patients may have enteric neuropathy despite normal motility measurements.
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The underlying pathophysiology of AD varies across patient groups, but assess-
ment methods of the pan-enteric dysfunction are overall identical. Thus, established and
emerging methods for assessment of gut function in autonomic disorders and the most
relevant general assessment methods of autonomic neuropathy will be reviewed below.
The assessment-guided treatment approach will be described at the end of this review.
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3. Established Methods for Assessment of Gastroenteropathy
3.1. Exclusion of Differential Diagnoses

When enteric neuropathy is suspected in a patient with an autonomic disorder, the
primary approach is to exclude other plausible causes of the gastrointestinal symptoms,
such as gastrointestinal cancer, inflammatory bowel disease, exocrine pancreas insufficiency,
bile acid malabsorption, coeliac disease, and porphyria. Furthermore, it is important to
substitute medication if side effects are suspected to be the cause of GI symptoms.

3.2. Assessment of Symptoms

In spite of several scoring systems being used in the literature, no questionnaire
has been validated specifically for assessment of AD-related gastroenteropathy, except
for the GI sub-score within the Composite Autonomic Symptom Score (COMPASS-31)
questionnaire, see Section 5 [38].

The Gastroparesis Cardinal Symptom Index is a sub-score in the larger questionnaire
PAGI-SYM (patient assessment of upper gastrointestinal disorders-symptom severity in-
dex) [39]. It is a symptom severity scale assessing gastroparesis and consists of nine items
grouped into three subscales including nausea/vomiting, postprandial fullness/early sati-
ety, and bloating. The severity of each symptom is rated on a Likert scale ranging from
0 (no symptoms) to 5 (very severe symptoms), and the recall period is two weeks. The
Gastroparesis Cardinal Symptom Index is reliable, valid, and responsive to change [40,41].
However, gastroparesis can be asymptomatic and previous studies suggest that delayed
gastric emptying cannot be predicted by the severity of symptoms alone [42,43].

The Gastrointestinal Symptom Rating Scale is a well-validated, responsive, and reli-
able instrument for assessing GI symptoms. It has been used in several clinical trials mainly
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for dyspepsia and gastroesophageal reflux disease, but also in patients with DM [44–46]. It
consists of 15 items covering five symptom clusters: reflux, abdominal pain, indigestion,
diarrhea, and constipation. A 7-point Likert-type response scale is used to grade the sever-
ity of symptoms, ranging from 1 (no symptoms) to 7 (very troublesome symptoms), and
the recall period is the past week [44].

Specific constipation scoring systems have also been used in autonomic disorders. The
Cleveland Constipation Score consists of eight items, and a total score above 15 represents
constipation. Symptoms are graduated from mild to severe, which allows for monitoring
of symptom fluctuation [47]. The ROME IV criteria for constipation are commonly used to
define functional constipation and combine a detailed description of colonic and anorectal
symptoms [48]. They are, however, not directly applicable in patients with AD-related
gastroenteropathy.

The Diabetes Bowel Symptom Questionnaire is validated for assessment of GI symp-
toms, glycemic control, and quality of life in patients with DM, but has been used only
sporadically [49]. Questionnaires addressing the broad spectrum of non-motor-symptoms
in PD have been developed. These do not cover pan-enteric GI dysfunction in detail but
are useful as screening tools [27].

3.3. Tests of Esophageal Motility

Within recent years, high-resolution esophageal manometry has been the method of choice
for examining esophageal dysfunction in neurological disorders [50]. When an upper
endoscopy with biopsies does not explain the underlying cause of symptoms such as
dysphagia and regurgitation, esophageal manometry may be performed. The manom-
etry catheter contains up to 36 pressure sensors distributed 1 cm apart. These sensors
provide spatiotemporal, topographic maps of the propagating motor patterns by mea-
suring amplitudes of contractile events within the regions of interest [51]. The clinical
performance and interpretation of these data can be challenging. Therefore, when high-
resolution esophageal manometry is used to assess AD, it is normally restricted to spe-
cialized centers [52]. Esophageal motor dysfunction is present in half of all patients with
type 1 DM and dysphagia [53]. In addition, esophageal dysmotility is frequently seen
in the α-synucleinopathies, most often as generally reduced peristalsis with ineffective
swallows [31,33]. Absent or impaired esophageal activity is documented in POTS with
conventional esophageal manometry and with high-resolution esophageal manometry in
the Ehlers–Danlos Syndrome, hypermobility type [54,55].

The modified barium swallowing test can also be utilized in the diagnosis of these
disorders. This examination permits the dynamic visualization of content movements
through the upper GI system in real time with the use of videofluoroscopy [56]. The role
of the modified barium swallowing test is not limited to the diagnose of dysmotility but
can add to the understanding of the physiologic swallowing deficit, which can be useful to
maximize the benefit of swallowing therapy [57]. Unfortunately, this examination suffers
a highly variable inter- and intra-rater reliability, requires considerable resources, and is
associated to radiation exposure as well as aspiration risks [56,58]. The modified barium
swallowing test demonstrated slower initiation of airway closure in patients with PD [57].
The test is utilized in the diagnostics of esophageal dysmotility in other causes of autonomic
dysfunction as well but the literature on this area is still scarce [59].

3.4. Gastric Emptying Tests

Assessment of gastric emptying time is indicated when patients with an autonomic
disorder suffer from nausea, early satiety, lack of appetite, vomiting, postprandial pain,
unpredictable absorption of orally administered medication, or large postprandial blood
glucose fluctuations in DM. Various assessment techniques exist, and the choice of method
primarily depends on its availability at each center performing the procedure.

Gastric emptying scintigraphy is the gold standard for measuring gastric emptying time.
An ingested, standardized radiolabeled meal is followed by sequential gamma camera
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images at minimum 0, 1, 2, and 4 h after meal ingestion [60,61]. The region of interest is
drawn manually on each image, and the percentage of activity remaining in the stomach
at each time-point expresses gastric emptying [62]. The advantage of this technique is its
effective and non-invasive character that does not interfere with normal gastric motility.
However, exposure to radiation, high cost, and limited availability are major drawbacks
for all scintigraphic measurements. Scintigraphy has shown delayed or rapid gastric
emptying time in patients with DM, and delayed gastric emptying time in patients with
multiple system atrophy and PD [8,63]. In patients with POTS gastric emptying time is
more frequently rapid than delayed [64].

Gastric emptying breath test is a simple, inexpensive, non-invasive, and radiation-free
technique to measure gastric emptying time. A solid meal containing the non-radioactive
isotope 13C is ingested and rapidly absorbed when it enters the small intestine. Gastric emp-
tying is the rate-limiting step in the metabolic pathway for 13CO2; and after metabolization
in the liver, 13CO2 is exhaled through the respiratory tract, whereby the accumulation of
13CO2 in the breath samples indirectly reflects gastric emptying time [65]. Gastric emptying
time measures from the gastric emptying breath test are reproducible and correlate with
findings from gastric emptying scintigraphy in patients with DM [21,66]. The disadvantage
of this technique is the multiple steps required from ingestion to exhalation, which may
make the test less accurate. Normal lung and liver function are also a prerequisite. Patients
with multiple system atrophy have significantly prolonged gastric emptying time when
investigated with gastric emptying breath test [67]. Unfortunately, a recent meta-analysis
showed that gastric emptying time obtained with gastric emptying scintigraphy and gastric
emptying breath test correlate poorly in patients with PD, and the validity of the test is
questioned in this disease [68].

3.5. Assessment of Gastric and Small Intestinal Motility

Antropyloroduodenal manometry can distinguish abnormal from normal motility pat-
terns within the distal stomach, pylorus, and duodenum. The method is performed only
at a few and highly specialized centers and usually as a supplement to gastric emptying
tests. Specific motility patterns can be demonstrated in both fasting and postprandial states.
However, different disorders may share common dysmotility patterns. Antropyloroduode-
nal manometry is in general seen as a valuable diagnostic tool and can guide treatment in
various motility disorders [69]. The method has been used in patients with DM, but the
clinical evidence is otherwise sparse in gastroenteropathy related to AD [69,70].

Usually, water-perfused or solid-state catheters are used with pressure sensors spaced
5–10 cm in the duodenal region and 0.5–1 cm in the antral and pyloric region. The recording
period is often 6 h and includes the ingestion of a meal. However, ambulatory recording
can be performed over 24 h, which may reduce variability among individuals but increases
the risk of catheter displacement [71]. The method is reproducible and the interobserver
agreement is comparable to that of other commonly used methods [69,72]. Normative val-
ues are available [73]. However, it may be unpleasant for the patients to carry the catheter,
and expertise is needed to perform the investigations and to analyze data. Application of
the high-resolution esophageal manometry catheter in the antropyloroduodenal region
can demonstrate more detailed motility patterns than antropyloroduodenal manometry,
but these catheters are expensive and more sensitive to external noise, such as cough and
movements [74].

3.6. Tests of Small Intestinal and Colonic Transit

Assessment of small intestinal or colonic transit times is mainly indicated in patients
with abdominal bloating and pain or in patients with symptoms of constipation. It may
also be relevant in patients where symptoms of constipation or diarrhea coexist in order
to obtain information on the underlying physiology and aid the choice of treatment, see
Section 6.
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Scintigraphy is established for measuring transit times through the small bowel, colon,
and whole gut [75]. The basic principles are similar to those of gastric emptying scintig-
raphy. However, for small bowel transit time gamma images are continued for 6 h after
ingestion, and single images at 24, 48, and 72 h are used to determine colonic transit
time [62]. Only a few normative data with a wide normal range are available for small
bowel transit time and the interpretation is potentially affected by abnormal gastric or
colonic motility. Lack of standardization in clinical practice and time-consuming protocols
are drawbacks for intestinal scintigraphy in general [61]. Thus, the method has only gained
limited use in AD-related gastroenteropathies [76].

Radio-opaque markers are the most commonly used method for assessment of whole
gut transit time, which in clinical practice can be seen as an approximation of colonic
transit time. The method is simple, repeatable, well-tolerated, inexpensive, and easy to
perform. In addition, good correlation has been demonstrated for colonic transit time
measured with radio-opaque markers, Wireless Motility Capsule, and scintigraphy [77,78].
Usually, the markers are taken on a single day and visualized by an X-ray on day 5. If
quantitative data are needed, a capsule containing 10 markers is ingested on 6 consecutive
days with an abdominal X-ray on day 7 [79,80]. Estimation of segmental colonic transit
times also requires ingestion of radio-opaque markers at consecutive days, and patient
compliance has to be optimal. Other limitations are the radiation exposure and the lack of
method standardization between centers, which challenges comparison of the results [61].
Assessment with radio-opaque markers in patients with PD, multiple system atrophy and
DM showed significantly prolonged colonic transit time, especially within the left and
rectosigmoid colon [5,27,81,82].

Hydrogen and methane breath tests can quantify orocecal transit time as a combined
measure of gastric and small intestinal transit. The test is usually used as a supplement
to assessment of colonic transit time with radiopaque markers and mainly in patients
with bloating, abdominal discomfort, or diarrhea. When in contact with colonic bacteria,
ingested non-absorbable carbohydrates undergo fermentation and release gases, such as
hydrogen and methane, which are excreted through respiration within 3 min. Orocecal
transit time is defined as the time interval between oral intake of carbohydrates (often 10 g
lactulose) and a registered peak in expired gases by gas chromatography. The hydrogen
and methane breath tests are simple, non-invasive, inexpensive, and without exposure to
radiation. However, the correlation between the hydrogen breath test and scintigraphy
is variable [83,84]. In addition, several other sources of error exist. The natural osmotic
activity of lactulose potentially accelerates small intestinal transit and decelerates gastric
emptying. The presence of SIBO may complicate the interpretation of orocecal transit
time [61]. In both DM and PD, orocecal transit time was significantly prolonged compared
with healthy controls when using the hydrogen breath test [85,86].

3.7. Assessment of Small Intestinal Bacterial Overgrowth

Patients with intestinal dysmotility, and among these patients with AD-related gas-
troenteropathy, are predisposed to SIBO [24,87]. The prevalence of SIBO depends on the
choice of diagnostic method [32,88]. Assessment of this condition is primarily needed
when abdominal discomfort, bloating, and diarrhea are present in patients with AD. The
most valid method for diagnosing SIBO is a luminal, jejunal aspirate for culture retrieved
by endoscopy, but this method is invasive, subject to contamination, and may underes-
timate the intraluminal amount of microbiota. In addition to their use for assessment of
orocecal transit time, hydrogen and methane breath tests are frequently used as an indirect
and non-invasive method to detect SIBO. When SIBO is present, an early peak of expired
hydrogen or methane gas is recognized due to fermentation within the small intestine [32].
A North American consensus provides a practical guide to a standardized performance
and interpretation of breath tests, and these tests are widely used in clinical practice [89].
However, recent studies have questioned the utility of breath tests for diagnosing SIBO [90].
Simultaneously performed scintigraphy and breath test showed that rapid orocecal transit
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time and hereby early colonic fermentation with production of hydrogen or methane gas
could erroneously be interpreted as SIBO [91]. Jejunal aspirates for culture did not correlate
well with the breath test, and in general methods for diagnosing SIBO lack sensitivity,
specificity, reproducibility, and standardization [90].

3.8. Tests of Anorectal Motility

High-resolution anorectal manometry and high-definition anorectal manometry are increas-
ingly used in clinical practice to evaluate continence and regulation of defecation, primarily
in patients with either difficult evacuation of stools or fecal incontinence who do not
respond to standard treatment modalities [92]. A consensus guideline for standardiza-
tion of the methods was recently published [93]. Compared with conventional manom-
etry, additional pressure sensors are closely incorporated within either a solid-state or a
water-perfused catheter (often ≥8 sensors). A high-definition rigid catheter containing
256 pressure sensors arranged in a circumferential grid has also been developed [92,94].
In combination with anorectal sensibility tests or other diagnostic investigations, contrac-
tions in the distal rectum and anal canal in response to various stimuli may establish a
diagnosis and direct different treatment modalities [93]. Normative values based on large
datasets exist for both high-resolution and high-definition anorectal manometry [95,96].
Limitations to both techniques are their fragility and costs. Moreover, data analysis is chal-
lenging, limiting their use to investigation at specialized centers. High-resolution anorectal
manometry has been used to evaluate anorectal dysfunction in PD, especially revealing
dystonic contractions in the external anal sphincter as a pathophysiological mechanism
for unsuccessful attempts of defecation [97,98]. Reduced anorectal sensibility and internal
sphincter dysfunction contribute to fecal incontinence in patients with DM [35].

3.9. Whole Gut Assessment

When pan-enteric dysmotility is suspected, often due to combined upper and lower
GI symptoms, the Wireless Motility Capsule (Smartpill Monitoring System; Medtronic) is
considered the method of choice. An ingested capsule measures pH, intraluminal pressure,
and temperature while it passes through the GI tract and transmits this information to
a wireless receiver [99]. Accurate measures of the total and regional transit times are
provided by using specific pH changes as a surrogate for GI physiological landmarks and
temperature to verify expulsion, as seen in Figure 2 [36,99]. The advantages of this test
are the availability of substantive normative data and its ambulatory, non-invasive, and
radiation-free character [100,101]. Results from the wireless motility capsule correlate with
established methods for measuring regional and whole gut transit times [102–104]. Lack
of information on segmental colonic transit times is a drawback for the wireless motility
capsule investigation. In addition, it only provides information on localized intestinal
pressure changes rather than detecting a peristaltic wave, whereas external noise, such as a
cough and body movements, can be misinterpreted as bowel movements. The SmartBar,
ingested along with the wireless motility capsule, has a high sugar content, which may
induce hyperglycemia and by this a slower gastric emptying in patients with DM [105].
Evidence suggests multi-segmental dysmotility in the GI system of both patients with
POTS and DM, and a recent study showed that test results led to treatment changes in
73% of patients with DM [6,106]. In patients with PD, multi-segmental delayed transit
times determined by the wireless motility capsule can also guide treatment [107]. Hence,
evaluation of the entire GI tract with only one examination seems like a reasonable choice
in AD-related gastroenteropathy [6,36,108].

Pan-enteric assessment methods, such as the wireless motility capsule, are not widely
available. Thus, the initial assessment of motility-disturbances is commonly performed by
combining a gastric emptying test (for example the gastric emptying scintigraphy), a breath
test for SIBO (for example the hydrogen and methane breath tests) and a test of colonic
transit time (for example the radio-opaque markers). Furthermore, guided by symptoms
and objective motility findings, it may be relevant to perform one of the mentioned mano-
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metric investigations. The influence of the assessment methods on management will be
reviewed briefly in Section 6.
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4. Emerging Methods for Assessment of Gastroenteropathy
4.1. Whole Gut Assessment

The electromagnetic 3D-Transit system (3D-Transit, Motilis Medica SA, Lausanne,
Switzerland) is an ambulatory, minimally invasive, and capsule-based technique, which
presents similarities to the wireless motility capsule by providing information on regional
and whole gut transit times. As the only available technique, the 3D-Transit system can also
be used to assess segmental colonic transit times and simultaneously provide a detailed
assessment of contraction patterns in a precise anatomical location [109]. A detector plate
worn in a belt around the abdomen detects the electromagnetic field emitted by an ingested
electromagnetic capsule. The electromagnetic field is converted into space-time coordi-
nates, with three spatial coordinates (x, y, and z) representing the three-dimensional capsule
position within the GI system, and two orientational coordinates (φ, θ) representing the
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angular rotation of the capsule in two directions. An accelerometer within the detector
plate and a thoracic belt detect postural changes and breathing artefacts to be filtered
out in the data analysis [109,110]. Propagation of luminal content within the GI tract is
expressed by the change in orientation of the capsules and capsule movement velocity.
The characteristic contraction frequency in each GI segment is determined by angular
rotations of the capsule providing information about anatomical landmarks [111,112]. The
3D-Transit system can track three capsules simultaneously without interference, and the
measures of transit times are found to be valid, reproducible, and comparable to transit
times measured with radio-opaque markers [110]. Normative data on healthy subjects are
available and comparable to normative data on transit times from the wireless motility
capsule [100,113,114]. The main drawbacks of using this pan-enteric, diagnostic tool is the
time-consuming and challenging data analysis, no CE-marking, and no availability outside
research settings [112].

3D-Transit has been applied to assess transit times and contraction patterns in various
GI disorders and among these in patients with gastroenteropathy related to AD [112].
Patients with type 1 DM are shown to have prolonged gastric emptying time, colonic
transit time, and whole gut transit time mainly due to an increased number of retrograde
movements within the right colon [115]. Furthermore, widespread prolonged transit
times, especially through the small intestine and right colon, and fewer antegrade mass
movements have been found in PD [116].

4.2. Tests of Colorectal Contractions

High-resolution colonic manometry provides the most precise and detailed description
of motor patterns within the colon and has essentially contributed to the understanding
of normal colonic physiology [117]. The catheters used are either water-perfused, solid-
state, or fiber-optic, with sensors spaced 1–3 cm apart to increase the resolution. The
contractile activity is presented by spatiotemporal, color-graded, typographical maps,
which allows detection of pressure amplitudes and movements in both antegrade and
retrograde directions [118]. On the other hand, high-resolution colonic manometry is time-
consuming and lacks standardization in respect to the type of catheter, number of sensors,
distance between sensors, composition of ingested meals, use of anesthetics, and length
of measurements. The technique involves colonoscopy for placement of the catheter and
therefore a need for bowel preparation, which can affect colonic motor activity [118]. Data
analysis requires an experienced investigator. However, a recently published consensus
statement labelling colonic motor activity provides a common ground for future data
analysis [119]. High-resolution colonic manometry is still primarily used for research but
is a promising clinical tool for assessment of colonic motor activity, also in patients with
gastroenteropathy and AD.

4.3. Imaging
4.3.1. Computed Tomography (CT)

In clinical practice, X-ray is the standard test to identify severe fecal retention, but an
objective volume estimation technique to be used as a surrogate for the colonic function is
lacking. Due to the increased prevalence of constipation in autonomic disorders, combined
with alterations in the intestinal tissue, organ sizes may change [5,120,121].

A recent study defined the colonic and small intestinal volumes from CT scans in
patients with type 1 DM, finding an increased volume [122]. Additionally, an increased
intestinal volume was seen in the transverse colonic and rectosigmoid segments of patients
with PD, representing the combination of slow transit constipation and outlet obstruc-
tion [5]. CT scans are widely available in all hospitals and often performed in clinical
practice. However, ionizing radiation used in CT scans limits their use, especially in pe-
diatric patients and pregnant women [123]. The data analysis in CT-extracted intestinal
volumes is time-consuming and currently not applicable in a clinical setting. Colonic
volumes from a CT scan are presented in Figure 3.
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4.3.2. Ultrasound Imaging

Ultrasound imaging is a useful radiation-free option for showing various diameters of
the gut. However, the limitations of ultrasound imaging include difficulty in examining the
deep abdominal loops, and a skilled radiologist is needed to obtain a sufficient result [123].
Ultrasound imaging is only sparsely used in gastroenteropathy related to AD [124].

4.3.3. Magnetic Resonance Imaging (MRI)

Visualization of the GI tract with MRI has advanced significantly during the past
decade. MRI techniques provide morpho-functional information while being feasible and
non-invasive [125,126]. MRI has been applied in patients with DM or PD, primarily for
assessment of gastric motility [127–130]. At present, MRI holds promise for assessment of
gastric function in terms of accommodation, motility indexes, gastric emptying velocity, and
volumetric strain, while simultaneously describing the anatomy of the organ [127,131,132].
Gastric contraction waves and measurement of gastric volume obtained with MRI are seen
in Figure 4. The small intestine is an especially challenging organ for imaging methods.
However, MRI allows imaging of the small bowel wall, small intestinal lumen, and the
surroundings in one scan without ionizing radiation. Enteral contrast agents can be added
for better delineation of the intestinal wall [123]. Furthermore, colonic and rectosigmoid
volumes can be assessed.

While promising, MRI examinations of GI volumes are not yet used in clinical practice
because they are relatively expensive and require highly trained examiners.
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4.3.4. 11C-Donepezil Positron Emission Tomography/Computed Tomography (PET/CT)
11C-donepezil PET/CT scan visualizes the cholinergic innervation of the GI tract

in vivo and may potentially fill the need for a future method to assess the severity of
GI autonomic neuropathy [33]. The radioactive tracer (11C-donepezil) is injected, and
standardized uptake values in the internal organs are recorded. The scan is performed
without bowel preparation in near-normal conditions. The validity of this imaging method
to detect intestinal parasympathetic denervation is confirmed by a significantly decreased
11C-donepezil intestinal signal in patients after truncal vagotomy [133]. Patients with
early PD have a significant signal loss of 11C-donepezil within the intestine as the result of
cholinergic denervation [134]. This intestinal denervation corresponds well with the degree
of α-synuclein in parasympathetic neurons in PD [33,135]. Parasympathetic intestinal
denervation indicated by reduced 11C-donepezil uptake is also found in patients with
DM [122]. This is presented in Figure 5. The disadvantages of the method are that it is only
performed in very few centers and requires comprehensive data analysis.
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4.4. Gut Biopsies

Another way to diagnose GI autonomic neuropathy is to analyze intestinal biopsies.
The optimal way to quantify enteric neurons is by obtaining whole-mount preparations to
visualize both the submucosal plexus and the myenteric plexus by immunohistochemical
neuronal markers [136]. Furthermore, it is possible to analyze the density of enteric neurons
in formalin-fixed, paraffin-embedded biopsies, but the validity of this method remains
debated. This is partly due to a lack of normative data and standardized quantitative meth-
ods for counting the neurons and the absence of a clear-cut definition of a ganglion [137].
Another limitation is that neurons are almost entirely drawn from the submucosa, unless
full-wall biopsies are taken. Neurons of the enteric nervous system can partly be visualized
by light microscope when stained with neuronal markers like neuron-specific enolase
and synaptophysin. In addition, mast cells and ICC in enteric biopsies can be visualized
and counted microscopically by staining with C-kit/CD117 [16,138] A new approach is
non-invasive mapping of full-thickness segments of the gut and identification and quan-
tification of ganglia of the enteric nervous system by a technique named optical coherence
microscopy [139].

In a recent study, jejunal full-thickness biopsies were collected from patients suffering
from severe gut dysmotility, either by laparoscopy or by conventional abdominal laparo-
tomy. By quantifying the inter-ganglionic distance between neighboring myenteric ganglia
and the number of neurons per ganglion in the myenteric and submucosal plexus, the
authors showed that patients with enteric dysmotility had significantly fewer myenteric
and submucosal neurons [140]. The methodology has been refined, and a new technique
has utilized the evaluation of standard submucosal biopsies. The submucosa is micro-
dissected and fixed for later immunofluorescence staining to characterize the morphometry
of the plexus and the enteric glial cell. Immunohistochemically, the neurons of the en-
teric nervous system are visualized by a light microscope using standard protocols of
staining [138]. Similarly, mucosal biopsies from the stomach of patients with DM have
been used for quantifying gastric mucosal nerve fiber length and volume density [141].
Finally, α-synucleinopathies immunostaining of colonic submucosal biopsies has shown
aggregation of α-synuclein in the enteric nervous system and holds promise as an early
diagnostic marker for PD [24,142].

Taken together, several newly established techniques have been developed in which
the submucosa and related plexuses are isolated from the mucosa in endoscopically ob-
tained surface biopsies and can be used to evaluate the enteric nervous system in health
and disease [143,144]. At present, the methods are almost entirely for research purposes. A
morphological analysis of a submucosal biopsy is presented in Figure 6.
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4.5. Assessment of the Human Gut Microbiota

The human gut microbiota consists of trillions of symbiotic bacterial, viral, and fungal
microorganisms [145]. New techniques for assessment of the human gut microbiome
have facilitated large-scale analysis of the microbial community. Genetic analysis is based
on sequence divergences of small subunit ribosomal RNA (16S rRNA). It can provide
information on microbial diversity, qualitative and quantitative information on bacterial
species, and changes in gut microbiota related to disease [146].

Studies have demonstrated that gut microbiota participate in many aspects of human
physiology including the development of the immune system, energy metabolism, and
activity of the nervous system [147]. Neurological diseases such as PD present a different
gut microbiota composition than encountered in healthy controls [148,149]. Studies show
an association between PD and the abundance of certain microbiota. However, it is not
yet known whether it is the microbiota or the microbiota-derived metabolites that has an
impact on the disease [150]. Microbial metabolites such as short chain fatty acids, which
are considered neuro-reactive, are produced by the microbiota, and may enter the systemic
circulation. Studies have shown that PD patients have lower levels of fecal short chain fatty
acids, which may have a protective effect against the development of PD [151]. Further
studies are required to determine the role between the presence or absence of specific
microbiota and microbiota-derived metabolites.

Patients with type 1 DM have a less diverse and less stable gut microbiome than
healthy controls [152,153]. Findings have not been conclusive, but most studies have found
reduced diversity of the intestinal bacterial community and an increased proportion of
Bacteroides [154]. Studies have also focused on the intestinal epithelial barrier which
prevents food antigens and bacteria from leaving the gut lumen and entering the body
leading to a systemic immune response. Disruption and increased permeability of the
intestinal barrier have been shown in intestinal autoimmune diseases as well as type
1 DM [155,156]. Preclinical studies support the hypothesis that specific features of the
microbiota give rise to impaired intestinal permeability [157], which further influences
T cell autoimmunity and B-lymphocytes. This may lead to beta-cell destruction and
type 1 DM. However, it has not been confirmed whether alterations in gut microbiota
and increased gut permeability are causally related to the pathophysiology or merely a
consequence of disease.

Microbiome analysis on the human gut microbiota has significantly improved our
knowledge of gut microbiota composition and diversity. An understanding of the human
gut microbial diversity in different types of disorders might provide insight into the clinical
application in diagnosis and treatments of disease. However, a significant association
between microbial patterns and disease initiation or progression has yet to be unveiled.

The above mentioned established and emerging methods for assessment of gut func-
tion are summarized in Table 1.
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Table 1. Established and emerging methods for assessment of gastroenteropathy in autonomic disorders.

Investigation Measurement Primary Dysmotility Parameters Advantages/Limitations

Minimally
invasive

Radiation
free Standardized Inexpensive High

Availability
Ambulatory
assessment

Simple data
analysis

High
reliability

Established Assessment Methods

Esophageal manometry Esophageal contractility patterns Reduced peristalsis and
uncoordinated contractions No Yes Yes No No No No Yes

Gastric emptying scintigraphy Gastric emptying time Delayed gastric emptying time Yes No Yes No Yes No No Yes
13C-octanoic acid breath test Gastric emptying time Delayed gastric emptying time Yes Yes Yes Yes No No Yes No

Antropyloroduodenal
manometry

Antropyloroduodenal contractility
patterns

Postprandial antral hypomotility and
duodenal dysmotility in diabetes No Yes No No No No/Yes No Yes

Intestinal scintigraphy Small intestinal and colonic
transit times Prolonged intestinal transit times Yes No No No No No No Yes

Radio-opaque markers Small intestinal and colonic
transit times

Prolonged whole gut and regional
transit times Yes No No Yes Yes Yes Yes No

Hydrogen and methane
breath test

Orocecal transit time and detection of
small intestinal bacterial overgrowth

Prolonged orocecal transit time and
increased frequency of small intestinal

bacterial overgrowth
Yes Yes Yes Yes Yes No Yes No

Anorectal manometry Anorectal contractility patterns

1. Dystonic external anal sphincter during
defecation in Parkinson’s disease

2. Dysfunction of the internal anal
sphincter in diabetes

3. Recto-anal dyscoordination

Yes Yes No No No No No Yes

Wireless motility capsule 1. Whole gut and regional transit times
2. Motility patterns

Delayed whole gut- and regional
transit times Yes Yes Yes No No Yes Yes Yes

Emerging Assessment Methods

Colonic Manometry Colonic contractility patterns Colonic dysmotility No Yes No No No No No Yes

3D-Transit capsule Whole gut and regional transit times Delayed whole gut- and regional
transit times Yes Yes No No No Yes No Yes

Computed tomography imaging Small intestinal and colonic volume Increased colonic volume Yes No No Yes Yes No No Yes

Magnetic resonance imaging
1. Whole gut and regional transit times

2. Whole gut contractility
3. Organ volumes

Delayed gastric emptying and increased
intestinal volume Yes Yes No No Yes No No Yes

11C-donepezil positron emission
tomography/computed

tomography imaging
Whole gut cholinergic innervation Intestinal parasympathetic denervation Yes No No No No No No Yes

Submucosal biopsies Quantification of
enteric neurons

1. Reduced number of neurons in diabetes
2. Aggregation of

α-synuclein in Parkinson’s disease
No Yes No No No No No No

Microbiota Gut microbiota
composition

1. Less stable and diverse in diabetes
2. Altered in Parkinson’s disease Yes Yes No No No Yes No No
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5. Assessment of Autonomic Neuropathy Outside the Gut

Since no commercially available in-vivo diagnostic test of enteric neuropathy exists
and the described tests of GI physiological function all have significant limitations, some
patients with symptoms of autonomic GI dysfunction may benefit from assessment of
extraintestinal autonomic function in support of a diagnosis.

Diagnostic tests of cardiac autonomic neuropathy may serve as a surrogate for auto-
nomic neuropathy within the GI system, but associations between autonomic neuropathy
in the two different visceral systems remain incompletely understood. Reduced heart rate
variability is associated with hyposensitivity of the esophagus and with hyposensitivity
and stretch of the rectum in patients with DM [34,124,158]. However, results are ambiguous
regarding associations between GI transit times and cardiac derived autonomic parameters
such as heart rate variability or cardiac vagal tone [46]. Cardiac parasympathetic dysfunc-
tion can be verified by demonstrating decreased heart rate variability during rest, deep
breathing, and the Valsalva maneuver [159]. Heart rate changes to deep breathing are simple
to perform and have the highest specificity with vagal afferents and efferents mediating
the response [160]. The efferent cardiovascular adrenergic function can be assessed by
looking at blood pressure changes during the Valsalva maneuver, during orthostatic stress
(active standing or tilt table testing), in response to isometric exercise, and a cold pressor
test [161–163]. Twenty-four hour blood pressure measurement may detect non-dipping
or reverse dipping conditions and postprandial hypotension. The prognostic role of non-
dipping and reverse dipping is well-documented, but associations with GI function are
unknown [164,165].

Further autonomic testing may be relevant in some patients to recognize AD. A
commonly used questionnaire is the COMPASS-31, consisting of 31 questions formed into
six symptom domains [38], which may be helpful to screen for AD-related symptoms and
add to the assessment of GI autonomic impairment. Autonomic symptoms reflect the
organ or function that is affected; however, in general, they are unspecific and will often
require objective assessment with various tests [20,166–168]. Additionally, The Quantitative
Sweat Measurement System (Q-Sweat) evaluates the postganglionic sympathetic cholinergic
sudomotor function in the upper and lower extremities by measuring sweat collections
in response to locally administered acetylcholine [169]. In combination with skin biopsies
and quantitative sensory testing, the Q-Sweat contributes to the diagnosis of small-fiber
polyneuropathy [14]. Normal values are based on published normative data [160]. Serum
pancreatic polypeptide is an indirect measure of vagal influence on the GI tract [170,171],
but its utility remains to be determined [172].

With no available standard diagnostic test of pan-enteric autonomic neuropathy,
extraintestinal autonomic neuropathy may be used as proxy in clinical practice to verify
AD outside the GI tract. However, acknowledgement of subjective GI symptoms and
assessment of the physiological function of each GI segment remains the primary focus to
aid diagnostics and guide treatment in patients with GI symptoms and suspected AD.

6. Assessment-Guided Treatment

Management of AD-related gastroenteropathy is challenging and treatment response
is often unsatisfactory. The poor correlation between GI symptoms and objective findings
underlines the need for objective measures to guide treatment.

The risk of malnutrition, electrolyte disturbances, weight loss, and dehydration is
increased in patients with gastroparesis and enteropathy. Small and soft meals, preferably
low in fat and fiber content, are recommended to ease gastric emptying and optimize the
intestinal nutritional uptake in patients with gastroparesis or constipation [173]. Contrary,
an increased fiber intake is shown to reduce symptoms of constipation and optimize
medication absorption in PD [174]. To preserve a sufficient nutritional state, a feeding tube
may be necessary for selected patients with weight loss.

Improvement of glycemic control and variability is important in patients with DM to
reduce the risk of dysmotility due to hyper- or hypoglycemia. Continuous subcutaneous
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insulin infusion, and by this an optimized glycemic regulation, may diminish GI symptoms;
however, the magnitude of this effect is uncertain [175].

Pharmacologic treatment with prokinetic drugs is widely used when upper GI symp-
toms combined with an objectively measured delayed GE or prolonged intestinal transit
times are detected. The dopamine receptor antagonists (metoclopramide and domperi-
done), the motilin receptor agonist (erythromycin), and the selective 5-HT4 receptor agonist
(prucalopride) are commonly used in clinical practice [176]. However, prokinetic treat-
ment has major limitations, especially the risk of extrapyramidal side effects including
potentially irreversible tardive dyskinesia (metoclopramide), drug-induced arrhythmias
(domperidone), and lack of evidence for long-term effectiveness [177,178]. In addition,
metoclopramide is contraindicated in PD due to its extrapyramidal side effects [24]. Ghrelin
receptor agonists (relamorelin and ulimorelin) may be a future treatment of gastropare-
sis, but solid evidence remains absent [175]. Immunotherapy in autoimmune autonomic
ganglionopathy which can comprise gastroparesis is well indicated [179].

In medical refractory cases of gastroparesis, gastric electrical stimulation is the most
used surgical option, but disagreement in randomized studies remains. Especially in
diabetic gastroparesis, studies have shown significant symptom relief, maintained for over
10 years, and a reduction in days of hospitalization [180,181]. Other surgical interventions
used for treating dysmotility within the upper GI tract comprise pyloric botulinum toxin
injection, pyloroplasty, pyloromyotomy, gastrectomy, and gastric per-oral endoscopic my-
otomy (G-POEM). In general, surgical interventions rest on poor evidence, and patients
should be carefully selected. A non-invasive neuromodulation technique, called transcu-
taneous vagus nerve stimulation, is investigated as a potential add-on treatment of GI
symptoms in patients with DM and AD [182].

When SIBO is objectively verified, patients are treated with antibiotics to eradicate
bacterial overgrowth, which provides significant symptom relief and enhances medication
absorption. Either non-systemic antibiotics (rifaximin) or systemic antibiotics (ciprofloxacin
or metronidazole) can be used [32]. However, the predisposing motility disturbance causes
frequent recurrence [183]. The anti-diarrheal, peripherally acting u-opioid receptor agonist,
loperamide, reduces intestinal peristalsis and can be effective in treating diarrhea and
fecal incontinence. Moreover, octreotide, ondansetron, and bile-binding resins are used in
selected patients with severe diarrhea [184]. When paralytic ileus occurs, neostigmine may
be used in selected cases.

Prolonged colonic transit time indicates treatment with oral laxatives or suppositories
following the general guidelines of treating chronic constipation [24]. If ordinary treatment
fails, this may be combined with prucalopride due to its additional prokinetic effects [176].
When constipation coexists with abdominal pain and autonomic neuropathy, simple and
adjuvant analgesics such as tricyclic antidepressants may be attempted. The balance
between the relatively low analgesic effect and the frequent side effects must always be
considered. The cholinesterase-inhibitor pyridostigmine is frequently used in patients with
combined orthostatic hypotension and constipation [18]. Patients with comorbid mast cell
activation syndrome may achieve symptomatic improvement when treated with mast cell
stabilizers, such as anti-histamine and cromolyn sodium [16].

When obstructed defecation is verified with anorectal manometry, it is usually treated
with rectal suppositories or mini-enema. Confirmed dyssynergic defecation in PD may be
treated with injections of botulinum neurotoxin [24].

7. Conclusions

Pan-enteric dysmotility is common in patients with AD despite variation in the
underlying pathophysiological changes within the nervous system. With no available
standard method for direct assessment of GI autonomic neuropathy, the primary diagnostic
approach is physiological, multi-segmental motility testing, and in some patients additional
generalized tests of autonomic neuropathy.



J. Clin. Med. 2021, 10, 1392 18 of 25

Established assessment methods are commercially available for investigation of transit
times throughout the entire GI tract and for contraction patterns in the esophageal, gas-
troduodenal, and anal regions. As the only commercially available method, the wireless
motility capsule provides pan-enteric transit times and pressure patterns in one investiga-
tion. However, the established methods all present limitations, especially with regards to
radiation exposure, lack of standardization, need for multiple tests to evaluate the entire GI
tract, and a complicated practical performance or data interpretation, which may restrict
the use to specialized centers.

Within recent years, several emerging assessment methods have been developed, po-
tentially overcoming some of the above limitations and definitely providing more detailed
knowledge on contractility patterns within specific GI segments. The 3D-Transit system,
CT scans, and MRI scans hold promise for a multi-segmental and detailed evaluation of
the whole GI tract within a single investigation. In the future, the diagnosis of enteric auto-
nomic neuropathy may be established with 11C-donepezil PET/CT scans or gut biopsies.
Optimized future diagnostic tools and improved knowledge on motility disturbances in
gastroenteropathy related to AD will hopefully improve the treatment of these severely
ill patients.
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