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Abstract: Anti-VEGF therapy is considered to be a useful therapeutic approach in many tumors,
but the low efficacy and drug resistance limit its therapeutic potential and promote tumor growth
through alternative mechanisms. We reanalyzed the gene expression data of xenografts of tumors
of bevacizumab-resistant glioblastoma multiforme (GBM) patients, using bioinformatics tools, to
understand the molecular mechanisms of this resistance. An analysis of the gene set data from three
generations of xenografts, identified as 646, 873 and 1220, differentially expressed genes (DEGs)
in the first, fourth and ninth generations, respectively, of the anti-VEGF-resistant GBM cells. Gene
Ontology (GO) and pathway enrichment analyses demonstrated that the DEGs were significantly
enriched in biological processes such as angiogenesis, cell proliferation, cell migration, and apoptosis.
The protein–protein interaction network and module analysis revealed 21 hub genes, which were
enriched in cancer pathways, the cell cycle, the HIF1 signaling pathway, and microRNAs in cancer.
The VEGF pathway analysis revealed nine upregulated (IL6, EGFR, VEGFA, SRC, CXCL8, PTGS2,
IDH1, APP, and SQSTM1) and five downregulated hub genes (POLR2H, RPS3, UBA52, CCNB1,
and UBE2C) linked with several of the VEGF signaling pathway components. The survival analysis
showed that three upregulated hub genes (CXCL8, VEGFA, and IDH1) were associated with poor
survival. The results predict that these hub genes associated with the GBM resistance to bevacizumab
may be potential therapeutic targets or can be biomarkers of the anti-VEGF resistance of GBM.

Keywords: vascular endothelial growth factor; glioblastoma; angiogenesis; anti-VEGF therapy; drug
resistance; differentially expressed genes

1. Introduction

The formation of new blood vessels from existing vessel in the postnatal life, referred
to as angiogenesis, is an important process in both physiological and pathological con-
ditions. It is a tightly regulated process involving the interplay of a number of pro- and
antiangiogenic factors. Dysregulation of the balance between these factors leads to excess
or inhibited angiogenesis, contributing to different pathological conditions [1–3]. Tumors
cannot grow beyond a certain size unless they are vascularized to supply oxygen and
much-needed nutrients for their growth. Angiogenic growth factors, such as Vascular
Endothelial Growth Factor (VEGF), Fibroblast Growth Factor (FGF), Transforming Growth
Factor (TGF), and Epidermal Growth Factor (EGF) [4], play an important role in promoting
tumor angiogenesis and growth. Among them, VEGF is the key endothelial cell-specific
mediator of angiogenesis. It induces angiogenesis by increasing the endothelial perme-
ability, Endothelial cell (EC) proliferation, migration, survival, cell–cell contact and lumen
formation. VEGF exerts its effects through binding with the cell surface receptors, a family
of trans-membrane tyrosine kinase receptors. Its interaction with the receptor on the cell
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surface triggers the activation of intracellular signaling pathways and expression of a
number of genes that modulate different cellular events critical to angiogenesis [5,6]. Since
tumor angiogenesis is vital for growth, targeting it is considered a potential therapeutic
strategy to inhibit tumor growth and development [1,7].

Bevacizumab, a humanized immunoglobulin G1 (IgG1) monoclonal antibody that
selectively binds with a high affinity to human VEGF and neutralizes its biological activity,
is one such anticancer agent [8]. The mechanisms of such anticancer effects include the
direct inhibition of tumor-associated angiogenesis. However, recently, it has been noted
that tumors develop a resistance to such anti-VEGF therapy and form capillaries, appar-
ently through some alternative mechanism. This may be due to the activation of other
pathways that have a proper connection with the downstream signaling of VEGF-mediated
angiogenesis [9,10].

Glioblastoma is a common type of aggressive malignant brain tumor in adults charac-
terized by histopathologic features involving necrosis and endothelial proliferation. These
tumors arising from glial cells may be grouped as (i) grade I—pilocytic astrocytomas,
pleomorphic xantho astrocytomas, and subependymal giant cell astrocytomas; (ii) grade
II—oligodendrogliomas and astrocytomas; (iii) grade III—anaplastic oligodendrogliomas,
anaplastic astrocytomas, anaplastic oligoastrocytomas, anaplastic ependymomas; and (iv)
grade IV—the glioblastoma multiforme (GBM) [11]. Even though enormous therapies have
been developed, the survival rate of GBM patients has not remarkably changed, and the
five-year survival rate is 5.1% [12].

GBM is associated with excessive and aberrant angiogenesis, and it is characterized
by rapid angiogenesis-dependent (re)growth, cell heterogeneity and extensive local tissue
infiltration. With regard to treatment strategies, radiotherapy becomes ineffective, since
GBM infiltrates the surrounding tissues and its complete resection is impossible. Further,
the blood–brain barrier makes treatment more difficult and tumor cells found in the
areas of hypoxia are resistant to radiotherapy. Bevacizumab, apart from inhibiting tumor
angiogenesis by blocking VEGF, caused a disruption of the glioma stem cell microvascular
niche and improved vascular normalization. However, glioma is quite often refractory to
anti-VEGF therapy, and the molecular mechanisms underlying the development of drug
resistance in GBM patients are not well-understood.

In recent years, high-throughput approaches have been developed to capture differen-
tially expressed genes in various conditions, including drug resistance. Microarray-based
gene expression profiling and sequence-based techniques like the RNA-seq analysis pro-
vide useful information about the differentially expressed genes, key pathways and the
signature genes with respect to different conditions. Most of these datasets are now pub-
licly available. Therefore, gene expression data-based computational approaches can be
employed to characterize the genetic alterations at the genome level, which helps to identify
differentially expressed genes and their possible physiological or pathological relevance.
In the present study, the computational approach of expression data analysis is employed
for identifying the potential genes responsible for the resistance to anti-VEGF therapy
in glioblastoma. A number of studies have been conducted to examine the gene expres-
sion profiles of GBM patients compared with healthy controls and are made available
in databases like the NCBI-GEO (National Centre for Biotechnology Information-Gene
Expression Omnibus Database).

In this study, we analyzed the microarray datasets downloaded from the NCBI-GEO
database of glioblastoma xenografts that developed a resistance against bevacizumab treat-
ment and compared them with glioblastoma xenografts without bevacizumab treatment
to examine whether the gene expression differed during the development of resistance to
anti-VEGF therapy. Orthologous xenograft models are suitable to study GBM formation,
progression, and investigation for potential therapeutics [13]. The data from three gener-
ations of glioblastoma xenografts were used to examine the changes in gene expression
relating to tumor growth and angiogenesis in bevacizumab resistance tumors and, also,
to understand whether the changes were similar, different or further changes occur as the
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tumor progresses, sustaining the resistance to therapy. The DEGs (differentially expressed
genes) were identified from bevacizumab-treated and untreated samples. Analyses of Gene
Ontology (GO) enrichment, protein–protein interaction (PPI) network, Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway of DEG, and survival helped screen hub genes
and their possible involvement in anti-VEGF resistance in GBM.

2. Materials and Methods
2.1. Microarray Data Collection and Processing

The Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) [14]
is a widely used public repository for retrieving functional genomics data comprising
high-throughput gene expression data, chips, and microarrays. The gene expression
profile, which is based on the GPL10558 platform (Illumina HumanHT-12 V4.0 expression
bead chip, San Diego, CA, USA), deposited under accession number GSE81465 [11] was
downloaded from GEO database. The data contained a total of 12 samples, including
3 independent biological replicates with control (IgG) treatments and 9 samples with
drug treatments (bevacizumab), which in turn, were comprised of three independent
biological replicates from three separate generations of xenografts. After getting the data,
probe symbols were converted into the corresponding gene symbols using the annotation
information in the platform.

2.2. Differential Expression Analysis and Identification of DEGs

DEGs of samples under various experimental conditions were screened using GEO2R
(http://www.ncbi.nlm.nih.gov/geo/geo2r), a user-friendly web tool that allows users to
compare two or more datasets in a GEO series. Probe sets without corresponding gene
symbols were eliminated, and genes with more than one probe were averaged. Differential
expression was analyzed separately by fixing the parameters as the default. The data with
logFC (fold change) >1 and logFC (fold change) <-1 were selected as DEGs and opted for
network construction. Further Bioinformatics and Evolutionary Genomics Venn diagram
tool (http://bioinformatics.psb.ugent.be/webtools/Venn/) was used to draw the Venn
diagrams of up- and downregulated genes to compare the DEGs.

2.3. GO and Pathway Functional Enrichment Analyses

GO enrichment and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway
analysis of selected DEGs were conducted using the DAVID tool (Database for Annotation,
Visualization and Integrated Discovery (david.ncifcrf.gov)) [15]. Gene Ontology analysis
included three categories: molecular function, biological processes, and cellular component.
For statistical analysis, a t-test (ANOVA) was done as the default setting. In the pathway
functional analysis, genes were mapped to KEGG pathways, and p-value < 0.05 and count
> 2 were set as the thresholds.

2.4. PPI Network Construction and Module Functional Analysis

The protein–protein interaction network was constructed using the STRING (Search
Tool for the Retrieval of Interacting Genes; http://string-db.org) (version 10.0) [16] on-
line database. PPI network of upregulated and downregulated DEGs constructed using
STRING with a confidence score > 0.4 were considered statistically significant. The data
were then imported into Cytoscape (version 3.7.1) [17] to visualize the protein interaction
network. For identifying subgroups of genes sharing similar expression patterns across
multiple conditions, module analysis was carried out [18]. From the PPI network, signif-
icant modules were extracted for analyzing interaction relationships of the DEGs using
MCODE of Cytoscape [19], with default thresholds, which include a degree cut-off: 2, node
score cut-off: 0.2, k-core: 2, and max depth: 100.

https://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/geo2r
http://bioinformatics.psb.ugent.be/webtools/Venn/
david.ncifcrf.gov
http://string-db.org
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2.5. Identification of Hub Genes

Hub genes are genes with high connectivity. Hybrid centrality measure (HCM)
was used to identify the hub genes. It included the centrality scores degree, closeness,
betweenness, and mean degree of other interacted genes to calculate the HCM. The genes
that gave the highest HCM scores were considered as hub genes, as indicated below:

Hybrid centrality measure of one gene = (degree of node + closeness + betweenness)
+ (∑Degree of connected nodes)/ No. of connected nodes

2.6. Expression and Survival Analyses of Hub Genes

The web-based tool Gene Expression Profiling Interactive Analysis (GEPIA) (http:
//gepia.cancer-pku.cn) was employed to analyze TCGA (The Cancer Genome Atlas)
and GTex (Genotype-Tissue Expression) data and provide interactive functions, such as
profiling, plotting, differential expression analysis, and patient survival analysis [20]. The
relationship between Hub gene expression and its significance in resistance was verified
using the method of Kaplan–Meier for survival analysis. Analysis was done using GEPIA
between the high- and low-expression groups, with a cut-off value of 50%. The hazard
ratio with 95% confidence intervals and the log-rank p-value were calculated. p ≤ 0.05 or
p(HR) ≤ 0.05 were considered statistically significant.

3. Results
3.1. Identification of DEGs

Gene expression datasets (GSE81465 from the GEO dataset for three generations)
from glioblastoma xenografts, which developed resistance against bevacizumab treatment,
were compared with a glioblastoma xenograft without bevacizumab controls. From the
data, we extracted 646, 873, and 1220 DEGs in the first, fourth and ninth generations,
respectively. There were 199 DEGs common to these samples, including 62 upregulated
and 122 downregulated DEGs (Figure 1 and Table 1). The remaining 15 genes showed both
up- and downregulations in resistant samples compared with the untreated controls, based
on the thresholds of p < 0.05 and a logFC (fold change) > 1.
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Figure 1. Identification of common differentially expressed genes (DEGs). Microarray data on
anti-VEGF-resistant glioblastoma xenografts for the 1st, 4th, and 9th generations were downloaded
from the Gene Expression Omnibus Database (GEO), and the DEGs were identified using GEO2R
with a fold change (logFC) > 1 and logFC < −1. The Bioinformatics and Evolutionary Genomics Venn
diagram tool was used to draw a Venn diagram for identifying the common genes in all the three
generations. The 1st, 4th, and 9th generations were indicated as violet, red, and green, respectively.
There were 199 common DEGs.

http://gepia.cancer-pku.cn
http://gepia.cancer-pku.cn
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Table 1. Common differentially expressed genes (DEGs) identified from the datasets.

DEGs Gene Symbol

Upregulated

ACSL3, ACTA2, ADGRG1, AKR1B1, ASAP2, ASS1, ATP2B4, BAALC,
BHLHE40, CALD1, CCDC92, CLIC4, CSF3, CXCL8, FAM65A, FGF2,

HIST2H2BE, HLA-B, HLA-DPA1, HLA-DRA, IDH1, IER3, IGFBP7, IL1B, IL6,
INSIG1, KDELR3, LRRN3, MLLT11, MSMO1, MTSS1, NAMPT, NME4,

NOTCH3, PAMR1, PDGFRB, PHKB, PPP1R3C, PTGS2, RCAN1, RFTN2,
RHBDF1, RND3, RRAD, RSPO3, SEZ6L2, SH3BGRL, SMARCA1, SNX7,

SPP1, SRPX2, SYNC, SYNDIG1, TAP1, TFPI2, TGM2, TMCO3, TMEM171,
TMEM98, TOX2, TSPAN13, VAT1L

Downregulated

EIF6, NTSR1, IMP4, RPPH1, TOP3A, LYAR, THOC5, CXADR, FOXR2,
DHRS11, DBNDD2, DDX27, DNAAF3, ALKBH2, IPO4, DUS3, MRPL12,

PRPF19, INTS1, DDX18, FERMT3, EMG1, SNU13, SERPINB7, RPS19BP1,
UBL7, RPS21, CCL26, SLC43A3, IL13RA2, NHP2, SNAPC4, GRWD1, PHB2,

MRTO4, PDSS1, SPOUT1, DNLZ, GPATCH4, CCL20, EIF2B2, ZNF593,
NOP16, NUDT14, MCM10, SLIRP, RRS1, KLRG1, ATF5, CDK4, COQ3,

GEMIN4, GEMIN6, FTSJ3, PAK1IP1, MRPS26, NTS, TOMM22, EXOSC5,
ATAD3A, GAR1, RPF2, TEAD4, PPAN, UBE2G2, C9orf142, PRPF4, PPIH,

RPL36, TTLL12, WDR46, PSMG3, PRIM1, CSTF2, TOMM6, AHSA1, TFB2M,
SLC5A6, NOP56, TIMM10, C10orf2, CLPTM1L, DPH2, C19orf48, FEN1,
UBA52, FARSA, ELOF1, S100A2, NOL6, STOML2, ADSL, CHCHD10,

POLR2H, PA2G4, E2F2, PRKAR1B, LBHD1, PRELID1, MRPL21, EXOSC4,
TRIML2, NPM3, SNORD104, EBNA1BP2, WDR18, EIF3K, STC2, POLD1,
SFXN4, SNORA67, METTL17, ATIC, EIF3G, SDCCAG3, MAGEB2, PNP,

HCLS1, NDUFB9, DHRS2, CDC25A, ESM1

Both up- and
downregulated

CRABP2, EDNRA, GJB2, IGFBP5, MATN2, MFAP4, NREP, OLFML2A,
PCOLCE, PDGFRA, RGS2, SERPINB2, TGFB3, TIMP2, TRIM9

Microarray data on anti-VEGF-resistant glioblastoma xenografts for the 1st, 4th, and 9th generations were
downloaded from the Gene Expression Omnibus Database (GEO), and the DEGs were identified using GEO2R
with a fold change (logFC) > 1 and logFC < −1. A total of 199 overlapped DEGs were identified, including 62
upregulated, 122 downregulated, and 15 genes showing both up- and downregulations from the 1st, 4th, and 9th
generations, as described in detail in the legend to Figure 1.

3.2. GO Function and KEGG Pathway Enrichment Analysis

The possible functions of these DEGs were examined by GO analysis using DAVID.
Among the upregulated genes, the DEGs were significantly enriched in biological processes
such as angiogenesis, cell proliferation and cell migration and cellular components such as
the membrane and cytoplasmic components in all the three generations (Figure 2). These
were enriched in molecular functions, including protein binding, receptor binding, and
growth factor activity. The downregulated DEGs were significantly enriched in biologi-
cal processes such as the regulation of signal transduction by the p53 class mediator, the
cell cycle and cellular components such as the cytoplasm, nucleus and nucleoplasm and
molecular functions such as poly(A) RNA binding, RNA binding, and ATP binding. Apart
from these common biological processes, no enrichment in other biological processes was
observed in the first generation. However, the DEGS in the fourth and ninth generations
were enriched in additional processes such as the negative regulation of apoptosis pro-
cess, positive regulation of cell proliferation, inflammatory response, cytokine-mediated
signaling pathway, and positive regulation of I-kappa B kinase/NF-kappa B signaling
(Supplementary Figure S1).

The most significantly enriched KEGG pathways of the upregulated DEGs are pre-
sented in Figure 3. In all the three generations, the upregulated genes were enriched in the
pathways that promoted cancer progression, like the Tumor Necrosis Factor (TNF) signal-
ing pathway, cytokine receptor pathway, and Phosphatidylinositol 3-Kinas-Protein Kinase
B (PI3-AKT) signaling pathway. The enriched function and pathway of downregulated
genes are listed in Supplementary Figure S2. The number of pathways (27), biological
processes (127), and the number of genes (368) enriched therein were the maximum in
the fourth generation (Supplementary Table S1). It therefore appears that the relative
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resistance in terms of the number of pathways and biological processes related to cancer
and angiogenesis is more in the fourth generation.
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3.3. Classification of Differentially Expressed Genes

The DEGs identified from the fourth-generation xenografts, which showed the highest
enrichment in the pathways and biological processes, could be classified by two approaches,
based on their functions and roles in tumor development and progression. Together, 129
(81 up- and 48 down-) membrane-associated proteins, 66 (44 up- and 22 down-) secretory
proteins, 488 (201 up- and 287 down-) intracellular protein, 43 (23 up- and 20 down-
) transcription factors, and 115 (all up-) glycoproteins were identified as differentially
expressed (Supplementary Table S2). Of the differentially expressed glycoproteins, 56 were
glycoprotein-related enzymes, of which five were glycosyl transferases. In Table 2, we list
the representative classes of the DEGs for tumor development, which involve 16 growth
factors (14 up- and 2- down), 19 cytokines, including 7 interleukins and 7 proto-oncogenes.

Table 2. Classification of the DEGs.

DEGs Classification Gene Symbol

Growth factors HBEGF, VEGFA, EGFR, PDGFRB, FGF13, FGF2, TFPI, TFPI2,
TGFA, TGIF1, WNT5A, BDNF, NRG1, TIMP1, PDGFRA, TGFB3

Cytokines CSF3, NAMPT, CCL3, IL6, CXCL2, CXCL8, GREM1, IL11, IL36RN,
LIF, CLCF1, CCL3L3, IL36B, IL1B, IL1A, SPP1, IL1R1, NRG1, EREG

BMPs BMP6, GREM1, NBL1, TWSG1

Proto-oncogenes FYN, MLLT11, PDGFRB, BCL6, SRC, CBLB, CRKL

Genes involved in GBM ESM1, PDGFRA, TGFB3

Receptor–Ligand pairs

CD44-SPP1, CD44-HBEGF, CD44-FGF2, F3-IL6, F3-TFPI,
IL6ST-CLCF1, IL6ST-IL6, IL6ST-LIF, IL6ST-IL11, ITGB1-SPP1,

ITGB1-THBS1, ITGB1-VEGFA, NRP2-VEGFA, PLAUR -SERPINE1,
EGFR-EREG, EGFR-FGF13, EGFR-HBEGF, EGFR-TGFA,

EGFR-VEGFA

Enzymes (Glycosyl
transferases) GBE1, PLOD2, HAS1, ST3GAL1, EDEM1

DEGs identified from the 4th-generation xenografts were classified based on their functions and roles in tumor
development and progression. The classifications and gene symbols are presented. GBM: glioblastoma multiforme
and BMPs: Bone morphogenetic proteins.

Moreover, the GO analysis revealed that most of the angiogenic growth factors and
their receptors involved in tumor progression, including VEGF, EGF, EGFR, and FGF, were
differentially expressed. As the inflammatory cytokines have the potential to enhance
the proliferation and invasion of GBM, we further analyzed the DEGs and identified the
IL6, IL1A, and IL1B interleukins and 19 cytokines that were upregulated. Earlier studies
revealed that Bone morphogenetic proteins (BMPs) and TGFB signaling define varying
molecular and functional identities in glioblastoma [21] and also, the proto-oncogenes code
for proteins, which leads to excess angiogenesis. Interestingly, we also found 4 BMP-related
genes, 7 proto-oncogenes, and 19 receptor–ligand pairs that have a significant role in
angiogenesis and also, in tumor progression.

3.4. PPI Network Construction, Module Analysis, and Identification of Hub Genes

The identification of protein–protein interactions on a genome-wide scale helps reveal
the cellular regulation mechanisms and the function of proteins. The PPI network was
constructed based on the information in the STRING database. Among the DEGs from
the fourth generation, a total of 792 nodes and 5438 edges constituted the PPI network.
In order to identify the most significant modules, the Cytoscape plugin MCODE with a
MCODE score >5 was used. A total of seven modules were identified (Supplementary
Table S3 and Supplementary Figure S3)—out of which, two modules (module 3 and 4) are
enriched in pathways and genes in tumor progression and angiogenesis-related processes
and, therefore, are functionally relevant (Figure 4). In module 3, out of 64 genes, 18 genes
were upregulated and 46 genes downregulated. In module 4, out of 23 genes, 18 were
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upregulated and five downregulated. An enrichment analysis revealed that Module 3
is mainly connected with the TNF signaling pathway (six genes, of which four were up-
and two down-), cell cycle (nine genes: one up- and eight down-), cytokine–cytokine
receptor interactions (seven genes: five up- and two down-), microRNAs in cancer (seven
genes: four up- and three down-), pathways in cancer (six genes: three up- and three
down-), bladder cancer (five genes: three up- and two down-), HIF1 signaling pathway (all
four genes are upregulated), NOD-like receptor signaling pathway (three genes: two up-
and one down-), and glioma (three genes: one up- and two down-). Module 4 is mainly
associated with the PI3K-Akt signaling pathway (all five genes are upregulated), pathways
in cancer (all six genes are upregulated), pancreatic cancer (all three genes are upregulated),
proteoglycans in cancer (four genes: three up- and one down-), melanoma (all three genes
are upregulated), Rap1 signaling pathway (all four genes are upregulated), Ras signaling
pathway (all four genes are upregulated), MAPK signaling pathway (all four genes are
upregulated), and bladder cancer (both genes are upregulated) (Table 3). A similar PPI
network analysis of the DEGs from the first and ninth generations was also carried out
(Supplementary Tables S4 and S5). In the first generation, the module genes (out of six
modules, Modules 1 and 4) were skewed towards cell adhesion molecules, Extracellular
Matrix (ECM)–receptor interactions, focal adhesion, PI3K-Akt signaling pathway, TNF
signaling pathway and cytokine–cytokine receptor interactions. In the ninth generation (out
of 11 modules, Modules 4, 6, and 9), the number of downregulated genes associated with
the modules is high, and the enriched pathways include cell cycles and metabolic pathways.
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Figure 4. Analysis of the protein–protein interaction network of DEGs. The PPI network of DEGs
were developed by the Search Tool for the Retrieval of Interacting Genes (STRING) and analyzed
using Cytoscape. Modules from the PPI were extracted using the MCODE plugin in Cytoscape
with default thresholds, degree cut-off: 2, node score cut-off: 0.2, k-core: 2, and max depth: 100.
Seven modules with node scores > 5 were subjected to a pathway enrichment analysis—out of
which, module 3 and module 4 were significant. (a) Module 3 with 64 nodes and 305 edges and (b)
Module 4 with 23 nodes and 68 edges are represented. Upregulated genes are marked in red and
downregulated ones in green.

To identify the hub genes from the interaction network, a hybrid centrality measure
method was employed. In the fourth generation, out of 792 nodes, 21 hub genes were
finally identified with a hybrid centrality score > 12, such as IL6, VEFGA, SRC, and PTGS2
(Figure 5) and were classified into upregulated and downregulated hub genes based on
the logFC values (positive logFC indicates upregulation, and negative logFC indicates
downregulation) (Table 4). In the first generation, out of 553 nodes, 37 hub genes were
identified (12 up- and 25 downregulated); in the ninth generation, out of 1134 nodes, 16 hub
genes (6 up- and 10 downregulated) were identified (Supplementary Tables S6 and S7).



Biomolecules 2021, 11, 403 9 of 20

Table 3. (KEGG pathway enrichment analysis of module 3 and module 4 of PPI network).

Term Description Count p-Value Gene Symbol

Module 3

hsa04110 Cell cycle 9 6.28 × 10−7 E2F2, CDKN1A, SKP2, MCM2, MCM3,
CDK4, CDC25A, CDC25B, MCM6

hsa04060 Cytokine–cytokine
receptor interaction 7 0.003 CXCL1, CCL3, CCL20, CXCL2, IL1B,

IL1A, IL11

hsa05206 MicroRNAs in cancer 7 0.007 E2F2, CDKN1A, PTGS2, HMOX1,
THBS1, CDC25A, CDC25B

hsa04668 TNF signaling pathway 6 4.46 × 10−4 CXCL1, PTGS2, CCL20, CXCL2, IL1B,
MMP3

hsa05200 Pathways in cancer 6 0.049 E2F2, CDKN1A, HIF1A, PTGS2, SKP2,
CDK4

hsa05219 Bladder cancer 5 1.03 × 10−4 E2F2, CDKN1A, THBS1, CDK4, SRC

hsa04066 HIF1 signaling pathway 4 0.020 CDKN1A, HIF1A, HMOX1,
SERPINE1

hsa04621 NOD-like receptor signaling
pathway 3 0.045 CXCL1, CXCL2, IL1B

hsa05214 Glioma 3 0.049 E2F2, CDKN1A, CDK4

Module 4

hsa05200 Pathways in cancer 6 0.002 VEGFA, TGFA, PDGFRB, JAK1,
FGF13, FGF2

hsa04151 PI3K-Akt signaling pathway 5 0.008 VEGFA, PDGFRB, JAK1, FGF13, FGF2

hsa05212 Pancreatic cancer 3 0.011 VEGFA, TGFA, JAK1

hsa05205 Proteoglycans in cancer 4 0.012 VEGFA, HBEGF, SDC4, FGF2

hsa05218 Melanoma 3 0.013 PDGFRB, FGF13, FGF2

hsa04015 Rap1 signaling pathway 4 0.014 VEGFA, PDGFRB, FGF13, FGF2

hsa04014 Ras signaling pathway 4 0.017 VEGFA, PDGFRB, FGF13, FGF2

hsa04010 MAPK signaling pathway 4 0.023 DUSP1, PDGFRB, FGF13, FGF2

hsa05219 Bladder cancer 2 0.038 VEGFA, HBEGF
Modules from the PPI network were extracted using the MCODE plugin in Cytoscape, and scores > 5 were
subjected to an enrichment analysis. An enrichment analysis was done using the Database for Annotation,
Visualization and Integrated Discovery (DAVID), and a set count >2 and p < 0.05 as the cut-off for significant
enrichment. A total of 7 modules were identified using the MCODE plugin in Cytoscape—out of which, 2
modules (modules 3 and 4) are functionally relevant. List of genes enriched in different pathways in module 3
and 4 is presented.
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Figure 5. Analysis of the protein–protein interaction network for the 21 hub genes. A PPI network
of 21 hub genes was constructed using STRING with a confidence score >0.4 and was considered
statistically significant. Circles represent the hub genes (upregulated genes are marked in red and
downregulated ones in green), and the connecting lines represent the interactions between them.



Biomolecules 2021, 11, 403 10 of 20

Table 4. Identification of up- and downregulated hub genes among the DEGs.

DEGs Gene Symbol

Upregulated IL6, VEGFA, SRC, APP, CXCL8, IDH1,
SQSTM1, EGFR, PTGS2, ALDOA

Downregulated NCL, RPS3, UBA52, DNMT1, CCNB1, EZH2,
PLK1, POLR2H, UBE2C, TYMS, PCNA

Hub genes were identified using a hybrid centrality measure method. Out of 792 nodes, 21 hub genes were
identified with a hybrid centrality score> 12 and classified into upregulated and downregulated hub genes based
on the logFC values. Ten upregulated and 11 downregulated hub genes were represented using gene symbols.

The KEGG pathway analysis of the hub genes revealed that, in the fourth generation,
the hub genes were highly enriched in pathways in cancers (all five genes are upregulated),
the cell cycle (all three genes are downregulated), VEGF signaling pathway (all three genes
are upregulated), epithelial cell signaling in helicobacter pylori infection (all three genes are
upregulated), microRNAs in cancer (five genes: three up- and two down-), FoxO signaling
pathway (four genes: two up- and two down-), and in the HIF1 signaling pathway (all
three genes are upregulated) (Table 5).

However, in the first generation, the enriched pathways were skewed towards the
PI3K-Akt signaling pathway, HIF1 signaling pathway, Toll-like receptor signaling, TNF sig-
naling pathway, NOD-like receptor signaling pathway, pathways in cancer, transcriptional
misregulation in cancer and microRNAs in cancer, but most of the hub genes associated
with these pathways were downregulated (Supplementary Table S8). However, in the ninth
generation, the hub genes are only enriched in three pathways, viz., the FoxO signaling
pathway, HIF1 signaling pathway and the cell cycle (Supplementary Table S9).

Table 5. Pathway enrichment analysis of the hub genes.

Table Description Count p-Value Gene Symbol

hsa05219 Bladder cancer 4 0.0002 CXCL8, SRC, EGFR, VEGFA
hsa04068 FoxO signaling pathway 4 0.006 IL6, CCNB1, PLK1, EGFR

hsa05206 MicroRNAs in cancer 5 0.008 DNMT1, PTGS2, EGFR,
EZH2, VEGFA

hsa04370 VEGF signaling pathway 3 0.013 SRC, PTGS2, VEGFA

hsa05120
Epithelial cell signaling in

Helicobacter pylori
infection

3 0.016 CXCL8, SRC, EGFR

hsa05200 Pathways in cancer 5 0.024 IL6, CXCL8, PTGS2, EGFR,
VEGFA

hsa04066 HIF1 signaling pathway 3 0.031 IL6, EGFR, VEGFA
hsa04110 Cell cycle 3 0.049 CCNB1, PCNA, PLK1

Enrichment analysis was done using DAVID and a set count >2 and p < 0.05 as the cut-off for significant
enrichment. List of hub genes enriched in different pathways are presented.
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3.5. VEGF Pathway Association

The interaction between hub genes and the genes in the VEGF pathway was analyzed
for identifying altered pathways or genes in VEGF signaling (Supplementary Table S10).
Among the 21 hub genes identified in the fourth generation, five were already reported
in the VEGF signaling pathway. Thirteen hub genes showed interactions with 15 genes in
the PI3K-AKT-MTOR module and with 7 genes in the ERK module, 11 hub genes showed
interactions with 3 genes in the NFKB module and with 3 genes in the P38 MAPK module,
6 hub genes showed interactions with 10 genes in the RAC module, 7 hub genes showed
interactions with 6 genes in the PLC-PKC module, and 8 hub genes showed interactions
with 3 genes in the STAT module.

3.6. Survival Analysis of Hub Genes

A survival analysis of the 21 hub genes was performed to examine the association
between the expression of each gene and the overall survival time of patients with GBM
(Table 6). These results revealed that three hub genes with higher expression levels (VEGFA,
CXCL8, and IDH1) were associated with a significantly shorter overall survival time among
patients with GBM (log-rank p ≤ 0.05 and p(HR or hazard ratio) ≤ 0.05) (Figure 6A,B),
suggesting that these hub genes are associated with the pathophysiology of bevacizumab-
resistant GBM. However, no significant correlation was found between the expression of
the other seven upregulated hub genes and six downregulated hub genes (log-rank p > 0.05
and p(HR) > 0.05). Though the low expression levels of the hub genes EZH2, TYMS, PLK1,
NCL, and DNMT1 were associated with a better overall survival, the survival analysis
of the expression of these hub genes did not show a statistically significant (p > 0.05 and
p(HR > 0.05) association (Supplementary Figure S4).

Table 6. Identification of the hub genes related to the survival of GBM patients.

Upregulated
Hub Genes

Survival Rate
(in Months)

Log-Rank
p p(HR) Downregulated

Hub Genes

Survival
Rate (in
Months)

Log-Rank
p

p
(HR)

IL6 49 0.07 0.074 PCNA 52 0.87 0.85
VEGFA 49 0.05 0.046 POLR2H 52 0.46 0.47

SRC 52 0.24 0.25 RPS3 52 0.07 0.077
CXCL8 49 0.04 0.05 UBA52 52 0.14 0.15
IDH1 49 0.03 0.029 CCNB1 71 0.7 0.72

PTGS2 52 0.54 0.54 UBE2C 71 0.77 0.79
EGFR 49 0.93 0.9
APP 71 0.46 0.47

ALDOA 71 0.11 0.11
SQSTM1 71 0.13 0.13

Analysis was done using the Gene Expression Profiling Interactive Analysis (GEPIA) online tool, and the
relationship between the hub gene expression and its significance in resistance was verified using the method of
Kaplan–Meier for the survival analysis, as described in detail in the legend to Figure 6. The survival rate, log-rank
p, and hazard ratio (HR) of the hub genes were extracted from Figure 6 and presented. p and p(HR) ≤ 0.05 were
considered significant.
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Figure 6. Survival analysis of differentially expressed hub genes in patients with GBM. The relationship between the
expression of hub genes and survival as analyzed by plotting high and low expression levels of up- and downregulated hub
genes in patients with GBM. The survival curves were plotted using the Gene Expression Profiling Interactive Analysis
(GEPIA). The specific DEG expression levels were dichotomized by a median value. The results are presented visually by
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(f) IDH1, (g) EGFR, (h) SQSTM1, (i) APP, and (j) ALDOA. (B) Survival plot of downregulated hub genes: (k) POLR2H,
(l) RPS3, (m) UBA52, (n) PCNA, (o) CCNB1, and (p) UBE2C.

4. Discussion

Tumor angiogenesis, being a critical process for tumor growth and progression tar-
geting, is recognized as an important therapeutic strategy. Though anti-VEGF therapy
using inhibitors of VEGF action has been reported to arrest tumor growth in several types
of cancers, in certain cases, resistance to antiangiogenic treatment, particularly against
anti-VEGF therapy, has been reported. Glioblastoma is one such tumor that shows resis-
tance to anti-VEGF therapy. In our effort to understand the molecular basis of resistance to
anti-VEGF therapy in glioblastoma, we analyzed the gene expression data in xenografts
from anti-VEGF-resistant GBM, using bioinformatics tools, and the results suggested that
the cells adapt to such conditions by changing gene expression and restoring angiogenesis.
This is evidenced by the following observations: (a) The analysis of the microarray data
from fourth generation xenografts of anti-VEGF-resistant GBM patients showed the up-
regulation of 359 genes and downregulation of 514 genes, indicating differences in gene
expression during the development of anti-VEGF resistance. (b) The GO function and
pathway enrichment analysis of DEG showed significant enrichment in the biological
processes such as cell proliferation, cell migration and angiogenesis, indicating the ability
to acquire angiogenic phenotypes. A further analysis of the DEGs showed enrichment
in the molecular functions such as receptor binding and growth factor activity and the
signaling pathways such as TNF signaling pathway, PI3-AKT pathway, and cytokine re-
ceptor pathway, particularly in upregulated DEGs. (c) The PPI network analysis showed
enrichment in the key angiogenic pathways, such as the HIF1 pathway, PI3-AKT pathway
and cell cycle pathway, critical in angiogenesis and cancer development. (d) Among the
DEGs, several hub genes, including IL6, VEGFA, and SRC were identified. The survival
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analysis showed that the high expression of three hub genes were associated with a shorter
overall survival time of GB patients.

Identification of DEGs in the resistance condition provides valuable information about
the mechanism of resistance. In the present study, the gene expression profile dataset,
(anti angiogenic therapy resistance condition) GSE81465 from GEO was analyzed to obtain
DEGs. The GO biological process analysis revealed that several of the upregulated DEGs
were functionally enriched in the process of cell proliferation, migration, cell adhesion
and angiogenesis, confirming that the cells were resistant to the bevacizumab therapy and
equipped to develop new vessels needed for tumor growth. Further, the downregulated
DEGs were enriched in tumor suppressive pathways that regulate cell cycle and signal
transduction by p53, indicating that the tumor growth was not arrested by anti-angiogenic
therapy. Previous studies reported that anti VEGF therapy only seizes VEGF and it does not
block other molecules involved in angiogenesis pathway that leads to the cell proliferation,
migration and survival [22]. It was observed that 18 angiogenesis related genes were
upregulated, among them VEGF and TGFA are growth factors and NRP2 is a receptor
for VEGFA. Several of these DEGs encode proteins that are reported to affect growth and
characteristics of the GBM. For instance, EPAS1/HIF2A is a hypoxia responsive transcription
factor, the over expression of it in glioblastoma enhances the tumor aggressiveness [23].
Many aggressive aspects of GBM such as cell proliferation and poor prognosis are highly
correlated with the expression of PTGS2 [24–26] and it is overexpressed in radiation
resistance glioma [27]. High expression of TNFRSF12A has been reported in GBM [28] and
is also involved in glioma cell migration, invasion, and resistance to chemotherapeutic
agents. Temozolomide- resistant GBM shows high expression of TNFRSF12A and greater
migratory capacity [29]. CXCL8/IL8 is a multifunctional cytokine which enhances the
vascular permeability in GBM [30,31]; high expression of both VEGFA and CXCL8 can
reduce the overall survival rate of GBM patients [32]. ADGRG1/GPR56 is a GPCR involved
in adhesion signaling and HIF1A is a transcription factor, which has a critical role in
GBM survival, resistance and invasion [33]. Recent studies showed that SRPX2 promotes
epithelial to mesenchymal transition in GBM, and it’s over expression induced TMZ
resistance in GBM [34]. In GBM, EREG enhances the phosphorylation of EGFR, thus
activates EGFR signaling and directs cancer cell proliferation [35]. CLIC4, which is a key
element in the apoptotic response to oxidative stress, is highly expressed in GBM [36].

Further analysis of the DEGs identified 15 upregulated genes associated with growth
factor activity, including CSF3, IL6, OSGIN2, FGF13, IL11, TIMP1, LIF, BDNF, EREG, CLCF1,
VEGFA, TGFA, HBEGF, NRG1 and FGF2. Among these, CSF3, IL6, IL11, LIF and CLCF1 are
cytokines. In that, FGF2 and FGF13 showed high expression in GBM samples. Previous
studies indicated that FGF13 regulates GBM cell invasion and bevacizumab-induced glioma
invasion [37–39]. Seven proto-oncogenes (FYN, MLLT11, PDGFRB, BCL6, SRC, CBLB and
CRKL) were also upregulated in GBM, agreeing with the previous studies [40–47].

Pathway enrichment analysis showed that the upregulated DEGs were enriched in
the cancer related pathways, suggesting that the genes involved in these pathways might
be responsible for the formation of resistance to anti VEGF therapy in GBM. Sixteen genes
in PI3K-Akt pathway were upregulated to suggest that the pathway was activated in GBM,
possibly causing the suppression of cell death and increasing cell survival [48–53]. Twenty
genes in cancer pathways were upregulated; these genes are known to have important role
in biological processes such as angiogenesis, cell invasion, cell proliferation, apoptosis and
mobility [52,53]. In the context of the reported role of cytokines in the glioma formation,
data showing upregulation of 14 genes in the cytokine receptor interaction might be
important in the induction of resistance. Upregulation of 13 genes encoding components of
MAPK network, which is severely altered in GBM [54], has also been observed. Ten genes
involved in focal adhesion were also significantly upregulated during the drug resistance
condition.

Further analysis of the DEGs in terms of the nature and distribution of the proteins
encoded by these genes revealed that several of them belonged to classes of glycoproteins,
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secretory proteins, membrane associated proteins and intracellular proteins. Alterations
in glycoproteins, particularly changes in their nature and distribution have been known
to play a key role in tumor development as well as resistance to drug treatment [55]. In
the current study we observed that 115 glycoproteins were upregulated, most of which
are present on the cell surface that may also act as a ligand for the cell surface receptor.
These glycoproteins are involved in several cellular processes such as cell growth, cell-
cell recognition, and cell migration, critical in angiogenesis. A possible alteration of the
structure and therefore, their function was indicated by the identification of 56 DEGs that
encode enzymes related to glycoprotein metabolism including 5 glycosyl transferases.
VEGF receptor, a glycoprotein, may recognize other proteins in the absence of VEGF and
triggers the downstream signaling. Furthermore, studies also reported that interaction of
galectin-1 and VEGFR2 activate VEGF-like signaling in tumor angiogenesis [56]. In this
context, it is also pertinent to note that glioma cells employ different metabolic strategies
including aerobic glycolysis, pentose phosphate pathway, one carbon metabolism, fatty acid
metabolism which contribute to energy production in glioma cells and several bioenergetics
pathways are linked to oncogenic signals such as AMPK and MTOR pathways [57,58].

One of the signaling pathways altered during the development of resistance to anti-
VEGF therapy in GBM appears to be BMP signaling pathway. It is a complex network of
receptors, ligands and antagonists which may dynamically impact GBM growth, main-
tenance and progression. GREM1 is an antagonist of BMP signaling. Glioma stem cells
secrete GREM1 to promote tumorigenesis through inhibition of BMP signaling. Studies
reported that the secretion of GREM1 contribute to treatment resistance by maintaining
cellular proliferation and cellular hierarchies within the tumor, and also increasing resis-
tance to differentiation therapy [59]. The data presented here showed that gene encoding
GREM1 is upregulated about 3-fold, though BMPs and TGFB were slightly downregulated.
However, certain other genes which are known to modulate angiogenesis did not show
any significant change. For instance, TSGA10 (testis specific Gene Antigen 10), which acts
as a tumor suppressor in many types of human cancers [60] and inhibits VEGF-induced
angiogenesis [61] was not differentially expressed in anti-VEGF resistant condition. Further,
recent RNA seq analysis of anti-VEGF resistant ovarian cancer model showed upregulation
of apelin/APJ receptor signaling pathway [62]. However, this receptor-ligand pair gene
expression was not altered in anti-VEGF resistant glioma described in the present study,
probably suggesting that mechanisms underlying anti VEGF resistance are different in
different tumors.

Further analysis of DEGs in anti-VEGF resistant microarray data sets revealed that 19
ligand receptor pairs were differentially expressed. The receptors CD44, F3, IL6ST, ITGB1,
NRP2, PLAUR and EGFR were upregulated. CD44 is a trans-membrane glycoprotein recep-
tor of hyaluronic acid which is overexpressed in GBM and enhances the GBM invasion,
proliferation and therapy resistance [63]. It is also involved in epithelial-mesenchymal
transition, angiogenesis, proliferation, invasion, and migration [64]. Genes encoding the
ligands for CD44 such as SPP1, HBEGF and FGF2 were also upregulated. Another impor-
tant signaling molecule involved in GBM is EGFR whose ligands such as EREG, FGF13,
HBEGF, TGFA and VEGFA were also upregulated. IL6 and TFPI, ligands of F3 receptor
were also upregulated. Four ligands of IL6ST and ITGB1 receptors were upregulated
and in the case of receptors NRP2 and PLAUR, one ligand each was upregulated. These
12 ligands included factors with growth factor (10 genes) and cytokine activity (5 genes).
In this context, earlier data on alteration in NRP1 expression and activation of TGFB sig-
naling restoring angiogenesis in anti-VEGF resistant GBM is particularly relevant [65].
Therefore, it appears that instead of the principal ligands of several of these receptors, the
upregulated ligands were alternate ligands, suggesting development of alternate mech-
anisms for angiogenesis and tumor growth. In this context it is important to note that,
though not all glioblastoma patients are resistant to anti-VEGF therapy, the possibility of
angiogenesis-independent tumor progression by diffuse invasion of single tumor cell in
brain, as reported recently [66].
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PPI network was developed, including both up- and downregulated genes, to verify
the interaction between these genes and how they are coordinately involved in the forma-
tion of resistance. Many genes with high connectivity in the PPI network were enriched
in pathways in cancer, PI3K-Akt signaling pathway, Proteoglycans in cancer and MAPK
signaling pathway. We have identified 21 hub genes with hybrid centrality score > 12,
among which 10 were up- and 11 downregulated. The possible role of these hub genes in
the development of anti VEGF resistance in GBM was suggested from the data showing
interaction of 18 of these hub genes with 58 genes of different network modules in the
VEGF- mediated angiogenesis signaling pathway [6,67]. In this context, our previous report
on multiple phytochemicals of a poly-herbal formulation targeting multiple components of
VEGF-VEGFR2 pathway and inhibiting angiogenesis is particularly significant [68].

KEGG pathway analysis and GO enrichment analysis also demonstrated that these
hub genes were associated with pathways in cancer and significantly involved in positive
regulation of angiogenesis and negative regulation of apoptosis. VEGF pathway analyses
revealed that nine upregulated hub genes (IL6, EGFR, VEGFA, SRC, CXCL8, PTGS2, IDH1,
APP and SQSTM1) and five downregulated hub genes (POLR2H, RPS3, UBA52, CCNB1
and UBE2C) are linked with several of the VEGF signaling pathway components. Across all
the generations six (IL6, CXCL8, PTGS2, IDH1, POLR2H, UBA52) hub genes and in fourth
and nine generation 11 (IL6, CXCL8, PTGS2, IDH1, APP, SQSTM1, POLR2H, RSP3, UBA52,
CCNB1, UBE2C) hub genes were differentially expressed, and the maximum fold change
was observed in fourth generation. Studies also reported that high expression of IL6 [69],
and EGFR [70], had worst survival outcome than low expression. Chang et al. reported that
GBM patients with lower IL6 expression showed longer survival time and a few patients
with longer survival time did not show significant expression of IL6. [71]. PTGS2 is another
hub gene which was enhanced in radiation resistant glioma cells [27]. Ribosomal protein
S3 is suggested to be a substrate for induction of radio- resistance in glioblastoma [72].

Further evidence linking these hub genes with the development of resistance, was
provided by survival analysis which revealed that out of the 10 upregulated hub genes,
expression of three genes (VEGFA, CXCL8, IDH1) was statistically significant and were
associated with a worse prognosis among patients with GBM. However, expression levels
of none of the downregulated hub genes, including six genes whose downregulation is
known to relate with low survival and five genes whose downregulation is associated with
longer survival [20], showed any statistically significant association with survival. Altered
expression of these hub genes has been reported in GBM. CXCL8 was upregulated in GBM
compared to diffuse astrocytoma and its expression levels were positively associated with
progression and poor prognosis of glioma [73]. As discussed before VEGF plays important
role in angiogenesis and its expression is high in GBM patients compared to the healthy
subjects [74]. Hub gene IDH1 mutation in GBM patients showed a longer survival rate com-
pared to the wild-type [75]. However, the potential role of these predicted hub genes need
to be further examined experimentally. The lack of any clinically established biomarker in
glioblastoma, unlike in other tumors makes it difficult to follow response to anti-angiogenic
therapy and survival of malignant glioma. The expression of angiogenic target molecules
and also patterns of tumor vascularization did not predict response to bevacizumab [76]
highlighting the need for reliable predictive biomarkers. The results presented here predict
that the hub genes associated with the GBM resistance to bevacizumab may be a potential
therapeutic target or biomarker of anti-VEGF resistance of GBM.

5. Conclusions

We presume that these key hub genes identified by a series of bioinformatics analyses
on DEGs between tumor samples and anti-VEGF-resistant samples are probably related
to the sensitivity of glioblastomas to anti-VEGF therapy. These identified genes and their
associated pathways provide a more detailed molecular mechanism of anti-VEGF resistance
in GBM. However, further molecular and biological experiments are required to confirm
the functions of the key hub genes in resistant GBM.
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