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Abstract: Heparinoid is the generic term that is used for heparin, heparan sulfate (HS), and
heparin-like molecules of animal or plant origin and synthetic derivatives of sulfated polysaccharides.
Various biological activities of heparin/HS are attributed to their specific interaction and regulation
with various heparin-binding cytokines, antithrombin (AT), and extracellular matrix (ECM)
biomolecules. Specific domains with distinct saccharide sequences in heparin/HS mediate these
interactions are mediated and require different highly sulfated saccharide sequences with different
combinations of sulfated groups. Multivalent and cluster effects of the specific sulfated sequences
in heparinoids are also important factors that control their interactions and biological activities.
This review provides an overview of heparinoid-based biomaterials that offer novel means of
engineering of various heparin-binding cytokine-delivery systems for biomedical applications and it
focuses on our original studies on non-anticoagulant heparin-carrying polystyrene (NAC-HCPS) and
polyelectrolyte complex-nano/microparticles (N/MPs), in addition to heparin-coating devices.

Keywords: glycosaminoglycan; heparinoid; heparinoid-based biomaterials; heparin-binding
cytokines; heparinoid-carrying polystyrene; polyelectrolyte complexes

1. Introduction

Heparinoids are generically referred to as heparin, heparan sulfate (HS), and heparin-like
molecules, and they are involved in various biological processes involving heparin-binding proteins,
such as various cytokines. Heparinoids are a sub-group of glycosaminoglycans (GAGs) found in
animal tissues. GAGs include other polysaccharides, such as hyaluronic acid (HA), chondroitin sulfate
(CS), dermatan sulfate, and keratan sulfate, in addition to heparinoids, all of which bear negative
charges that vary in density and position [1–3]. CS is formed by the repetitive unit of glucuronic
acid linked β1→3 to a β-N-acetylgalactosamine. The galactosamine residues may be O-sulfated at
the C-4 and/or C-6 position, but they contain no N-sulfated group [1–3]. These GAGs exhibit little
anti-thrombotic activity, which is typically a specific feature of heparin. On the other hand, hexuronate
residues in heparin/HS are present as either as β-d-glucuronate (GlcA) or the C-5 epimer, α-l-iduronate
(IdoA). Heparin/HS basically consist of a disaccharide repeat of (1→4 linked) α-d-glucosamine (GlcN)
and hexuronate, in which the GlcN might be either N-acetylated (GlcNAc) or N-sulfated (GlcNS), and
the hexuronate residues are present as either GlcA or the C-5 epimer, IdoA. Ester O-sulfations are
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principally at the C-2 position of hexuronate (GlcA or IdoA) and the C-6 position of the GlcNS [4,5].
GAGs, except HA, are normally present in the form of proteoglycans (PGs), in which multiple GAGs
are covalently attached to a core protein [1,6,7]. Heparin is commercially produced from animal tissues
(pig or bovine intestinal mucosa, bovine lung, etc.) and it is clinically used as an antithrombotic
drug. Heparin is confined to mast cells, where it is stored in cytoplasmic granules in intact tissue [8,9].
In contrast, HS is ubiquitously distributed on cell surfaces and in the extracellular matrix (ECM) [10,11].

Heparin/HS are implicated in cell adhesion, recognition, migration, and the regulation of various
enzymatic activities, as well as their well-known anticoagulant action [11–15]. Most of the biological
functions of heparin/HS depend upon the binding of various functional proteins, mediated by specific
domains with distinct saccharide sequences [9,16]. For example, the interaction of heparin/HS with
fibroblast growth factor (FGF)-1 and FGF-2 requires different saccharide sequences with different
combinations of sulfate groups [17–20].

Polysaccharides that are extracted from brown marine algae, fucoidans, represent a source
of marine compounds with potential applications in medicine as naturally occurring heparinoids.
Fucoidans are a sub-group of heparinoids that have been proposed as alternative anticoagulants
to heparin. Fucoidans are highly sulfated polysaccharides (30–60%), like heparin, but they contain
neither N-acetylated nor N-sulfated groups. Instead, the polysaccharide is primarily composed
of 4-sulfated 1,2-linked α-l-fucose with branching or a sulfate group at C-3. Fucoidans have been
reported to have anti-aggregation of platelets, and anti-thrombotic, anti-infective and anti-inflammatory
activities [21–23]. The low hemorrhagic effects of fucoidans as compared to heparin are due to their
low anti-aggregation effect [24,25].

Chitin is the major organic component of the exoskeleton of crabs, shrimps, and insects and it
is a (1→4 linked) co-polymer of N-acetyl-glucosamine units. Chitosan is a product obtained from
the de-N-acetylation of chitin in the presence of hot alkali [26]. Chitosan interacts with FGF-2 and
protects it from inactivation [27]. A chemically sulfonated chitosan, as semi-synthetic heparinoids, has
structural and functional similarities to heparin [28]. Chemically, sulfonated dextran (dextran sulfate)
has low anticoagulant activity, but high lipoprotein-releasing activity [29]. The treatment of capsular K5
polysaccharide from Escherichia coli with mild acid to remove branches affords a (1→4 linked) copolymer
of GlcNAc and GlcA [30,31]. New chemical-enzymatic technologies that are based on the modification
of bacterial capsular K5 polysaccharides have provided a number of semi-synthetic heparinoids with
different biological activities. Two families of sulfated compounds that differ in their hexuronate content
have been synthesized while using these technologies. The first group contains only GlcA, whereas the
second group contains approximately 50% IdoA following epimerization by immobilized recombinant
C5 epimerase [32,33]. This has led to the development of various anticoagulant and non-anticoagulant
K5 derivatives following specific ester O-sulfations that were endowed with different—and sometimes
highly specific—antitumor, antiviral, and/or anti-inflammatory activities [32,33].

The above-mentioned activities of heparin-binding cytokines occur in the ECM through specific
non-covalent interactions with, for example, ECM receptor molecules and PGs in which multiple GAGs
are covalently attached [34]. Those localized interactions have inspired the development of biomaterials
that enhance and regulate the heparin-binding cytokine activities for practical applications [35–37].
For example, biomaterials that are modified with heparinoids may exhibit increased stability and
controlled release and activation. In addition, polyelectrolytes, such as heparinoids in the ECM, retain
heparin-binding cytokines at the cell-material interface via specific interactions [38,39]. Herein,
we review the structures of heparin/HS, and biological activities and therapeutic potential of
heparinoids. Heparin/HS function to localize and control heparin-binding cytokine activity, as do
various heparin/HS-based biomaterials, such as heparin-carrying polystyrene, heparinoid-containing
hydrocolloids, polyelectrolyte complex nano/micro-particles (N/MPs), and heparin-coated devices
exhibiting the multivalent and cluster effects that result from specific sulfated sequences in heparin/HS.
In addition, we highlight our studies while using heparinoid-based biomaterials in heparin-binding
cytokine delivery systems.
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2. Structures of Heparin/HS

2.1. Compositional Structures of Heparin and HS

Heparin/HS, which are major groups in heparinoids, are synthesized as PGs, which consist
of polysaccharide chains that are covalently bound to a protein core. A single protein, serglycin,
is the protein constituent of heparin-PGs in connective tissue mast cells, whereas mucosal mast
cells and activated macrophages contain oversulfated chondroitin sulfate [9,23,40]. In contrast, HS
can be conjugated onto a variety of proteins with different spatial distributions, e.g., perlecan in
the extracellular matrix, and cell-surface associated syndecans with transmembrane core proteins
and glypicans that are associated with the plasma membrane via a glycosyl–phosphatidyl–inositol
anchor [10,23,41,42].

The HS chains influence a multitude of processes in development and homeostasis, due to their
ability to interact with a variety of proteins [9,43,44]. Such interactions involve basic amino acid
residues and negatively charged carboxyl and sulfate groups along the HS chains mediate them.
Heparin and HS both basically consist of a disaccharide repeat of (1→4 linked) α-d-glucosamine and
hexuronate, in which the glucosamine residues may be either N-acetylated (GlcNAc) or N-sulfated
(GlcNS), and the hexuronate residues in heparin/HS are present as either β-d-glucuronate (GlcA) or
the C-5 epimer, α-l-iduronate (IdoA). Ester O-sulfations, principally at the C-2 position of hexuronate
(GlcA or IdoA) and the C-6 position of the GlcNS, but also rarely at the C-2 position of GlcNS and
the C-3 position of GlcA, add notable charge density and structural complexity to the polysaccharide
chains (Figure 1A) [5,45]. Figure 1B shows typical disaccharide sequences that were found in heparin
and HS.Molecules 2019, 24, x 4 of 25 
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Figure 1. Monosaccharide (A) and disaccharide (B) units comprising heparin/heparin sulfate (HS), and
(C) typical heparin sulfate and heparin sugar sequences.

The carbohydrate composition for heparin and heparan sulfate (HS) is similar, but it differs in
monosaccharide ratios and sulfation pattern distribution. Structural differences between heparin
and HS result from differences in their IdoA, and N- and O-sulfate content. Heparin is extensively
N-sulfated and it is rich in IdoA and O-sulfate groups, whereas HS contains more N-acetylated
regions [5,8,46]. In general, approximately 80% of the α-d-glucosamine residues in typical commercial
heparin are N-sulfated, and there is a higher content of O-sulfate than of N-sulfate. In addition,
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approximately 70% of the hexuronate in heparin is IdoA, and more than 50% of the disaccharide in
heparin is usually trisulfated (IdoA(2-O-S)–GlcNS(6-O-S)). Furthermore, native heparin contains a
GlcNAc (6-O-S)–GlcA–GlcNS (3,6-diO-S)–IdoA (2-O-S)–GlcNS (6-O-S) sequence, which is well known
as an antithrombin binding domain [47]. In contrast, typically fewer than 50% of glucosamine residues
in HS are N-sulfated, and the content of O-sulfate is lower than that of N-sulfate, although there are
large differences in HS produced by various cell types.

However, the above distinctions only serve to define the two families of polysaccharides that are
composed of the same repeating disaccharide units (i.e., heparan sulfate and heparin sugar sequences)
(Figure 1C) [5,46,48]. The molecular design of HS appears to be well adapted for playing a fundamental
role in various cellular activities. HS is an ordered polymeric structure in which sulfated sugar residues
are clustered in a series of short domains that are widely separated by relatively long regions with low
sulfate content [8,16,46]. The glucosamine residues in the highly sulfated clusters are highly N-sulfated,
and most of the various O-sulfates and IdoA residues are present in these domains. However, the
trisulfated disaccharide IdoA(2-O-S)–GlcNS(6-O-S) that is enriched in heparin is a minor component
of the highly sulfated regions in HS, and the disulfated disaccharide IdoA(2-O-S)–GlcNS is the major
disaccharide. The domain organization of HS is a characteristic feature that distinguishes it from
heparin (Figure 1C) [9,11,12,48].

2.2. Heparin-Based Chemically Modified Sulfated Polysaccharides and Oligosaccharides from Heparin

It is difficult to prepare a large enough amount of the highly sulfated sequences, although the
isolation of a highly sulfated sequence from HS responsible for a specific biological activity is one way
to establish relationships between structure and function. An alternative approach is to prepare a
series of structurally modified oligosaccharides and determine the effects of these structural changes
on biological activity. All of the sulfate groups in heparin can be modified to introduce structural
changes. Several studies of such heparin molecules have included procedures, such as N-desulfation
(N-DS), 2-O-DS [49] and 6-O-DS [50–52], N-deacetylation/sulfation [53–56], and carboxyl reduction [57].
These modification procedures have been useful in obtaining oligosaccharides with altered biological
properties. Furthermore, binding studies of the modified heparinoids to various heparin-binding
proteins have revealed several structural features that are involved in binding.

N-sulfate groups of heparin can be selectively removed by solvolysis performed by heating the
pyridium salt of heparin in dimethyl sulfoxide containing a small amount of water [52–54]. When the
reaction is performed at 50 ◦C for a short period of time, almost all of the N-sulfate groups are
removed, which leaves the other structural features unmodified. A modified solvolytic procedure
used for the N-DS of heparin can also be applied to 6-O-DS. The rates of DS decrease in the order
N-sulfate > 6-O-sulfate� 2-O-sulfat when heparin is heated in dimethyl sulfoxide containing a small
amount of water at 90 ◦C [52–54]. Most of the 6-O-sulfates can be removed while a high proportion
of the 2-O-sulfates remains, since 6-O-DS occurs more rapidly than 2-O-DS. Following the reaction,
the intermediates can be converted into 6-O-DS heparin by the re-N-sulfation of N-DS glucosamine
residues by treatment with a trimethylamine–sulfur trioxide complex in alkaline (pH 9) aqueous
media [52]. Another method for specific 6-O-DS involves the treatment of heparin (pyridinium salts)
with N-methyltrimethylsilyl-trifluoroacetamide, which results in specific 6-O-DS without detectable
depolymerization or other chemical changes [51,52]. Similarly, the complete drying of heparin with
various concentrations of NaOH by lyophilization causes specific 2-O-DS of hexuronate [49].

The degree of conversion in these N- and O-DS reactions can be controlled, which permits the
preparation of a range of partially modified heparins. Conversion can be controlled by limiting the
reaction time or the amounts of reactants consumed in the reaction, or by modifying the reaction
conditions [49,51]. These specific and controlled DS reactions result in the formation of unique
heparin/HS structures that may offer further possibilities for polymer modification.
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2.3. Size- and Structure-Defined Oligosaccharides from Heparin and their Affinities for and Activation of FGF

The structural variability of heparin/HS makes it difficult to identify the cytokine-binding domains
of a heparin without converting the polymeric heparin to oligosaccharides. Heparins can be partially
cleaved while using nitrous acid, heparin lysate, or other methods [58]. All of the cleavage methods
yield mixtures containing various oligosaccharide species that vary in both size and structure [58]. Thus,
an initial experiment should be conducted to identify the cleavage method that gives the maximum
yield of the desired oligosaccharides.

A library of size- and structure-defined oligosaccharides was prepared from intact heparin,
2-O-DS heparin, and 6-O-DS heparin by partial depolymerization with nitrous acid at pH 3 for
10 min., where 2,5-anhydromannitol residues, abbreviated as AManR, were generated at reducing ends
(Figure 2) [58]. The resulting oligosaccharides were separated according to size by gel-filtration, and
then further fractionated by ion-exchange chromatography to separate them based on their charges.
The obtained 6-mers, 8-mers, 10-mers, and 12-mers were enriched in IdoA (2-O-S)–GlcNS (6-O-S),
IdoA–GlcNS (6-O-S), and IdoA (2-O-S)–GlcNS disaccharide sequences (≥80%). These oligosaccharides
were then evaluated for their binding affinities to FGFs and their ability to promote biological activity
(Figure 2) [16,58].
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Figure 2. Preparation of size- and structure-defined oligosaccharides from native, 2-O-desulfation (DS)
and 6-O-DS heparins.

Oligosaccharides derived from chemically modified heparins bind to both FGF-1 and FGF-2,
with different affinities. Our structural studies using selectively modified 2-O- and 6-O-DS heparins
suggested that the structural requirements for heparin and HS to bind to FGF-1 are different from those
for binding to FGF-2 [20,58,59]. For example, the chlorate-treated A31 cells do not produce endogenous
sulfated heparan sulfate proteoglycan (HSPG) and intact heparin can restore the mitogenic activities of
both FGF-1 and FGF-2 in these cells. The partial 2-O-DS of heparin decreases the ability to restore the
mitogenic activities of both FGF-1 and FGF-2, and 75% or higher 2-O-DS completely abolishes this
ability [49]. Similarly, partial 6-O-DS of heparin decreases the ability to restore the mitogenic activity
of FGF-1, and 62.2% or higher 6-O-DS results in the complete loss of mitogenic ability [51]. In contrast,
partial 6-O-DS up to 66.8% significantly decreased the ability to restore FGF-2 activity. Thus, a high
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content of 6-O-sulfate groups in heparin/HS, in addition to a high content of 2-O-sulfate and N-sulfate,
is required for the activation of FGF-1, but not for FGF-2 [49,51]. Selectively O-desulfated heparin
was applied to affinity column-immobilized FGF-1 or FGF-2 and eluted while using a discontinuous
gradient of NaCl. The salt concentration that was required for complete elution from both columns
was dependent on the size and specific structure of the modified heparin [20,52,58].

In general, smaller oligosaccharides (2-mers and 4-mers) from the modified heparins show little
affinity for either FGF-1 or FGF-2, whereas the binding affinities of 6-mers, 8-mers, 10-mers, and
12-mers for both FGF-1 and FGF-2 were dependent on the specific structure. Furthermore, 10-mers
and 12-mers that were enriched in IdoA (2-O-S)–GlcNS (6-O-S) disaccharide sequences exhibited high
affinities and activations for both FGF-1 and FGF-2, whereas the same-sized oligosaccharides that
were enriched in IdoA (2-O-S)–GlcNS disaccharide sequences had a weaker affinity to FGF-1, but not
FGF-2, than unmodified heparin [17,18]. It should be pointed out that the 6-O-sulfate groups of GlcNS
residues of large oligosaccharides (10-mers or 12-mers) strongly influence the interaction with FGF-1.

The formation of ternary complexes with heparin/HS, FGF, and FGF-receptors (FGFR) cause the
mitogenic activities of FGF-1 and FGF-2 [14,59–62]. In these complexes, heparin oligosaccharides
aid the association of heparin-binding cytokines and their receptors, allowing for functional contacts
that promote signaling. In contrast, many proteins, such as FGF-1 and FGF-2, exist or self-assemble
into homodimers or multimers in their active states, and these structures are often required for
protein activity [61,62]. The common binding motifs required for binding to FGF-1 and FGF-2
were shown to be IdoA (2-O-S)–GlcNS (6-O-S) disaccharide sequences while using a library of
heparin-derived oligosaccharides [58,62–65]. Furthermore, 6-mers and 8-mers were sufficient for
binding FGF-1 and FGF-2, but 10-mers or larger oligosaccharides were required for biological
activity [14,58,62–65]. As 6-mers and 8-mers can only bind to one FGF molecule, they may be unable
to promote FGF dimerization.

3. Interaction of Heparin/HS with Heparin-Binding Cytokines

Many biological activities of heparin result from its binding to heparin-binding cytokines
and its modulation of their activities. These interactions are often very specific: for
example, heparin’s anticoagulant activity primarily results from binding antithrombin (AT)
at a discrete pentasaccharide sequence that contains a 3-O-sulfated glucosamine residue
(GlcNAc(6-O-S)–GlcA–GlcNS (3,6-diO-S)–IdoA (2-O-S)–GlcNS (6-O-S)) [8,47]. The pentasaccharide
was first suggested as that possessing the highest affinity under the experimental conditions that were
employed (elution in high salt from the affinity column), which seemed likely to have been selective
for highly charged species [47,66,67]. The pentasaccharide sequence within the heparin has tended
to be viewed as the unique binding structure [68]. Subsequent evidence has emerged suggesting
that net charge plays a significant role in the affinity of heparin for AT while the pentasaccharide
sequence binds AT with high affinity and activates AT, and that the 3-O-sulfated group in the central
glucosamine unit of the pentasaccharide is not essential for activating AT [48,69]. In fact, other types of
carbohydrate structures have also been identified that can fulfill the structural requirements of AT
binding [69], and a proposal has been made that the stabilization of AT is the key determinant of its
activity [48].

A large number of cytokines can be classified as heparin-binding proteins (Table 1). Many
functional properties of heparin/HS are ascribed to interactions between the polysaccharides and
heparin-binding cytokines. Those interactions generally depend on the presence of specific highly
sulfated regions in HS chains [9,12,15,16]. The FGF family (such as FGF-1, FGF-2, and FGF-4) [20,70–73],
platelet-derived growth factor (PDGF) [74,75], hepatocyte growth factor (HGF) [76–78], vascular
endothelial growth factor (VEGF) [79–81], transforming growth factors ((TGF)-β1 [82–84] and
TGF-β2 [82,83]), midkine (MK) [85,86], interleukins ((IL)-2 [87], IL-6 [88], IL-8 [89], IL-10 [90], and
IL-12 [91,92]), platelet factor (PF)-4 [93,94], interferon (IFN)-γ [95,96], granulocyte/macrophage-colony
stimulating factor (GM-CSF) [97,98], heparin-binding epidermal growth factor (HB-EGF) [99], monocyte
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chemotactic protein-1 (MCP-1) [100,101], stem cell factor (SCF) [102], and macrophage inflammatory
proteins ((MIP)-1α, [103] and MIP-1β [104]) (Table 1) are included as classes and examples of
heparin-binding cytokines.

Table 1. Classes and examples of heparin-binding cytokines.

Full Name (Family) Abbreviations Functions References

Fibroblast growth factor
family

FGF-1
FGF-2
FGF-4

Potential effects in the repair and
regeneration of tissues and in

development.

[20,70–72]
[20,70–72]

[20,73]

Platelet-derived growth
factor

PDGF-A
PDGF-BB

Blood vessel formation, mitogenesis, and
proliferation of mesenchymal cells.

[74]
[75]

Hepatocyte growth
factor HGF

Cell growth, cell motility, and
morphogenesis by activating a tyrosine

kinase.
[76–78]

Vascular endothelial
growth factor VEGF

Angiogenesis, bone formation,
hematopoiesis, wound healing, and

development.
[79–81]

Transforming growth
factor-β family

TGF-β1
TG F-β2

Cell growth, development, homeostasis,
and regulation of the immune system.

[82–84]
[82,83]

Midkines MK
Development, reproduction, and repair,
and in the pathogenesis of inflammatory

diseases.
[85,86]

Interleukin family
IL-2, IL-6
IL-8, IL-10

IL-12

Development and differentiation of T and
B lymphocytes, and hematopoietic cells.

[87,88]
[89,90]
[91,92]

Platelet factor-4 PF-4
Chemoattractant for neutrophils and

fibroblasts, a role in inflammation and
repair.

[93,94]

Interferon-γ IFN-γ Antiviral, immunoregulatory, and
anti-tumor properties. [95,96]

Granulocyte/macrophage-colony
stimulating factor GM-CSF Stimulation of stem cells to produce

granulocytes and monocytes. [97,98]

Heparin-binding
epidermal growth factor HB-EGF Wound healing, cardiac hypertrophy, and

heart development. [99]

Monocyte chemotactic
protein-1 MCP-1 Promotion of recruitment of monocytes

and macrophages. [100,101]

Stem cell factor SCF Hematopoiesis, supermagenesis, and
melanogenesis. [102]

Macrophage-inflammatory
protein-1

MIP-1α
MIP-1β

Activation of granulocytes, which can
lead to acute neutrophilic inflammation.

[103]
[104]

Early work attempted to identify the unique sequences that are responsible for interaction with
heparin-binding cytokines, again employing affinity chromatography followed by elution with a
salt gradient (e.g., in the case of FGF-1 and FGF-2) [49,58,105,106], although it was realized that
highly sulfated sequences, such as enriched IdoA (2-O-S)–GlcNS (6-O-S) disaccharide sequences,
could exert affinity for many heparin-binding cytokines and their effects. Interpreting these results as
providing evidence for preferred binding sequences [106,107] could lead to the potential argument that
biological activity predominantly resides in the highly sulfated domains of HS. In addition, surface
plasma resonance (SPR) has been utilized to measure the binding kinetics and affinities of various
heparin-binding cytokines with heparin while using SPR chips [63,107]. Competitive SPR studies
using different lengths of heparin-derived oligosaccharides and different chemically modified heparins
were conducted to determine the size dependence and effect of each sulfated group substitution on
their interaction.

While the pentasaccharide sequence, which includes the 3-O-sulfatedgroup in the central
glucosamine unit, undoubtedly binds AT with high affinity and activates it, as described previously,
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subsequent evidence has emerged that net charge plays a significant role in the affinity of heparin for
AT and to activate it [69]. The interactions of heparin/HS with heparin-binding cytokines generally
involve both ionic and hydrogen bonding interactions [69,108–110]. Arginine and lysine in the proteins
are positively charged (basic) amino acids, and hydrogen bonding interactions can involve basic and
other polar amino acids (Asn, Gln, Ser, etc.). Typically, ionic and hydrogen bonding residues lie in
a spatially tight array positioned on the surface or in a shallow binding pocket of heparin-binding
proteins [46,69,108–110]. For example, X-ray crystallography has studied the interactions between
FGF-2 and heparin-derived oligosaccharides (in the case of a hexasaccharide), suggesting interactions
between asparagine and lysine (Asp 28, Asp 102, Lys 27, Lys 126, Lys 136) and glutamine (Gln 135)
residues with the oligosaccharide [111].

The conventional concept of cytokines is that they are diffusible and/or mobile factors that act in
the solution. However, many cytokines can function in a non-diffusible fashion when immobilized on
either the cell surface or the ECM by binding HSPG. HSPG is known to immobilize heparin-binding
cytokines, thereby regulating biological functions, such as cell growth, migration, and adhesion [112].
Almost all of the cytokines described in Table 1 exhibit stronger binding to larger oligosaccharides
that are composed of trisulfated disaccharide units (IdoA (2-O-S)–GlcNS (6-O-S)). In fact, the HS
chain of endothelial cell proteoglycan can be defined as a copolymer that contains heparin regions
in its structure [113]. Furthermore, the very high density and clustering structure of HS chains in
HSPG may more strongly interact with heparin-binding cytokines [114,115]. Thus, it is very useful to
create HSPG mimics that are composed of a high density and clustering structure of highly sulfated
heparin-like domains.

4. Non-Anticoagulant (NAC)-Heparin Carrying Polystyrene (NAC-HCPS)

4.1. Synthesis of NAC-Heparin and its Applications

Heparins are most commonly used as an anticoagulant in injectable solutions for a variety
of indications. They specifically interact with functional proteins with high affinity, which
include heparin-binding cytokines, ECM components, and adhesion molecules [5,109]. Indeed,
heparin is a therapeutic agent for various pathological conditions that involves functional
proteins; however, high-dose heparin cannot be used, because of the excessive risk of
bleeding [5,109,116]. Non-anticoagulant (NAC)-heparin can be obtained by removing a specific
sequence (GlcNAc (6-O-S)–GlcA–GlcNS (3,6-diO-S)–IdoA (2-O-S)–GlcNS (6-O-S)) from unfractionated
(native) heparin [66–68], for example, by specific modifications, such as N-desulfation/acetylation,
2-O-desulfation, and 6-O-desulfation. However, those modifications substantially reduce various
physiological activities, as well as the anticoagulant activity of native heparin. A modification
of this procedure [116] was used to prepare periodate-oxidized (IO4

−), alkaline-degraded (IO4
−

low-molecular-weight (LMW))-heparin, and NAC-heparin (Figure 3) [117–119]. The reduced IO4
− and

IO4
− LMW-heparins lost unsulfated hexuronate (UA; GlcA or IdoA)-containing structures and they

were composed of trisulfated disaccharide units (>85% UA (2-O-S)–GlcNS (6-O-S)). The interaction of
the NAC-heparin with 4 vinyl benzylamine resulted in the production of an NAC-heparin carrying
monomer (Figure 3).

The loading of the heparin-based drug delivery systems primarily occurs through an electrostatic
mechanism between the negatively charged heparinoids and the positively charged molecular cargo.
In addition, negatively or non-charged cargo molecules can be loaded via specific interactions between
the heparinoids and cargo molecules [120,121]. Biodegradable heparinoid-based hydrogels that contain
cytokines as cargo molecules could be a practical drug delivery system [122].

Water-soluble chitosan molecules (CH-LA) at neutral pH values have been prepared by the
introduction of lactose. The material is a viscous solution and readily gels upon mixing with
heparinoid solution, which results in an injectable hydrogel being formed through polyelectrolytic
interactions between heparinoids (negatively charged), such as NAC-heparin [123,124], 6-O-desulfated
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heparin [125], and fucoidan [126] and CH-LA (positively charged). The subcutaneous injection of FGF-2
containing NAC-heparin/CH-LA into the backs of mice or rats induced marked neovascularization
and fibrous tissue formation near the injection sites. Furthermore, the controlled release of biologically
active FGF-2 from FGF-2 containing NAC-heparin/CH-LA led to the induction of angiogenesis and,
possibly, collateral circulation [123,124] (Table 2).
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4.2. NAC-HCPS and its Applications

The simultaneous presentation of multiple copies of biorecognizable saccharide epitopes on
an appropriate macromolecular scaffold creates a multivalent display that amplifies the affinity of
glycoside-mediated receptor targeting [127]. Indeed, multiple HS and heparin chains are naturally
present in HSPG and serglycin (heparin–PG). Saccharide epitopes have been introduced into other
forms of heparin/HS-based materials, such as nanoparticles and coatings on various biomedical
devices. The drawbacks of the use of heparin and heparin-mimicking materials have been widely
studied in light of their therapeutic applications, given the diverse functions of heparin in the body,
including anticoagulation, tissue regeneration, anti-inflammation, and protein stabilization [128].
NAC-(IO4

− LMW)-heparin carrying polystyrene (NAC-HCPS) is a synthetic glycoconjugate that
disperses in water and saline. NAC-HCPS has a molecular weight of approximately 80–120 kDa and it
comprises approximately ten IO4

− LMW-heparins linked to a polystyrene core (Figure 4A) [129,130].
The hydrophobic polystyrene core of NAC-HCPS in water might be buried inside the large molecule
to form a hydrophobic core sequestered from water [130,131], and NAC-HCPS forms aggregated
nanoparticles (Figure 4B) with an average diameter of 220–230 nm and a zeta-charge of about
−30 mV. Figure 4B shows an image of NAC-HCPS aggregated nanoparticles obtained while using a
cryo-scanning electron microscope (SEM) (JEOL Ltd., Tokyo, Japan).
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Figure 4. Production of NAC-heparin carrying polystyrene (NAC-HCPS) and NAC-HCPS aggregated
nanoparticles. (A): Periodate-oxidized (IO4

−), alkaline-degraded (IO4
− LMW)-heparins are prepared

as NAC-heparin, and the interaction of the NAC-heparin with 4 vinyl benzylamine resulted in the
production of NAC-heparin carrying monomer. After the polymerization, NAC-heparin carrying
polystyrene (NAC-HCPS) was produced. (B): The hydrophilic NAC-heparin chains tend to orient
toward the outside of the polymer in water, resulting in aggregated nanoparticles with a higher
concentration of carbohydrates on the polymer surface.

The synthesized NAC-HCPS showed reduced anticoagulant activity relative to native heparin
due to the loss of the antithrombin binding pentasaccharide sequence containing a 3-O-sulfated
glucosamine residue and enhanced ability to interact with various heparin-binding cytokines, such as
FGF, VEGF, and HGF. However, NAC-HCPS strongly inhibited heparin-binding cytokine-induced
endothelial cell proliferation in vitro. NAC-HCPS contains a high density of trisulfated disaccharide
(IdoA (2-O-S)–GlcNS (6-O-S)) enriched NAC-heparin chains that are oriented towards the solution.
The hydrophilic NAC-heparin chains tend to orient toward the outside of the polymer, which results
in a higher concentration of carbohydrates on the polymer surface. An increase in the density of
carbohydrate chains greatly enhanced the ability of cell surface receptors to recognize the target [120].
Similarly, enhanced biological activities due to the carbohydrate-clustering effect and immobilization
of carbohydrate-clustered PGs have been reported and ascribed to the presence of multiple GAG chains
in the core protein [120,130]. The very high density and clustering structure of NAC-heparin chains
might not support the overall interaction of heparin-binding cytokines with their receptors to induce
mitogenic activities, although NAC-HCPS interacts more strongly with cytokines than NAC-heparins.
In fact, NAC-HCPS inhibited angiogenesis and subcutaneous induced tumor growth and metastasis
in vivo [131], as well as neointimal proliferation of balloon-injured arteries [132].

Lactose-carrying polystyrene, poly(N-p-vinyl-benzyl-4-O-D-gluconamide) (PVLA), was previously
developed as a synthetic glycoconjugate that adsorbs to plastic plates and possesses unique properties
as a substratum, thereby mediating the interaction with carbohydrate receptors for the primary culture
of rat hepatocytes [133]. Similarly, NAC-HCPS is efficiently adsorbed onto plastic surfaces, such
as those of tissue culture plates, and heparin-binding cytokines are immobilized on the surface of
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NAC-HCPS-coated plates [131]. Mouse adipose tissue-derived stromal cells (ADSCs) grew well in low
serum and they maintained their multilineage potential for differentiation on NAC-HSPS-coated plates
in the presence of FGF-2 [134,135] (Table 2). Thus, NAC-HCPS-coated plates, together with FGF-2 in
low-serum media, might be useful for autologous ADSC expansion in clinical cell therapy.

Table 2. Biomedical applications of NAC-heparin and NAC-HCPS as biomaterials.

Applications Overview References

Injection of NAC-heparin/CH-LA

Induction of angiogenesis and collateral
circulation by subcutaneous injection of

FGF-2 containing
NAC-heparin/chitosan–lactose (CH-LA)

[123,124]

Inhibition of angiogenesis and
tumor metastasis in vivo

NAC-HCPS inhibited angiogenesis and
subcutaneous induced tumor growth and

metastasis in vivo
[131]

Inhibition of neointimal
proliferation of

balloon-injured arteries

NAC-HCPS inhibited smooth muscle cell
growth in vitro and neointimal proliferation

of balloon-injured arteries in vivo
[132]

Substratum for cell cultures

NAC-HCPS is efficiently adsorbed onto
plastic surfaces such as those of tissue culture

plates, and heparin-binding cytokines are
immobilized on the surface of

NAC-HCPS-coated plates

[134,135]

5. Heparin-Based Polyelectrolyte Complex Nano/Micro-Particles (N/MPs) and their Applications

5.1. Low-Molecular-Weight Heparin/Protamine (LMWH/P) N/MPs for Cytokine Carrier

Mechanisms, critical experimental aspects, and applications of polyelectrolyte complexes (PECs)
were comprehensively reviewed [136]. The present review focuses on PEC hydrogels that formed by
the chemical interaction of chitosan and crosslinkers [137,138]. Heparinoids, which are conjugated
to nano-materials, have been recently investigated for their chemical and biological properties and
applications [35,37]. Heparinoid has been conjugated to the surface of nanoparticles (NPs), such as
magnetic [139] and metallic NPs [140], heparin-coated nanoparticles coupled to hemoglobin [141], and
biopolymers [142]. Furthermore, Syndecan-4 proteoliposomes enhance FGF-2-induced proliferation,
migration, and neovascularization of ischemic muscles [143]. When biological molecules, such as
functional proteins and DNA, are incorporated on or within NPs, they provide novel and enhanced
activities with potential applications in therapeutics, biosensors, imaging, and drug delivery [35,37,144].
Those biomolecules can be passivated on NPs, thus improving their biocompatibility.

Electrostatic interactions between oppositely charged polyelectrolytes, such as
low-molecular-weight heparin (LMWH) (MW: approximately 5000 Da) and protamine, generate
PECs (Figure 6A). When this interaction occurs in non-equivalent ratios, nonstoichiometric PECs are
produced, which causes each PEC particle to carry an excess charge [37,145,146]. Proteins interact with
both synthetic and natural PECs [26]. Heparin is useful as a therapeutic agent in various pathological
conditions that involve heparin-binding cytokines. However, high-dose heparin cannot be used
because of the excessive risk of bleeding [117]. In contrast, LMWH offers pharmacological and
practical advantages when compared with heparin. The lower protein-binding activity of LMWH
produces a low, stable, and predictable anticoagulant response, thereby bypassing the need for
laboratory monitoring of drug levels to adjust the dosage [117]. In addition, one or two subcutaneous
injections per day are sufficient for maintaining therapeutic concentrations because of its longer plasma
half-life [117]. Protamine, which is a purified mixture of proteins obtained from fish sperm, neutralizes
heparin and LMWH by forming a stable complex that lacks anticoagulant activity [147]. Protamine is
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also clinically employed to reverse the anticoagulant activity of heparin following cardiopulmonary
bypass as well as in cases of heparin-induced bleeding [148].

Round Low-molecular-weight heparin and protamine nano/micro-particles (LMWH/P N/MPs)
have previously been prepared as PECs by mixing LMWH with protamine at a ratio of 6:4
(Figure 5A) [37,149,150]. LMWH/P N/MPs are 50–200 nm in diameter and they have a zeta charge
of −25 to −30 mV. LMWH/P N/MPs specifically bind to heparin-binding growth factors (GFs) such
as FGF-2 [149,150], HGF [151], and other cytokines that are secreted from platelet-rich plasma (PRP)
(Figure 5B) [152,153], and they can stabilize, control the release, and activate those cytokines [37,152].
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Figure 5. Generation of cytokine-containing low-molecular-weight heparin and protamine
nano/micro-particles (LMWH/P N/MPs) as polyelectrolyte complexes (PECs). (A): PECs are generated
by electrostatic interactions between oppositely charged LMWH and protamine as nano/micro-particles
(N/MPs). (B): Production of growth factors-containing LMWH/P N/MPs as PECs. Heparin-binding
cytokines, such as fibroblast growth factor-2 (FGF-2), hepatocyte growth factor (HGF), and cytokines
from platelet-rich plasma (PRP) were bound to the surface of LMWH/P N/MP.

Those GFs, and cytokines from PRP-containing LMWH/P N/MPs induce neovascularization and
result in collateral blood vessel formation [150,151,153–156]. LMWH/P N/MPs can be retained on
the cell surfaces and matrixes in various tissues in vivo to control the release of cytokine-containing
LMWH/P N/MPs, and they can protect and activate cytokine-containing LMWH/P N/MPs induced
vascularization and fibrous tissue formation by stabilizing, activating, and gradually releasing their
cargo of cytokines [150–156]. Thus, FGF-2 and cytokines from PRP-containing LMWH/P N/MPs
also have stimulatory effects on human hair regrowth [157,158] and the enhancement of mitomycin
C-treated [159] and radiation-induced healing-impaired wound repair [160]. Furthermore, skin flap
necrosis was prevented [161] and topical pre-injection of cytokines from PRP-containing LMWH/P
N/MPs promoted epithelialization and angiogenesis in split-thickness skin graft donor sites [162].
Furthermore, the survival and healing of wounds in a crush syndrome model of rat were promoted
by the injection of FGF-2-containing LMWH/P N/MPs [163] (Table 3). However, it is necessary to
understand intramuscular pharmacokinetics and guide the local drug delivery for effective local
intramuscular injection [164].
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Table 3. Biomedical applications of cytokine-containing LMWH/P N/MPs as biomaterials.

Applications Overview References

Carrier for FGF-2, HGF, and cytokines
from platelet-rich plasma

Adsorption, stabilization, controlled release,
and activation of FGF-2, HGF, and cytokines
from platelet-rich plasma (PRP).

[149,150] (FGF-2)
[151] (HGF)
[152] (Cytokines from PRP)

Neovascularization Induction of collateral blood vessel formation
in rabbit by FGF-2, HGF, and cytokines from
PRP-containing LMWH/P N/MPs.

[150,154,155] (FGF-2)
[151] (HGF)
[153,156] (Cytokines from
PRP)

Hair regrowth Enhancement of human hair growth by FGF-2
and cytokines from PRP-containing LMWH/P
N/MPs.

[157] (FGF-2)
[158] (Cytokines from PRP)

Injection of cytokines from PRP into
skin for healing-impaired wound

Enhancement of mitomycin C-treated
healing-impaired wound by cytokines from
PRP-containing LMWH/P N/MPs.

[159]

Injection of cytokines from PRP into
skin for healing-impaired wound

Enhancement of radiation-induced
healing-impaired wound repair by
FGF-2-containing LMWH/P N/MPs.

[160]

Injection of cytokines from PRP into
skin for skin flap necrosis

Prevention of skin flap necrosis by topical
injection of cytokines from PRP-containing
LMWH/P N/MPs.

[161]

Injection of cytokines from PRP into skin
for split-thickness skin graft donor sites

Promotion of epithelialization and
angiogenesis in split-thickness skin graft
donor sites by pre-injection of cytokines from
PRP-containing LMWH/P N/MPs.

[162]

Injection of FGF-2 into skin for wounds
in crush syndrome

Promotion of survival and healing of wounds
in crush syndrome model of rat by injection
of FGF-2-containing LMWH/P N/MPs.

[163]

5.2. LMWH/P N/MPs for Cell Carrier

LMWH/P N/MPs bind to various adhesive cell surfaces, including adipose-derived stromal
cells (ADSCs) and bone marrow-derived mesenchymal stem cells (BMSCs), as well as tumor
cells, through specific interactions between the LMWH/P N/MPs and cell surface heparin-binding
proteins [37,165–167]. The interaction of cells with LMWH/P N/MPs resulted in the formation of
aggregates that comprise cells and LMWH/P N/MPs within a few hours (Figure 6A). These aggregates
increased the cellular viability in vitro [165,167]. Injection of these aggregates induced vascularization
and fibrous tissue formation in vivo [167]. Furthermore, LMWH/P N/MPs that are used as cell carriers
can enhance cell viability in vivo (Figure 6B).

LMWH/P N/MPs efficiently bind to tissue culture plates to act as a coating matrix. The ability of
LMWH/P N/MPs to retain heparin-binding cytokines could make them very useful in two-dimensional
cell culture [168–170]. Human microvascular endothelial cells and human dermal fibroblast cells
adhered well to LMWH/P N/MP-coated suspension culture plates [171] and they grew rapidly in low
(1–2%) fetal bovine serum (FBS) medium that was supplemented with FGF-2. This approach could
allow for the use of low autologous serum (1–2%) for culturing BMSCs and ADSCs [167,168]. CD34+

hematopoietic progenitor cells (CD34+ HCs) that were derived from mouse bone marrow showed
higher proliferation on LMWH/P N/MP-coated plates in hematopoietic progenitor growth medium
that was supplemented with the appropriate cytokines than on the uncoated plates [170]. Furthermore,
ADSCs and BMSCs, as well as other adhesion cells, can also be grown efficiently in three-dimensional
(3D) culture while using low human plasma (3%)-DMEM gel containing LMWH/P N/MPs without
animal serum [171,172].

Various biomaterials have been used as cell carriers during cell implantations [173,174]. Inbred rat
(IR) plasma (IRP)-DMEM gel with LMWH/P N/MPs, the biomaterial that were tested in this study, can
carry many IR-ADSCs and also act as a cell carrier in which the cells can grow. It has been reported that
many LMWH/P N/MPs can bind to surfaces of ADSCs, and the interaction of ADSCs with LMWH/P
N/MPs induces ADSCs and LMWH/P N/MP-aggregate formation, and substantially maintains cell
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viability for at least three days in suspension-culture conditions [167]. In contrast, it appears that
the interaction of IR-ADSCs in IRP-DMEM gel as a three-dimensional (3D) matrix stimulates the
growth of IR-ADSCs and generates a 3D network [171,172]. Furthermore, the growth factors that were
secreted from IR-ADSCs, as well as the growth factors derived from the IRP, may be retained within
the IRP-DMEM gel with LMWH/P N/MPs [175] (Table 4).
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[175]. Furthermore, IR-ADSCs using IRP (6%)-DMEM gel with LMWH/P N/MPs/FGF-2 were applied 
to full thickness skin excisions as healing-impaired wounds on the backs of STZ-induced diabetic rats 
[176]. The wound closures that were treated with IR-ADSCs while using IRP-DMEM gel with 
LMWH/P N/MPs/FGF-2 were significantly enhanced in post-wounding [176] (Table 4). The 
histological examination of wounds that were treated with IR-ADSCs while using IRP-DMEM gel 
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Table 4. Biomedical applications of LMWH/P N/MPs as cell carriers. 

Applications Overview References 

Figure 6. LMWH/P NPs as a cell carrier. (A): LMWH/P N/MPs bind to adipose tissue-derived
stromal cells (ADSCs) through specific interactions between the LMWH/P N/MPs and cell surface
heparin-binding proteins. The interaction of cells with LMWH/P N/MPs resulted in the formation of
aggregates comprising cells and LMWH/P N/MPs within 1–3 h. (B): These aggregates increased the
cellular viability in vitro.

Table 4. Biomedical applications of LMWH/P N/MPs as cell carriers.

Applications Overview References

Formation of cell aggregates Formation of cell aggregates by the
interaction of cells with LMWH/P N/MPs and
increase of cellular viability.

[165] (Tumor cells)
[167] (ADSCs)

2D expansion of cells The ability of LMWH/P N/MPs to retain
heparin-binding cytokines. Various cells
two-dimensionally expand on those
cytokine-coated plates.

[167,168] (ADSCs and BMSCs)
[169] (Adhesive cells)
[170] (Hematopoietic pro-
genitor cells)

3D expansion of cells Various cells can also be grown efficiently in
three-dimensional (3D) culture using low
human plasma-DMEM gel containing
LMWH/P N/MPs.

[171] (Adhesion cells)
[172] (ADSCs and BMSCs)

Transplantation of ADSCs Transplantation of 3D-cultured IR-ADSCs
derived from inbred rats using injectable low
IRP (3%)-DMEM gel with LMWH/P N/MPs.

[175]

Transplantation of 3D-cultured IR-ADSCs
derived from inbred rats using injectable
IR-ADSCs using IRP (6%)-DMEM gel with
LMWH/P N/MPs/FGF-2.

[176]
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We previously applied 3D-cultured IR-ADSCs that were derived from inbred male Fisher 344 rats
while using injectable low IRP (3%)-DMEM gel with LMWH/P N/MPs for cell transplantation [175].
Furthermore, IR-ADSCs using IRP (6%)-DMEM gel with LMWH/P N/MPs/FGF-2 were applied to full
thickness skin excisions as healing-impaired wounds on the backs of STZ-induced diabetic rats [176].
The wound closures that were treated with IR-ADSCs while using IRP-DMEM gel with LMWH/P
N/MPs/FGF-2 were significantly enhanced in post-wounding [176] (Table 4). The histological
examination of wounds that were treated with IR-ADSCs while using IRP-DMEM gel with
LMWH/P N/MPs/FGF-2 demonstrated significantly advanced epithelialization, capillary formation,
and granulation tissue formation.

6. Heparinoid-Coated Devices

Research has shown that there are heparin-like molecular structures in microvascular endothelial
cells; when the solidification state of blood changes, such endothelial cells will activate [114], and
heparanase regulates thrombosis in vascular injury [177]. Therefore, it might be accepted after all as a
reasonable method for modifying the abiotic surface with heparinoids to give it high blood compatibility.
Heparin solidification has been widely studied on the blood contact surface of cardiopulmonary bypass
(CPB) equipment, catheters, vascular stents, and coronary stents [178,179]. Heparin immobilization
technologies can be divided into two broad categories: eluting technologies that release heparin from
the device, and non-eluting technologies that are intended for permanent covalent immobilization of
heparin to the device surface. Release-based approaches are essentially drug delivery systems that
can prevent local device related acute thrombosis. The release rate of heparin from the surface might
be tailored through physical entrapment or the ionic binding of heparin to the surface. For example,
complexes of heparin with branched surfactants bearing quaternary ammonium groups can be
deposited on a material surface. Blood contact causes the release of the ionic complex from the surface,
but the presence of the surfactant slows the rate of heparin release. Other elution-based technologies
have been described in previous reviews [180].

Heparin, as the first compound considered for stent-based delivery, was chosen on the basis of
promising tissue culture and animal experiments. However, heparin has failed to stop restenosis
clinically. Recently used compounds, such as paclitaxel, are of a different sort, being hydrophobic in
nature, and their effects after local release are far more profound. The study suggested that physiological
transport forces cause local concentrations to significantly deviate from mean concentrations [181].
In fact, the controlled release of paclitaxel from photocrosslinked chitosan hydrogels inhibited
subcutaneous tumor growth in mice [182].

Immobilizing heparin to the device surface is the alternative approach intended to confer
long-term surface thrombo-resistance. Heparin can be readily immobilized by different surface
conjugation chemistries, by virtue of its strong net negative charge, low pKa due to the abundance of
carboxyl and sulfo-groups, and a variety of chemically active functional groups [183]. Each repeating
disaccharide unit offers at least one carboxyl and hydroxyl functional group, which might be activated
and subsequently attached to a compatible functional group on the target surface. This might be
achieved by direct chemical activation of the surface to introduce complementary functional groups
for immobilization of heparin, or through the application of an intermediary priming matrix to which
the heparin can be covalently linked. For example, the carbodiimide crosslinker EDC has been used to
activate carboxyl groups along the heparin chain and then conjugate to amines that were incorporated
into the target surface [184]. Periodate oxidation of vicinal diols introduces aldehydes along the heparin
chain, which might also be linked to an aminated surface by reductive amination [185].

7. Overview

Heparinoids can be used in drug delivery systems and coating devices in the fields of tissue
engineering and biotechnology. Heparinoids are associated with various biological processes of
heparin-binding cytokines, in addition to their well-known anticoagulant action, and they are
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implicated in cell adhesion, recognition, migration, and the regulation of enzymatic activities. The use
of heparinoids in medical and biotechnological fields often requires adequate chemical modification of
the polymers to change their properties and influence their affinities for heparin-binding cytokines.
As described in this review, understanding the interaction of native and modified heparin/HS with
heparin-binding cytokines could result in the production of valuable heparinoid-based biomaterials
for controlled protein delivery.

Many studies have identified the specific binding sequences for different heparin-binding proteins,
and some biochemical processes, such as anticoagulation and FGF signaling, only proceed with specific
binding sequences, as described in this review. IO4

− LMW-heparin is simply modified NAC-heparin;
when composed of more than 85% trisulfated disaccharide units (IdoA (2-O-S)–GlcNS (6-O-S)), this
modified heparin can interact with almost all functional proteins and affect their biological activities.
However, even NAC-heparin polysaccharides often have only weak biological activities in vivo.

Heparin/HS are highly soluble and dispersible in water and, thus, engineering approaches
are important to further reinforce their biological activities to improve their in vivo applicability as
biomaterials. The practical application of heparin/HS often involves the use of an adequate medium,
such as hydrogels, HCPS, or PECs, to retain the formed complexes and the multivalent and cluster
effects of the functional sequences in the heparin/HS. The covalent or non-covalent modification
of biomaterials with heparin/HS can augment their stability, localization, controlled release, and
activation. In addition, assemblies of heparinoids and other polyelectrolytes retain heparin-binding
cytokines at the local cell–material interfaces via specific non-covalent interactions. The present
review discussed heparin/HS-based biomaterials, such as NAC-HCPS, hydrogels, membranes, and
LMWH/P N/MPs, and their functions with respect to their applications as versatile biomaterials. Such
heparin/HS-based biomaterials have been shown to be safe and efficacious in vivo for the delivery of a
variety of heparin-binding molecules.
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