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Although review papers on causal inference methods are now available, there
is a lack of introductory overviews on what they can render and on the guid-
ing criteria for choosing one particular method. This tutorial gives an overview
in situations where an exposure of interest is set at a chosen baseline (“point
exposure”) and the target outcome arises at a later time point. We first phrase
relevant causal questions and make a case for being specific about the possible
exposure levels involved and the populations for which the question is relevant.
Using the potential outcomes framework, we describe principled definitions
of causal effects and of estimation approaches classified according to whether
they invoke the no unmeasured confounding assumption (including outcome
regression and propensity score-based methods) or an instrumental variable
with added assumptions. We mainly focus on continuous outcomes and causal
average treatment effects. We discuss interpretation, challenges, and potential
pitfalls and illustrate application using a “simulation learner,” that mimics the
effect of various breastfeeding interventions on a child’s later development. This
involves a typical simulation component with generated exposure, covariate,
and outcome data inspired by a randomized intervention study. The simulation
learner further generates various (linked) exposure types with a set of possible
values per observation unit, from which observed as well as potential outcome
data are generated. It thus provides true values of several causal effects. R code
for data generation and analysis is available on www.ofcaus.org, where SAS and
Stata code for analysis is also provided.
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1 INTRODUCTION

The literature on causal inference methods and their applications is expanding at an extraordinary rate. In the field
of health research, this is fuelled by opportunities found in the rise of electronic health records and the revived
aims of evidence-based precision medicine. One wishes to learn from rich data sources how different exposure (or
treatment) levels causally affect expected outcomes in specific population strata so as to inform treatment deci-
sions. Neither the mere abundance of data nor the use of a more flexible model paves the road from association to
causation.

Experimental studies have the great advantage that treatment assignment is randomized. A simple comparison of out-
comes on different randomized arms then yields an intention-to-treat effect as a robust causal effect measure. However,
nonexperimental or observational data remain necessary for several reasons. (1) Randomized controlled trials (RCTs)
with experimental treatments tend to be conducted in rather selected populations, where the targeted effect is expected to
be larger, while groups vulnerable to side effects, such as children or older patients with comorbidities, are often excluded.
Informed consent procedures may also lead to restricted trial populations. (2) We may seek to learn about the effect of
treatments actually received in these trials, beyond the pragmatic effect of treatment assigned. This calls for an explo-
ration of compliance with the assignment and hence for follow-up exposure data, that is, nonrandomized components of
treatment received. (3) In many situations (treatment) decisions need to be taken in the absence of RCT evidence. (4) A
wealth of patient data is being gathered in disease registries and other electronic patient records; these often contain more
variables, larger sample sizes, and greater population coverage than an RCT. These needs and opportunities push scien-
tists to seek causal answers in observational settings with larger and less selective populations, with longer follow-up, and
with a wider range of exposures and outcome types (including quality of life and adverse events).

Statistical causal inference has made great progress over the last quarter century, deriving new estimators for
well-defined estimands using new tools such as directed acyclic graphs (DAGs) and structural models for potential
outcomes.1–3 However, research papers—both theoretical and applied—tend to select an analysis method without
formalizing a clear causal question first, and often describe published conclusions in vague causal terms missing a
clear specification of the target of estimation. Typically, when this is specified, that is, there is a well-defined esti-
mand, a range of techniques can yield (asymptotically) unbiased answers under a specific set of assumptions. Several
overview papers and tutorials have been published in this field. They are mostly focused, however, on the proper-
ties of one particular technique without addressing the topic in its generality. Yet in our experience, much confusion
still exists about what exactly is being estimated, for what purpose, by which technique, and under what plausible
assumptions. Here, we aim to start from the beginning, considering the most commonly defined causal estimands,
the assumptions needed to interpret them meaningfully for various specifications of the exposure variable, and the
levels at which we might intervene to achieve different outcomes. In this way, we offer guidance on understanding
what questions can be answered using various principled estimation approaches while invoking sensibly structured
assumptions.

We illustrate concepts and techniques referring to a case study exemplified by simulated data, inspired by the Pro-
motion of Breastfeeding Intervention Trial (PROBIT),4 a large RCT in which mother-infants pairs across 31 Belarusian
maternity hospitals were randomized to receive either standard care or an offer to follow a breastfeeding encouragement
program. Aims of the study were to investigate the effect of the program and breastfeeding on a child’s later develop-
ment. We generated simulated data to examine weight achieved at age 3 months as the outcome of interest in relation to
a set of exposures defined starting from the intervention and several of its downstream factors. Although our motivating
data stem from an RCT, the study also exemplifies questions faced in observational studies when considering down-
stream exposures, such as adherence to the program or starting breastfeeding. This happens because their relationship
with the outcome is confounded by other variables. Our simulation goes beyond mimicking the “observed world” by
also simulating for every study participant how different exposures strategies would lead to different potential responses.
We call this the simulation learner PROBITsim and refer to the setting as the breastfeeding encouragement program
(BEP) example.

Our aim here is to give practical statisticians a compact but principled and rigorous operational basis for applied causal
inference for the effect of point (ie, baseline) exposures in a prospective study. We build up concepts, terminology, and
notation to express the question of interest and define the targeted causal parameter. We will primarily focus on contin-
uous outcomes where average treatment effects are of interest, although many of the concepts we discuss are valid in
general. In Section 2, we lay out the steps to take when conducting this inference, referring to key elements of the data
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structure and various levels of possible exposure to treatment. Sections 2 also presents the potential outcomes frame-
work with underlying assumptions and formalizes causal effects of interest. In Section 3, we describe PROBITsim, our
simulation learner. We then outline various estimation approaches under the no unmeasured confounding assumption
and under the instrumental variable assumption in Section 4. We explain how the approaches can be implemented for
different types of exposures, and apply the methods in the simulation learner in Section 5. We end with an overview that
highlights overlap and specificity of the methods as well as their performance in the context of PROBITsim, and more
generally. R code for data generation, R, SAS, and STATA code for analysis, and slides that accompany this material and
apply the methods to a second case study are available on www.ofcaus.org and the linked GitHub depository https://
github.com/IngWae/Formulating-causal-questions.5

2 FROM SCIENTIFIC QUESTIONS TO CAUSAL PARAMETERS

Causal questions ask what would happen to outcome Y , had exposure A been different from what is observed. To for-
malize this, we will use the concept of potential outcomes6,7 that captures the thought process of setting the treatment
to values a ∈ , a set of possible treatment values, without changing any preexisting covariates or characteristics of the
individual. Let Y𝔞(a) be the potential outcome that would occur if the exposure were set to take the value a, with notation
𝔞(a) indicating the action of setting A to a. This definition is equivalent to Pearl’s do operator, whereby the distribution
f of Y when A is set to 𝔞 is denoted by f (Y |do(A = 𝔞)).1 In what follows we will refer to A as either an “exposure” or
a “treatment” interchangeably. Since individual-level causal effects can never be observed, we focus on expected causal
contrasts in certain populations. In the BEP example there are several linked definitions of treatment; these include “of-
fering a BEP,” “following a BEP,” starting breastfeeding, or “following breastfeeding for 3 full months.” Each of them
may require a decision of switching the treatment on or off. Ideally this decision is informed by what outcome to expect
following either choice.

It is important that causal contrasts should reflect the research context. Hence in this example one could be interested
in evaluating the effectiveness of the program for the total population or in certain subpopulations. However, for some
subpopulations the intervention may not be suitable and thus assessing causal effects in such subpopulations would not
be useful.

Consider the following question: “Does a breastfeeding intervention, such as the one implemented in the PROBIT trial,
increase babies’ weight at 3 months?” Despite its simplicity, empirical evaluation of this question involves its translation
into meaningful quantities to be estimated. This requires several intermediate steps:

1. Define the treatment and its relevant levels/values corresponding to the scientific question of the study.
2. Define the outcome that corresponds to the scientific question(s) under study.
3. Define the population(s) of interest.
4. Formalize the potential outcomes, one for each level of the treatment that the study population could have possibly

experienced.
5. Specify the target causal effect in terms of a parameter, that is, the estimand, as a (summary) contrast between the

potential outcome distributions.
6. State the assumptions validating the causal effect estimation from the available data.
7. Estimate the target causal effect.
8. Evaluate the validity of the assumptions and perform sensitivity analyses as needed.

Explicitly formulating the decision problem one aims to solve or the hypothetical target trial one would ideally like to
conduct8 may guide the steps outlined above. In the following we expand on steps 1-5 before introducing the simulation
learner in Section 3 and discussing steps 6-8 in Section 4.

2.1 Treatments

Opinions in the causal inference literature differ on how broad the definition of “treatment” may be. Some say that
the treatment should be manipulable, like giving a drug or providing a breastfeeding encouragement program.9 Here,
we take a more liberal position which would also include for example genetic factors or even (biological) sex as
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treatments. Whichever the philosophy, considered levels of the treatments to be compared need a clear definition, as
discussed below.10

Treatment definitions are by necessity driven by the context in which the study is conducted and
the available data. The causal target may thus differ for a policy implementation or a new drug regis-
tration, for instance, or whether the data are from an RCT or administrative data. In the BEP example
we may wish to define the causal effect of a breastfeeding intervention on the babies’ weight at
3 months.

There are several alternative specifications of a “breastfeeding treatment” possible. Below we list a few which are
interconnected and represent different types of treatment decisions:

• A1: (randomized) treatment prescription, for example, an encouragement program was offered to pregnant
women.

• A2: uptake of the intervention, for example, the woman participated in the program (when offered), which may include
talking to a lactation consultant, reading brochures on breastfeeding.

• A3: uptake of the target of intervention, for example, the mother started breastfeeding.
• A4: completion of the target of intervention, for example,the mother started breastfeeding and continued

for 3 months.

Each of these treatment definitions Ak, k= 1, … , 4, refers to a particular breastfeeding event taking place (or not).
A public health authority will be more interested in A1 because it can only decide to offer the BEP or not; an individual
mother’s interest will be in the effect of A2, A3, and A4 because she decides whether to participate in the program, to start,
and to maintain breastfeeding. For any one, several possible causal contrasts may be of interest and are estimable. See
Section 2.6.

It is worth noting that these various definitions are not all clear-cut. For example, while A4 = 1 may be most specific
in what it indicates, A4 = 0 represents a whole range of durations of breastfeeding: from “none” to “almost 3 months.” In
the same vein, A3 = 1 represents a range of breastfeeding durations that follow initiation, against A3 = 0 which implies no
breastfeeding at all. The variation in underlying levels of treatment could be seen as multiple versions of the treatment;
we consider this topic further in Section 3.2.

Intervening at a certain stage in the “exposure chain” likely affects downstream exposure levels, as reflected
in Figure 1. This is the setup we have used to generate the simulation learner data set (see Section 3), with
the BEP being only available to those randomized, and where uptake of the program increases the probability of
A3 = 1 and, importantly, also increases breastfeeding duration among women who initiate breastfeeding. There are
of course many further aspects of the breastfeeding process that could be considered when defining exposures that
are downstream from an initial randomized intervention, for example, maternal diet, the timing and frequency of
breastfeeding, exclusive vs predominant breastfeeding, and so on; however for didactic purposes, we shall omit such
considerations.

F I G U R E 1 Data generating
model for the simulation learner. BEP,
breastfeeding encouragement program;
BF, breastfeeding; m, months
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2.2 Outcomes

Similar to the definition of the treatment, it is important to carefully define the outcome Y . In the BEP example, the out-
come of interest could be the infant’s weight at 3 months, or the increment between birth weight and weight at 3 months
or whether the infant is above a certain weight at 3 months. Typically, the distribution of both the absolute weight and
weight gain are of interest: a BEP may well increase mean weight at 3 months by 200 g but also increase the number of
overweight infants. Clarity of which outcome definition corresponds to the question of interest is therefore crucial.

2.3 Populations and subpopulations

A causal effect will in most cases vary across subgroups due to its dependence on baseline characteristics (effect modifi-
cation). One may then be interested in the causal effects in several relevant subpopulations. It is therefore important to
identify and describe the (sub)population to whom a stated effect pertains. Researchers and policy-makers might want
to study whether the breastfeeding intervention is substantially more effective for infants of less educated women who
may be at highest risk of being born low weight. Alternatively they could be interested in the effect of treatment in the
subpopulation of those who are actually exposed (the “treated,” as discussed above). The definition of these subpopula-
tions involves conditioning on certain characteristics (respectively, education level and treatment received) and leads to
focusing on conditional effects (see Section 4.1).

In the next section we will develop causal effects for the different subpopulations. In most settings we want to consider
populations of individuals who have the possibility of receiving all treatment levels of interest. This restriction is referred
to as the positivity assumption.11 It could be violated, for example, if the target population included women for whom
breastfeeding is precluded (because of preexisting or pregnancy-related conditions). Studying the effect of breastfeeding in
the subpopulation of infants whose mothers cannot breastfeed (or indeed a larger population that includes this subgroup)
may be impossible due to missing information—and indeed irrelevant.

2.4 Potential outcomes

As stated above, a potential outcome Y𝔞(a) is the outcome we would observe if an exposure were set at a certain level
a, where 𝔞(a) indicates the action of setting A to a. This notion needs some additional considerations linking it to the
treatments and outcomes definitions given above. Specifically there are two commonly invoked assumptions that help
achieve this: no interference and causal consistency.

2.4.1 No interference

No interference means that the impact of treatment on the outcome of individual i is not altered by other individuals being
exposed or not. At first sight this is likely justified in our setting: one baby’s weight typically does not change because
another baby is being breastfed. In resource poor or closely confined settings this could, however, be challenged. For
instance, interference would happen when a child is affected by the consequences of a reduced immune system of other
children who were not breastfed and hence becomes more susceptible to infectious diseases which may impact their
weight at 3 months.

When the assumption of no interference is not met, the potential outcome definition becomes much more complex
and involves the treatment assigned to other individuals.12 For example, if there were interference among infants living
in the same household, the potential outcome of infant i would be defined not as Y𝔞(a) but as Y𝔞i(a),𝔞i1 (a

∗),… , 𝔞iKi
(a†), where

infants i1 to iKi belong to the same household as infant i and their breastfeeding status is set to take values (a*, … , a†).

2.4.2 Causal consistency

The assumption of causal consistency relates the observed outcome to the potential outcomes. Consistency (at an individ-
ual level) means that Y𝔞(a) = Y when A= a, hence assuming consistency implies that the observed outcome in our data is
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the same as the potential outcome that would be realized in response to setting the treatment to the level of the exposure
that was observed. This directly affects our interpretation of the estimated causal effect for the study population. It will
also affect transportability to new settings in ways that may be hard to predict.

In practice this implies that the mode of receiving as opposed to choosing treatment level A= a per se has no impact
on outcome. This may not be the case for many real-life settings. For example “starting breastfeeding” (A3 = 1) potentially
has multiple versions as some mothers who initiate breastfeeding may continue to do so for at least 3 months, while
others may discontinue sooner. Also, breastfeeding may be exclusive or supplemented, breast milk may be fed at the breast
or with a bottle, and so on. Hence it is to be expected that setting A3 to be 1 may translate into different durations and
types of breastfeeding, and thus may not lead to the same infant weight at 3 months as when starting breastfeeding is a
choice. More generally, it is typically the case that a treatment can come in many variations at some level of resolution. To
achieve consistency then a more precise definition of treatment is required, so that observing or setting it is more likely
to generate comparable effects. When there are multiple versions of a treatment, one should be aware that the estimated
effect averages over the mix of the different versions that occur in the data. To go beyond this and evaluate the effect
of different components or different mixes thereof typically demands more assumptions and adapted data analysis. For
further discussion see References 13 and 14.

These observations relate to the importance of a well-defined exposure15 and the need to be as precise as the data allow
in our definition of treatment.16 Some authors have criticized the restriction imposed by this assumption (and hence by
the potential outcomes approach to causal inference10). Being aware of the possibility of multiple versions of treatment
should not deter us from pursuing the most relevant definition of treatment: instead it should lead us to greater precision
and transparency in formulating the causal question and its transportability.

Note also that the assumption of consistency may be relaxed by rephrasing it at the distributional level (possibly
conditional on baseline covariates), in the sense that consistency would concern, for example, the equality of the mean
observed outcome of those with observed values A= a and the mean potential outcome had their treatment been set to
a. Following this broader definition, any causal interpretation would be applicable only to settings where the distribution
of the different versions of treatment equaled that in the analyzed sample.

2.5 Nested potential outcomes

The treatments considered here belong to a chain of exposures: when A1 is set, it has consequences for the “worlds” where
A2, A3, and A4 act. Correspondingly, when A3 is set, A1, A2 become baseline covariates with consequences for the worlds
that follow (see Figure 1). For example, in a world where a breastfeeding program is available (A1 is set to 1), starting
breastfeeding (A3) may have a larger impact on weight at 3 months, because women who breastfeed having followed
BEP may be more aware of the beneficial effects of breastfeeding and therefore continue breastfeeding for a longer period
(see the paths from A2 to Y via D1, D2, and A4 in Figure 1). Although this article does not enter into the full framework
of estimation for dynamic treatment strategies, we can benefit from additional definitions of potential outcomes that
recognize the nested nature of the interventions.

Below we define worlds where setting A2 and A3 occurs under alternative scenarios that depend on how A1 was set
(and, for A3, how A1 and/or A2 was set). These will be useful for the discussion in Section 2.6.

In the world where BEP is on offer to all (ie, when 𝔞1(1) is set for everyone in the population), the potential outcomes
of participating or not participating in the BEP are defined as Y𝔞1(1),𝔞2(1) and Y𝔞1(1),𝔞2(0). Similarly in the world where BEP is
not offered, we may consider the potential outcome of not participating in the BEP defined as Y𝔞1(0),𝔞2(0). In our example
we assumed that the program was only available to the intervention group (ie, Y𝔞1(0),𝔞2(1) is not defined), and that the
intervention would only affect outcome if the program was actually followed (ie, Y𝔞1(1),𝔞2(0) = Y𝔞1(0),𝔞2(0)). (In other settings
it is conceivable that the mere invitation to BEP comes with advice that may have a direct impact on outcome under 𝔞2(0)).
Setting 𝔞2(1), here implies that A1 is set to 1; setting 𝔞2(0) can, in the BEP example, happen independently of how A1 is set.
The corresponding potential outcomes are therefore denoted by Y𝔞2(1)(= Y𝔞1(1),𝔞2(1)) and Y𝔞2(0)(= Y𝔞1(1),𝔞2(0) = Y𝔞1(0),𝔞2(0)).

Similarly, when interest is in the causal effect of A3, the potential outcomes of starting or not starting breastfeeding in
the world with BEP on offer are Y𝔞1(1),𝔞3(1) and Y𝔞1(1),𝔞3(0), and in the world without BEP, they are Y𝔞1(0),𝔞3(1) and Y𝔞1(0),𝔞3(0).
We deliberately omitted setting/fixing the possible 𝔞2 level here, because we let it follow the natural course after setting
𝔞1(1), meaning that women may or may not choose to follow the BEP, after receiving the offer. The effect of breastfeeding
in the world where the BEP is offered, may differ from the effect when the BEP is not available, as the BEP may not only
affect the probability to start breastfeeding, but also the duration of breastfeeding for those who start.
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One could be tempted to evaluate Y𝔞3(1) in the study context, using all available data and ignoring A1 and hence effec-
tively averaging over the observed A1, where, by experimental design, for half of the individuals treatment is available
and for half it is not. Such a distribution of BEP offer is, however, not a realistic future scenario, and hence this particular
average effect measure is usually of no direct relevance.

The effect of breastfeeding may be even larger in the world where all women follow the program (ie, 𝔞2(1) is set,
implying also 𝔞1(1) as we assume BEP cannot be followed unless it is offered). Here the potential outcomes of starting
breastfeeding or not are Y𝔞2(1),𝔞3(1) and Y𝔞2(1),𝔞3(0). In the BEP example we assumed that the outcome, when not starting
breastfeeding, did not depend on the offer of BEP (ie, there is no path from A1 to Y that does not involve A3). This means
that Y𝔞1(1),𝔞3(0)=Y𝔞1(0),𝔞3(0)=Y𝔞2(1),𝔞3(0), and we can use the simplified notation Y𝔞3(0). Similarly we assumed that the outcome
of completing 3 months of breastfeeding, Y𝔞4(1), was independent of the values at which A1 and A2 were set (ie, there are
no paths from A1 and A2 to Y that do not involve A4, hence this simplified notation, knowing that A3 is per definition 1
if A4 =1). Table 2 thus lists a selection of the potential outcomes that are relevant to the BEF example.

2.6 Causal parameters

The next step is to contrast potential outcomes under different settings of exposure variables. We do so by defining an
estimand in a well-defined (sub)population. Individual causal effects cannot be computed since each individual can only
be assigned to one treatment at a time as, via consistency, one and only one potential outcome can be observed. How-
ever, population summary measures can be estimated (under additional assumptions to be discussed below) for different
groups, such as the total population or the subpopulation of treated (or untreated) individuals. Also, causal effects can be
defined on different scales. In this article we focus on the mean difference as the contrast of interest.

Table 1 describes a selection of causal parameters for exposures A1 and A2. The first estimand for A1 listed in the
table is the average treatment effect in the population (ATE1) and corresponds to the question “What would the average
infant weight be at 3 months had all mothers been offered the BEP, vs the average infant weight had the mothers not been
offered the program?” It is defined as ATE1 = E[Y𝔞1(1)] − E[Y𝔞1(0)], which is equal to the intention to treat effect (ITT) of
the randomized trial.

There are several possible contrasts involving uptake of the intervention A2. We could target the causal question “What
would the average infant weight be at 3 months had all mothers attended the BEP, vs the average infant weight had
none of the mothers attended the program?” over the whole infant population, leading to ATE2 = E[Y𝔞2(1)] − E[Y𝔞2(0)].
We might also consider this effect only within the population of women who chose to accept the offer and did attend
the BEP. The latter would be the ATT. Because in our example the BEP is only available to those who are offered it, the
treated population are those with A2 = 1 and A1 = 1; see Table 1. The effect in the population, ATE2 would be of overall

Estimand Definition

Effect of program offer (𝔞1)

ATE1 = ATTa Average treatment effect

E[Y𝔞1(1)] − E[Y𝔞1(0)]

Effect of program uptake (𝔞2)

ATE2 Average treatment effect

E[Y𝔞2(1)] − E[Y𝔞2(0)]

ATT2 Average treatment effect among the treatedb

E[(Y𝔞2(1)|A2 = 1,A1 = 1] − E[Y𝔞2(0)|A2 = 1,A1 = 1]

ATNT2 Average treatment effect among the nontreatedb

E[Y𝔞2(1)|A2 = 0,A1 = 1] − E[Y𝔞2(0)|A2 = 0,A1 = 1]

aIntention-to-treat.
bNote that the ATT and ATNT for 𝔞2 can only be derived from the (random) subgroup
A1 = 1 since the program is only available within the randomized trial and to those
assigned to it being offered.

T A B L E 1 A selection of causal estimands for exposures
A1 and A2
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T A B L E 2 True average potential infant weight at 3 months under different interventions in different (sub)populations

Potential A1 = 1 A1 = 1 A1 = 1 A1 = 0 A1 = 0 Education

outcome Interventions Overall A2 = 1 A2 = 0 A3 = 1 A3 = 0 A3 = 1 A3 = 0 Low Int High

Y𝔞1(0) BEP not offered 6017 6047 5964 6149 5733 6274 5761 5914 6057 6141

Y𝔞1(1) BEP offered 6115 6200 5964 6292 5733 6308 5923 6024 6155 6207

Y𝔞2(0) BEP not followed 6017 6047 5964 6149 5733 6274 5761 5914 6057 6141

Y𝔞2(1) BEP followed 6182 6200 6149 6308 5911 6329 6035 6128 6208 6226

Y𝔞3(0) No BF 5827 5849 5788 5871 5733 5893 5761 5730 5854 5981

Y𝔞1(0),𝔞3(1) BEP not offered, BF started 6214 6226 6193 6251 6133 6274 6153 6154 6248 6246

Y𝔞1(1),𝔞3(1) BEP offered, BF started 6249 6282 6193 6292 6157 6308 6191 6207 6276 6262

Y𝔞2(1),𝔞3(1) BEP followed, BF started 6277 6282 6270 6308 6212 6329 6225 6261 6292 6266

Y𝔞4(1) Duration BF = 3 months 6351 6345 6362 6372 6307 6392 6311 6393 6339 6286

Abbreviations: BEP, breastfeeding encouragement program; BF, breastfeeding; int: intermediate.
A2 = 1: women who followed the breastfeeding program.
A2 = 0 and A1 = 1: women who were offered the breastfeeding program but did not follow it
A3 = 1 and A1 = 1: women who started breastfeeding in the intervention group.
A3 = 1 and A1 = 0: women who started breastfeeding in the control group.
A3 = 0 and A1 = 1: women who did not start breastfeeding in the intervention group.
A3 = 0 and A1 = 0: women who did not start breastfeeding in the control group.
Y𝔞1(1) and Y𝔞1(0): the potential outcome that would occur if randomization A1 were set to take the value 1, 0, respectively.
Y𝔞2(1) and Y𝔞2(0): the potential outcome that would occur if A2 were set to 1 (which implies that A1 is set to 1) or 0. We assumed that the effect of 𝔞2(0) does not
depend on whether BEP was available; A1 was set to 1 or 0.
Y𝔞3(0): the potential outcome under no breastfeeding.
Y𝔞1(0),𝔞3(1): The potential outcome under a double intervention with A1 set to 0 and A3 set to 1. Similar for Y𝔞1(1),𝔞3(1),Y𝔞2(1),𝔞3(1).
Y𝔞4(1), the effect of completing 3 months of breastfeeding.
Results for Y𝔞1(0) and Y𝔞2(0) are equal, because BEP only affects the outcome if the program is followed.
Results for Y𝔞3(0) do not depend on whether A1 or A2 were set to 1 or 0 because BEP only affects Y via A3 and duration of breastfeeding, if started. Hence
(Y𝔞3(0) = Y𝔞1(0),𝔞3(0) = Y𝔞1(1),𝔞3(0) = Y𝔞2(1),𝔞3(0)). The effect of full 3 months of breastfeeding is not affected by BEP.

interest to the developers of the BEP, as would the average treatment effect in the nontreated (ATNT2) because the latter
would quantify the gain to be expected from a more convincing promotion campaign for the current program with larger
attendance, that is, a greater P(A2 = 1|A1 = 1). By contrast, ATT2 might be of greater interests to mothers following BEP,
as this would provide a measure of the expected benefit from their own uptake of the BEP offer.

Furthermore, causal effects may be heterogeneous across observable strata, for instance if the breastfeeding treatment
has different causal effects depending on the education level of the mother. Thus causal effects specific to baseline sub-
groups would be of interest, for example, the average causal effect among those with low education could be compared
with the average causal effect among those with high education. We can also define a causal effect conditional on multi-
ple characteristics such as the expected causal effect of the program in the group of 30-year-old smoking mothers with a
child born by caesarian section.

3 THE SIMULATION LEARNER

To illustrate concepts and support our learning, we generated data inspired by a real investigation but enriched by the
generation of potential outcome data in addition to “observed” data. We took our inspiration from the Promotion of
Breastfeeding Intervention Trial4 (PROBIT). PROBIT randomized mother-infant pairs in clusters to receive either stan-
dard care or a breastfeeding encouragement intervention. Unlike the main trial, our simulation randomized individual
mother-infant pairs and focused on weight achieved at age 3 months, in a study population of babies surviving the first
3 months. Our simulation learner is therefore not a close replication of PROBIT, as we sought to highlight complexities
that were not addressed in the original trial. Our aim was to discuss four (linked) definitions of treatment, for which
different causal effects (ATE, ATT, etc) pertaining to corresponding treatment decisions would be of interest. This was



4930 GOETGHEBEUR et al.

achieved by generating realistic confounding patterns and interactions, the latter between some of the confounders and
duration of breastfeeding. The confounders considered are depicted in Figure 1. In Appendix 1 (supplementary material)
one can read how the mother’s level of education and smoking status, just like the infant’s birthweight was made to inter-
act with breastfeeding duration to arrive at the causal effects on the expected weight at 3 months. Thus there is no direct
relationship between the trial results and the causal estimates obtained from the simulated data (see Appendix 1 for more
details).

3.1 Generating the variables

Figure 1 outlines the main relationships among the simulated variables. The baseline variables L1 were mother’s age,
location of living (urban vs rural and western versus eastern region), level of education (low, intermediate, high),
maternal history of allergy, and smoking during pregnancy. The variables related to the infant’s birth L2 were sex
of child, birth weight, and birth by caesarian section. Thus, L1 are confounders of the relationship between A2 and
Y , and (L1, L2) are confounders of the relationship between A3 and Y . The distribution of these variables was made
to resemble that of the PROBIT study and the sample size n was set to 17 044, as in that study. Details of the
data generation process can be found in Appendix 1 and in the material available at www.ofcaus.org; an overview is
given below.

The offer of the program (A1) was assigned randomly, but the uptake of program (A2), starting breastfeeding (A3), and
the duration of breastfeeding (A4) were all affected by variables at baseline (L1) or at birth (L2), with their union denoted
by the vector L. We made the simplifying assumptions that L2 were unaffected by the program offer, that the program was
only available to women in the intervention group, and that the intervention would only affect outcome if the program
was actually followed. The odds of following the program after receiving an offer was assumed to depend on maternal age,
education, and smoking during pregnancy, such that older and more highly educated women had a higher probability of
following the program, while smokers were less likely to do so.

Following the program, that is, A2 = 1, was set to influence weight at 3 months in two ways: it increased the probability
of starting breastfeeding, and increased the duration of breastfeeding if started. Older and more highly educated women
and women who did not smoke during pregnancy were more likely to start breastfeeding, while having a child with lower
birth weight or a baby girl decreased the probability of starting breastfeeding. The uptake of the program, higher age,
higher education, not smoking, a higher birth weight, and maternal allergies were set to increase the total duration of
breastfeeding, while delivery by caesarian or a having baby boy to lower it. The outcome (weight at 3 months) was set to
be affected by the duration of breastfeeding and by the baseline and birth variables, some of which (smoking, education
and birth weight) also modified the effect of breastfeeding.

For each woman in the simulated data set, we observed realized values of A1, A2, A3, and A4 and of the weight
of the child after 3 months. In addition, several potential outcomes were generated representing the potential weight
at 3 months of the child under different interventions on A1, A2, A3, and A4. This means that in our data set, for
each woman the potential weight of her child at 3 months is known under different scenarios: if she had received
the offer for the BEP, if she had not received the offer, if she had followed the program, if she had or had not started
breastfeeding, and if she had continued breastfeeding for 3 months. Our simulations generated correlated potential out-
comes, but the causal parameters introduced so far are not affected by this. We see this as an advantage since there
is an intrinsic lack of information on the joint distribution of the potential outcomes in observed data. Table 2 gives
the expected value of the different potential outcomes overall and in specific strata (subpopulations). These values
were obtained from a very large simulated data set of five million observations and are here considered to represent
the truth.

3.2 Different causal contrasts

From Table 2 we can derive several true causal contrasts. For example the average treatment effect (ATE) of the BEP offer
is ATE1 = E[Y𝔞1(1)] − E[Y𝔞1(0)] = 6115 − 6017 = 98 g. This effect may be of interest to policy makers as it is the overall
mean change in infant weight at 3 months due to inviting expectant women to attend the BEP. Comparing the scenario
where everyone actually receives the offer and follows the BEP with no program, the expected weight gain is ATE2 =
E[Y𝔞2(1)] − E[Y𝔞2(0)) = 165 g. Among women who actually follow the program (the treated), the effect of BEP uptake is

www.ofcaus.org
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ATT2 = E[Y𝔞2(1)|A2 = 1] − E[Y𝔞2(0)|A2 = 1] = 153 g. The effect of participating in the BEP among women who have the
opportunity to follow it but opt not to, is ATNT2 = E[Y𝔞2(1)|A2 = 0,A1 = 1] − E[Y𝔞2(0)|A2 = 0,A1 = 1] = 185 g. ATNT2 is
larger than ATT2 because women who would benefit most from the BEP were, in our simulated data set, less inclined to
follow it.

In this tutorial, we are treating A1, A2, A3, and A4 as point exposures, that is, as exposures to be examined separately,
with any previous exposures in the chain treated as background variables. In other words, for each targeted treatment,
we consider the time point at which it is implemented. We then ask about the impact of setting this treatment to a given
value, conditional on background information. In the setting of our study: when A3, the decision to start breastfeeding
is implemented, the values of A1 and A2 are already known and the baby has been born. The set of information carried
by A1 and A2 could be treated as baseline information, like L, conditional on which the effect of starting breastfeeding is
measured.

Alternatively, we could consider the joint impact of multiple interventions. Using the nested potential outcomes
notation introduced in Section 2.5, we could address the question “What would the average infant weight at 3 months
be, had all mothers started breastfeeding vs the average infant weight had they not started at all?” under different
worlds where A1 and A2 are set to take different values. In the world without BEP, the answer would be ATE3,𝔞1(0) =
E[Y𝔞1(0),𝔞3(1)] − E[Y𝔞1(0),𝔞3(0)] = 387 g. In the world where the BEP is offered, the gain in weight at 3 months would be sub-
stantially higher: ATE3,𝔞1(1) = E[Y𝔞1(1),𝔞3(1)] − E[Y𝔞1(1),𝔞3(0)] = 422 g. The weight gain in the world where everyone followed
the program would be ATE3,𝔞2(1) = Y𝔞2(1),𝔞3(1) − Y𝔞2(1),𝔞3(0) = 450 g. This is the largest effect because, in the simulation, BEP
increases the mean duration of breastfeeding. In general there are greater average potential outcomes with increased
intensity of the joint interventions.

The average treatment effect in the treated (with respect to A3) also differs between randomization worlds because
more women among those randomized to receive the BEP will start breastfeeding than in the control group. The effect
of breastfeeding in those who started breastfeeding and are in the intervention arm (ie, A1 = 1) is equal to ATT3,𝔞1(1) =
E[Y𝔞1(1),𝔞3(1)|A3 = 1,A1 = 1] − E[Y𝔞1(1),𝔞3(0)|A3 = 1,A1 = 1] = 421 g, and the effect of breastfeeding in those who started
breastfeeding but are in the control arm (ie, A1 = 0) is ATT3,𝔞1(0) = 381 g. The average effect of breastfeeding in those who
did not start breastfeeding is ATNT3,𝔞1(1) = 424 g when the program is available and ATNT3,𝔞1(0) = 393 g when not.

We could also ask the question “What would the average infant weight at 3 months be, had all mothers breastfeed
for 3 months vs the average infant weight had they not started at all?” As noted before, setting A4 = 0 will include a very
heterogeneous set of breastfeeding behaviors, as well as not breastfeeding at all. A more refined question would restrict
the comparison to a setting where there is no breastfeeding at all, that is, E[Y𝔞4(1)] − E[Y𝔞3(0)] = 6351 − 5827 = 524 g.

When implementing an intervention, it is of interest to identify those subgroups for which the intervention is most
beneficial. Table 2, for example, shows that the infants of mothers in the lowest stratum of education would gain more
than those of mothers in the highest, both when the intervention is offering the program E[Y𝔞1(1)|L = low] − E[Y𝔞1(0)|L =
low] = 110 g and when the intervention is following the program E[Y𝔞2(1)|L = low] − E[Y𝔞1(0)|L = low] = 214 g, as
opposed to 66 and 85 g for women in the highest stratum of education.

Some of the causal effects described above are not realistic. For example, the largest causal contrast is the expected
weight gain when every infant is breastfed for the full 3 months vs the expected weight gain when no one is breast-
fed (524 g above). However not all women can or wish to start breastfeeding (nor would all women willingly refrain
from it). As alluded to in the discussion of positivity in Section 2.3, a woman who is very ill at the end of preg-
nancy may not have the option of breastfeeding her baby because of toxicity of prescribed medication or ill-health.
It follows that considering the intervention where every woman continues breastfeeding for the full 3 months is
even less realistic. It is important to define the causal question precisely in a pertinent population before turning to
estimation.

4 PRINCIPLED ESTIMATION APPROACHES

The estimation approaches discussed here rely on further assumptions in addition to those outlined in Section 2.4. These
can be classified according to whether or not they invoke the no unmeasured confounding (NUC) assumption which states
that the received treatment is independent of the potential outcomes, given covariates L. Formally, the NUC assumption
states: (Y𝔞(0)) ⟂ A|L and (Y𝔞(1)) ⟂ A|L, where, hereafter A denotes a binary exposure. In other words, the assumptions
states that a sufficient set of variables L that confound the exposure/outcome relationship have been measured and are
available to the analyst.
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The estimation approaches that rely on the NUC assumption include standard outcome regression and propen-
sity score (PS) based methods such as PS stratification, regression adjustment, matching, and inverse probability
weighting. These are reviewed below. Alternatively, if an instrumental variable (IV) is available, IV methods can
be used by also invoking additional assumptions in place of NUC. IV definitions an assumptions are described
in Section 4.2.

4.1 Methods based on the no unmeasured confounders assumption

When a sufficient set of confounders L is measured, the causal effect of treatment can be estimated by comparing
observed outcomes between the treated and untreated people with identical values for L. Such direct control for L
may be done in different ways: by regression or stratification or matching. We discuss these approaches in the next
subsections.

4.1.1 Initial data summary and the propensity score

Before proceeding with the analysis one should examine how treatment groups differ in their population mix—that is,
examine the imbalance in covariates between treatment groups as exemplified in Appendix 2 (supplementary material).
The existence of substantial residual imbalance could lead to residual confounding in the effect estimate and may call for
a sensitivity analysis.

When L includes only few variables, this balance check can be achieved visually (eg, using balancing plots as
in Appendix 2, Figures 2, 5, and 6) or by reporting mean or percentage differences between treatment groups for
each variable, as in Appendix 2, Table 1. With high-dimensional L this information is preferably summarized through
the propensity score. The propensity score (PS) is the probability of being treated conditional on the covariates,
e(L)=P(A= 1|L).17 The PS is an important function of the covariates that reduces the (possibly high-dimensional)
vector L into a scalar containing all measured information that is relevant for the treatment assignment in relation
to the outcome. This property score enjoys the so-called balancing property, meaning that the covariate distributions
of the treated and nontreated are exchangeable (the same) when conditioning on the PS. Intuitively, the role of the
PS can be thought of as one of restoring balance between treated and untreated groups once conditioned upon. For
example, if we were to compare all treated subjects with untreated subjects who all had the same value of the PS,
the distribution of the covariates L would be the same, much like in a randomized trial. However unlike in a ran-
domized trial, balance is not achieved between the treated and untreated groups for any covariates that were not
included in the PS. The balancing property implies that all relevant confounding information in L is contained in
e(L), so that if (Y𝔞(0),Y𝔞(1)) ⟂ A|L, then also (Y𝔞(0),Y𝔞(1)) ⟂ A|e(L). This implies that e(L) can be used instead of the
full vector L.

The PS is estimated from the data, usually by fitting a parametric (eg, logistic regression) model for the probability
of being treated given the confounding variables, although a variety of other approaches can be employed includ-
ing tree-based classification.18 However derived, the adequacy of the estimated PS, ê(L), as a balancing summary of
the confounder distributions across treatment groups must be evaluated19 by checking whether L ⫫ A|ê(L)). While
balance of the joint distribution of the confounders L is required, in practice balance is often assessed for each con-
founder L∈L separately by comparing standardized mean differences, variance ratios, and other distributional statistics
and plots such as empirical cumulative distribution plots, between the treated and untreated groups after weighting,
stratification, or matching by the estimated PS.20 We illustrate some of these checks in Appendix 2. To date, variable
selection for PS modeling is done largely on a trial and error basis, beginning with a model thought to contain all
relevant confounders and adding higher order terms (polynomials, interactions) if balance appears not to have been
achieved.21

The PS can also be used to examine the positivity assumption by checking for overlap of the propensity
score distribution of those who are treated and those who are not. For this reason, automatic variable selection
approaches (eg, stepwise) or prediction-based measures of fit (eg, C-statistic), which seek best prediction of treat-
ment allocation when specifying the PS model, may not provide the best balance for the confounders and favor
variables that are strongly predictive of the treatment, even if they are only weakly or not at all predictive of the
outcome.22
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4.1.2 Outcome regression

Perhaps the simplest and most familiar form of causal estimation is outcome regression. In this approach, a model is
posited for the outcome as a function of the exposure and the covariates. For example, for a continuous outcome the linear
regression model of the form

E[Y |A,L] = 𝛽0 + 𝛽AA + 𝜸′f (L,A), (1)

where 𝜸 is a vector of parameters and f (L, A) is a (vector) function of L and A representing, for example, the main effect of
the covariates L and interactions between covariates and A. Ordinary least squares can be used to estimate the parameters
of the outcome linear regression model. The absence of any interactions between A and L yields

E[Y |A,L] = 𝛽0 + 𝛽AA. (2)

Assuming no interference, consistency, and NUC, 𝛽A in (2) is interpreted as the average causal effect of A, that
is, ATE=A. In the presence of interactions 𝛽A in (1) is the causal effect of A in the reference category of L, that is, where
L= 0 if f (L, A)= 0 occurs whenever L= 0.

When a correct specification of the model is

E[Y |A,L] = 𝛽0 + 𝛽AA + 𝛽′LL + 𝛽′LALA,

𝛽A + 𝛽′LAL is interpreted as the causal effect of A (level 1 vs 0) in the stratum defined by L, hence representing conditional
causal effects: the L stratum-specific ATEL.

To estimate causal parameters such as those shown in Table 1, the additional step of marginalizing ATEL over the
distribution of L is needed,.

We identify the average ATE for A then as follows:

ATE = E{E[Y𝔞(1)|L]} − E{E[Y𝔞(0)|L]}
(2)
= E{E[Y𝔞(1)|A = 1,L]} − E{E[Y𝔞(0)|A = 0,L]}
(3)
= E{E[Y |A = 1,L]} − E{E[Y |A = 0,L]}
(4)
= (𝛽0 + 𝛽A + 𝛽′LE[L] + 𝛽′LAE[L]) − (𝛽0 + 𝛽′LE[L])
= 𝛽A + 𝛽′LAE[L],

where equality (2) follows from the NUC assumption, (3) from the consistency assumption, and (4) from the assumption
of correct specification of the outcome model.

These estimands can be estimated by 𝛽A + �̂�
′
LAn−1 ∑n

i=1(li), where n is the sample size. When there are no
treatment-covariate interactions (ie, 𝜷LA is a vector of zeroes), then the ATE equals 𝛽A and its standard error can be
taken directly from the fitted model that does not include any interactions. Otherwise, a standard error accounting for
the correlation between 𝛽A and 𝜷LA as well as estimation of E[L] must be computed either analytically or via a bootstrap
procedure.

A similar approach can be taken to estimate the ATT (or the ATNT). The ATT, for instance, can be computed noting
that ATT = E{E[Y𝔞(1)|A = 1,L]} − E{E[Y𝔞(0)|A = 1,L]. Letting A=1 denote the indices i of those exposed subjects and
#A=1 =

∑n
i=1 ai denote the number of exposed individuals (the cardinality of A=1), the ATT can be estimated using the

outcome regression coefficient estimates by

ÂTT = (#A=1)−1
∑

i∈A=1

(𝛽A + �̂�
′
LAli).

For binary and other categorical outcomes other appropriate outcome models can be used such as the logistic regression
model. This model will yield fitted values of E[Y |A= 1, L] and E[Y |A= 1, L] for all individuals which can then be averaged
over the appropriate population.
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Concerns about model misspecification may be reduced by using a more flexible model for the outcome. For example,
we may consider transformations of L such as splines to specify f (L, A), leading to a less parametric model which, however,
requires estimation of a greater number of parameters. An additional concern is the possibility that a chosen outcome
model leads to extrapolations outside of the data cloud (in other words, to lack of positivity). Users should therefore be
aware of this and adopt methods discussed above to assess whether lack of positivity is an issue.

When an appropriate propensity score has been estimated such that it provides the desired balance, outcome regres-
sion can also be performed with the generic function f (L, A) being replaced by ê(L), assuming no interactions between L
and A:

E[Y |A,L] = 𝛽0 + 𝛽AA + 𝛽e(L)ê(L).

This approach is known simply as propensity score regression with the ATE and ATT then estimated via standard regression
followed by averaging over the PS as opposed to L, much as in Section 4.1.2. It can be shown that for the linear outcome
model the propensity score regression estimators for the ATE and ATT are consistent under correct specification of the
PS, even if the outcome model is misspecified, provided the treatment effect is constant across e(L).23 The assumptions
for propensity score regression are certainly restrictive and Table 5 provides an example of the resulting bias when they
are violated.

4.1.3 Stratification and PS matching

Stratification can be used to estimate the ATE by taking the weighted sum of the treatment group differences in sample
means across strata defined by a combination of the covariates L. This is naturally only feasible if L is low dimensional.
For example, for two binary Ls, we could create four strata and estimate stratum-specific ATEs and then average them
using the relative frequencies of the strata. For high-dimensional L, strata may be defined by categories of the propensity
score (fifths—that is, using quintiles—is a common choice,24 but for large sample sizes increasing the number of strata
will reduce the residual bias within strata). Finally, let �̂�aj denote the sample average of Y for those with treatment level
a in the jth stratum. Then the stratification-based estimator of the ATE is given by

J∑
j=1

(nj

n

)
[�̂�1j − �̂�0j].

This approach when based on the PS, will work if there is reasonable balance of values of confounders in
each of the defined strata. If not, one can regress the outcome on confounders within strata and use the
stratum-specific mean predicted value instead..25 Standard errors for stratification-based estimators often rely
on simplifying assumptions; again, bootstrap may be used as an alternative. The ATT (and ATNT) can simi-
larly be estimated by replacing the ratio nt/n with a ratio of the stratum proportion of the treated (untreated)
population.

Matching is similar in spirit to stratification, but taken to the finest strata: the individual level. For each individual
i in the sample, we select M ≥ 1 individuals, i′, who are matched to i based on some matching criterion and matching
method. Then the estimators of the ATE and ATT are, respectively,

n−1
n∑

i=1
(2Ai − 1)

(
Yi − M−1

∑
i′

Yi′

)
and (#A=1)−1

∑
i∈A=1

(
Yi − M−1

∑
i′

Yi′

)
,

where i′ runs over the set i of individuals matched to i.
In practice, the following algorithm should be followed:

1. Choose a matching criterion, Ci, i′ such as nearest neighbor, the Mahalanobis distance, or vector norm, and implement
a matching method given the criterion. The criterion may be applied to L or to a summary such as the PS, ê(L).

2. Evaluate the quality of the matched sample by carrying out balancing checks described above.
3. If balance is not satisfactory, return to step 1.
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There are several factors to consider in a matched analysis, such as the number of matches per individual, M; whether
to match with or without replacement; if matching without replacement, whether to use greedy matching or the more
computationally intensive optimal matching. A discussion of the relative merits and the impact of these choices on bias
and variance can be found in a review by Stuart.26 If balance remains unsatisfactory or to increase robustness, outcome
regression as described in Section 4.1.2 can be performed within the matched sample.

Several standard softwares include packages that implement matching and, in some cases, covariate balance checks.
Note that the bootstrap should not be used to compute standard errors following matching, and that suitable standard
errors depend on how the matching was carried out (eg, whether with replacement or not).27

4.1.4 Inverse probability weighting

The idea behind inverse probability weighting (IPW) is to construct a pseudosample in which there are no imbalances
on measured covariates between the treatment groups. While IPW can be used for treatments measured only at baseline,
its strength is with time-varying treatments. Let W i be the inverse of the probability of the received treatment, defined as
W i =P(Ai = ai|Li)−1 = e(L)−1. Assuming no interference, consistency, NUC, and correct specification of the PS model, the
average potential outcome if the whole population were treated can, under causal consistency, be shown to equal

E[Y (1)] = E[WiAiYi]. (3)

That is, the sample weighted average can be used to estimate E[Y𝔞] for any 𝔞, a marginal mean that averages
over the population distribution of covariates L1. An alternative definition of the weights, denoted stabilized weight,
is W i =P(Ai = ai)P(Ai = ai|Li)−1 and is often preferred as it follows naturally from the theoretical derivation of IPW
estimators28 and for time-varying exposures typically leads to less extreme values and more stable estimates.2 In practice,
an estimated PS is used in place of P(Ai = 1|L) and P(Ai = 1) is replaced by a simple sample average before an empirical
average is taken:

Ê[Y𝔞(1)] = n−1
n∑

i=1
wiaiyi, (4)

where wi are such estimates of W i. If there are many people with a given set of characteristics li who are treated, but few
with this characteristic who are not treated, then P(Ai = 1|Li = li) will be “large” and its inverse “small” so these treated
individuals will be downweighted in the sample.

Similarly, an estimate of the average potential outcome if the whole population were set to be untreated is

Ê[Y𝔞(0)] = n−1
n∑

i=1
wi(1 − ai)yi. (5)

As before, if there are many people with a given set of characteristics who are treated, but few who are not treated, then
P(Ai = 0|L= li) will be “small” and its inverse “large” so that these people are upweighted. This approach is well-known
in the survey sampling literature,29 where it is used to adjust for unequal sampling fractions—typically the oversampling
of certain smaller but important subgroups in a population. When the weights are extreme, they may be truncated or
normalized.30

As before, the PS is usually estimated via a parametric model. So, similarly to previously described estimation steps,
the IPW estimation procedure is straightforward and consists of:

1. Fitting the PS model, for example, logistic regression model for the probability of being treated given L.
2. Calculating the weights:

(a) Use the fitted PS to predict the probability that a person received the treatment s/he did in fact receive.

1For those familiar with the longitudinal, time-varying exposure outcome setting, this is a marginal structural model.3 Of course note that the ATE
itself targets a marginal structural mean contrast, either through direct modeling of the mean as accomplished via inverse weighting, or by modeling a
conditional structural model and then marginalizing over the covariate distribution as in regression outcome modeling.
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(b) Set each individual’s weight to one over the probability computed in (2a). “Stabilize” this weight by including the
simple probability of being treated with the observed treatment in the numerator.

(c) Check the confounders’ balance in the weighted sample. If balance is inadequate, return to step 1 and improve the
PS model specification by involving the unbalanced confounders.

3. Fitting the outcome model: weighting each individual by the weights computed in (2b), fit a regression model for the
outcome given the treatment. The treatment coefficient is an estimate of the ATE.

Following the estimation procedure above, standard errors must be computed analytically or via bootstrap to account
for estimation of the weights. Robust or empirical standard errors provide reasonable coverage, although they do not
explicitly account for the fitting of the PS model.

To estimate the ATT, rather than the ATE, we change our focus to E[Y𝔞(1) − Y𝔞(0)|A = 1]. Clearly, we can compute an
estimate of E[Y𝔞(1)|A = 1] with little trouble, as this is easily identified and estimated in the data by

Ê[Y𝔞(1)|A = 1] = (#A=1)−1
∑

i∈A=1

aiyi.

The second term, E[Y𝔞(0)|A = 1], requires a bit more work: this is an average of the potential outcome Yi,𝔞(0) in the (impos-
sible) situation where the i indexes those who were in fact treated. It turns out that we can again use reweighting of the
observed sample of the untreated individuals by

Ê[Y𝔞(0)|A = 1]] = n−1
n∑

i=1
wATT

i (1 − ai)yi, (6)

with stabilized weights equal to

wATT
i = P̂(Ai = 1|Li)

P̂(Ai = 0|Li)
× P̂(Ai = 0)

P̂(Ai = 1)
.

As before, the weighting has been used to construct a pseudopopulation in which there are no imbalances on measured
covariates between the exposure groups. In the case of the ATT, we do so by rebalancing the distribution of the covariates
in the unexposed group only.

Care must be taken as, in practice, a small number of large weights can be highly influential, though this may be
mitigated through ad hoc but effective solutions such as shrinking of the largest weights to a smaller value such as the
99th percentile of the weight distribution (often referred to as truncation or sometimes called “capping”).

4.1.5 A hybrid approach: Doubly robust estimation

Outcome regression requires correct specification of the outcome model while the inverse propensity score weight-
ing requires correct specification of the propensity model. The methods can be combined by augmenting the inverse
probability of treatment weighted estimators. Note that

E[Y𝔞(a)] = E[Y𝔞(a) − 𝜇𝔞(a)(L)] + E[𝜇𝔞(a)(L)],

where here, 𝜇𝔞(a)(L) is the expected outcome with A set to a and covariates taking values L. Invoking the consistency and
NUC assumptions, we have 𝜇𝔞(a)(L) = E[Y |A = a,L = l] which is, in practice, replaced by a parametric model. This gives
rise to the alternative estimator

Ê[Y𝔞(a)] =
1
n

n∑
i=1

I[Ai = a](yi − �̂�(𝔞(a), li))
P̂(Ai = a|L = li)

+ 1
n

n∑
i=1

�̂�(𝔞(a), li), (7)

with I[x] the indicator function that takes value 1 when condition x holds and 0 otherwise, and �̂�a(l) a model-predicted
mean for Y with A set to a and L as observed. The estimator (7) is doubly robust, which means that it is consistent even
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if one of P(Ai = a|L=li) and the modeled mean 𝜇𝔞(a)(L) is misspecified. If both models are correctly specified, then the
augmented inverse weighted estimator is at least as efficient as the unaugmented inverse weighted estimator.

Bang and Robins,31 building on Scharfstein et al,32 reformulated the augmented estimator, noting that it can be viewed
as an unweighted regression that includes the inverse of the PS as a covariate. It appears that unlike for the PS model,
one can use separate regularized regressions for the outcome and propensity score models to derive a doubly robust
“g-estimator” with standard confidence intervals that are correct given the variable selection procedure (see, eg, Refer-
ences 33–36). The bias otherwise induced by shrinkage of the coefficients in penalized regression models is counteracted
by propensity-based adjustments with doubly robust estimation.

4.2 Instrumental variable based methods

All methods described so far yield valid estimates under the NUC assumption. This assumption is easily violated in
observational studies, where the prognosis of patients tends to determine the choice of treatment and the reasons for
a specific treatment choice are seldom completely registered or, more generally, the exposure level and outcome are
influenced by unmeasured factors. One alternative approach is an instrumental variable (IV) analysis which can han-
dle both measured and unmeasured confounding. Asymptotically unbiased estimation results once a “pseudo-random
variable” or so called “instrumental variable” is identified and some additional assumptions hold. The method origi-
nates from econometrics37,38, with extensions such as generalized difference in difference (DiD) methods and control
function models39–41 These methods are also becoming increasingly popular in medical research. The literature on IV,
with examples, is vast.42–46 We will discuss here the general IV assumptions, typical causal estimands, and the corre-
sponding estimation procedures that are most commonly used. To focus on the principles here, our formalization below
ignores measured baseline covariates (which we have been denoting L), although the approach extends quite naturally
to conditioning on them. The unmeasured confounder(s) are denoted here by U.

An IV analysis aims to resemble that of a RCT, by using one or more variables (instruments) associated with treatment,
but not in any other way related to the outcome. The instrument can be seen as a surrogate for randomization. This is
depicted in Figure 2 where Z, the instrumental variable, is associated with A (the figure suggests a causal relation but
that is not necessary, association is sufficient). The instrument Z is related to response Y only via the treatment A; and
the instrument is independent of unmeasured confounders U.

Instrumental variable analysis can be used in trials to study the effect of noncompliance,37,47,48 as in our BEP example,
where randomization to the offer of the breastfeeding program could be used as instrument for attending the program.
Variation in preference for a certain treatment among physicians49,50 or variation in treatment policies among medical
centers51 are other examples of variables which can be considered close to pseudorandomization for treatment or pol-
icy assignment. When physicians have strong preferences for one or another treatment, identical patients may receive
different treatments; a variable measuring the physician’s preference, like the percentage of prescriptions A= 1 in a cer-
tain time window, could be used here as an instrument. Another popular IV approach is found in so-called “Mendelian
randomization” studies where genetic variation takes the role of the instrumental variable.52,53

4.2.1 The three core IV assumptions

To be an instrumental variable for the causal effect of A on Y , Z should satisfy the following three core assumptions
(possibly conditional on L):

IV1 Z is associated with the treatment A of interest;
IV2 Z is independent of any unmeasured confounders of the A→Y relationship;
IV3 Z is independent of the outcome Y conditional on treatment A and unmeasured confounders U.

Unfortunately only assumption IV1 can be empirically checked in the data.54 Assumptions IV2 and IV3 are not ver-
ifiable in the data: only their plausibility can be examined. For example, the observation that Z is independent of all
observed confounders makes assumption IV2 more plausible. Situations in which these assumptions are likely or unlikely
to hold are discussed for Mendelian randomization and for physician’s preference by several authors.42,52,53 When Z is
an IV and the assumptions of no interference, consistency and positivity hold, IV-based estimation does not require the
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F I G U R E 2 DAG representing the setting for an IV analysis.
A, treatment; U, unmeasured confounders; Y , outcome; Z, instrument

NUC assumption to lead to an estimator. However, an IV estimator on its own can only provide bounds for causal treat-
ment effect.55,56 These bounds are generally so wide that they are not useful. In order to obtain point estimates, additional
assumptions are needed as discussed below.

4.2.2 Additional assumptions to obtain an effect estimate

As the three main IV assumptions alone are not sufficient to identify causal effects, additional assumptions are needed for
estimation. Often some form of homogeneity of treatment is assumed. The traditional approach, popular in econometrics
is to use structural equation models which assume a constant effect of treatment across individuals. An example of a
standard linear structural equation model is

Y = 𝛽0 + 𝛽AA + f (U, 𝜖),

with U the unmeasured confounder(s) and 𝜖 an independent error term.57 The parameter 𝛽A is, under the consistency
assumption, equal to both the ATE and the ATT. For a binary instrument, under the three core IV assumptions, it can
easily be shown that 𝛽A equals the following IV estimand:

E[Y |Z = 1] − E[Y |Z = 0]
E[A|Z = 1] − E[A|Z = 0]

. (8)

Assuming the same treatment effect for all individuals is, in general, unrealistic. More severely affected patients may
benefit more (or less) from treatment, treatment could interact with other drugs, or men and women could respond
differently, for example. Assumptions regarding a homogeneous treatment effect can be relaxed by using structural mean
models (SMM).58,59 An SMM is a model for the mean difference between an observed outcome Y and a potential outcome
such as Y𝔞(0), that may condition on observed treatment A and instrument Z. A simple SMM is:

E[Y − Y𝔞(0)|A,Z] = A𝛽A. (9)

In this SMM, the homogeneity assumption is less strong and only requires that E[Y − Y𝔞(0)|A,Z] does not depend on
Z. For A= 0 we obtain E[Y − Y𝔞(0)|A = 0,Z] = 0, which is exactly the (mean) consistency assumption for 𝔞(0). For A= 1
we obtain E[Y − Y𝔞(0)|A = 1,Z] = 𝛽A. Since E[Y |A = 1,Z] = E[Y𝔞(1)|A = 1,Z] because of the consistency assumption, the
parameter 𝛽A in this SMM equals the ATT. Robins58 showed that 𝛽A in this model is exactly equal to the IV estimand (8).
Baseline covariates L can be added to this model, including interactions between L and exposures A.47 Other homogeneity
assumptions for IV estimation are possible, see Reference 43 for an overview.

An alternative assumption is monotonicity of the effect of Z on A. We discuss monotonicity briefly for a binary instru-
ment Z that causally affects a binary treatment A. Defining A𝔷(z) as the value of A when Z is set to z∈ {0, 1}, four types of
individuals can be identified: (1) always takers: those with A𝔷(1) = A𝔷(0) = 1, that is, individuals who will take the treat-
ment regardless of the value of the instrument; (2) never takers: those with A𝔷(1) = A𝔷(0) = 0; (3) compliers: those with
A𝔷(1) = 1 and A𝔷(0) = 0; and (4) defiers: those with A𝔷(1) = 0 and A𝔷(0) = 1.

The monotonicity assumption states that A𝔷(1) ≥ A𝔷(0), which implies that defiers do not exist. Under this assumption
the IV estimand (8) identifies a “local” causal effect in the subgroup of compliers, which is the complier average causal
effect (CACE):37,38

CACE = E[Y𝔞(1) − Y𝔞(0)|A𝔷(1) = 1 and A𝔷(0) = 0)].
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The interpretation of the CACE is often difficult,50,60,61 because the subgroup of compliers cannot be identified from the
data, although general characteristics like the distribution of age and sex can be obtained.62 In some particular instances,
however, it could be the parameter of interest: the CACE represents the intervention effect in the subgroup of individuals
for which it is acceptable and accepted, for example, the CACE for A2 is the effect among those individuals who will attend
the breastfeeding program when invited but not otherwise. Although this formulation is appealing, defining monotonicity
is more complicated when the instrumental variable is continuous, and the interpretation is often even less intuitive.61,63

The above section shows that the interpretation of an IV analysis depends on the choice of the additional assumptions,
under homogeneity assumptions the ATE or ATT is the estimand being targeted, while under monotonicity assumptions
the CACE is the target estimand.

4.2.3 Standard IV estimation

There are several ways of obtaining point estimates in an IV analysis. The traditional IV estimator is the Wald estimator64

which equals:

𝛽IV = ĉov(Y ,Z)
ĉov(A,Z)

.

This estimator is based on two relationships which are unconfounded: the relationship between instrument Z and out-
come Y , and the relationship between instrument Z and treatment A. In case of a binary instrument, this expression
reduces to

𝛽IV = Ê[Y |Z = 1] − Ê[Y |Z = 0]
Ê[A = 1|Z = 1] − Ê[A = 1|Z = 0]

, (10)

which is the IV estimand (8) with expectations replaced by simple averages; Ê[Y |Z = z] refers to the average of Y in the
selected subset with Z = z∈ {0, 1}. Similarly, Ê[A|Z = z] is a simple average of A in the selected subset with Z = z. The
numerator of (10) expresses the effect of the instrument on the outcome; the mean difference in outcome between those
with Z = 1 and Z = 0, or the risk difference in the case of a binary outcome. To obtain an estimate of the treatment effect
on the outcome, the effect of the instrument on the outcome is inflated by dividing the numerator by the effect of the
instrument on the treatment. The smaller the correlation between Z and A (the so-called strength of the instrument), the
larger the inflation factor.

The traditional IV estimator (10) can be equivalently obtained through a two stage linear regression (2SLS) approach.
In the first stage, a linear (OLS) regression model is fitted with treatment A as dependent variable and the instrument Z
as an independent variable (and optionally measured confounders L), yielding for each subject Ê[A|Z = zi]. In the second
stage, a linear regression model is fitted to the outcome Y on Ê[A|Z] (and possibly L65). The regression coefficient for
Ê[A|Z] is the IV estimator of the treatment effect.

Estimating coefficients in structural mean models can be done by defining a set of unbiased estimating equations. For
the simple SMM (9) the solution is equal to the Wald estimator.47 This amounts more generally to G-estimation.23,66

Many authors apply 2SLS methods to binary outcomes by fitting linear regression outcome models and hence yield-
ing estimates of risk differences. This is not advisable when also including covariates L as the fitted model may predict
outcome values >1 or <0. Extending the two-stage approach to a logistic regression outcome model is hampered by the
nonlinearity of the logistic model. A two-stage approach with a linear model in the first stage and a logistic model in the
second stage can only be used to obtain IV estimates of odds ratios if the outcome is rare. Otherwise, an alternative may
be to use logistic structural mean models.59,67,68

4.2.4 When are IV methods useful?

We have discussed the IV assumptions needed to estimate causal treatment effects. Although many IV estimators are con-
sistent, in finite samples instrumental variable estimators are generally biased. The bias depends on the sample size and
on the strength of the instrument (ie, the correlation between Z and A).69 Furthermore, IV estimates are very sensitive to
deviations from the IV assumptions. A small association between the unmeasured confounders and the instrument can
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lead to substantial bias especially if the instrument is weak.57,69 Moreover, weak instruments yield very imprecise IV esti-
mates and often (very) large sample sizes are needed to obtain informative results.70 This implies that instruments should
be strongly correlated to the treatment. There is however a trade-off between the amount of unmeasured confounding
and the strength of the instrument: an instrument cannot be strong if there is substantial unmeasured confounding57 and
a strong instrument implies weak unmeasured confounding.

To summarize, an instrumental variable analysis may be useful in the following situations: (1) the amount of expected
unmeasured confounding is substantial, (2) an instrument exists for which the core IV assumptions are plausible and
additionally a fourth assumption to interpret the point estimate can be sensibly invoked, (3) the instrument is sufficiently
strong, and (4) sample sizes are sufficiently large (when instruments are weak, required sizes may be in the order of several
thousands of subjects). Otherwise methods assuming NUC should be considered, while also maximizing the number
of measured confounders. Although approaches relying on NUC yield biased estimators if unmeasured confounding is
present, the direction of the bias is often known and the size of the bias may be approximated in sensitivity analyses.

4.3 Choosing an estimation method

Table 3 reviews several points that go to the heart of which causal estimands are meaningful and relevant in the specific
setting represented by our case study. An accompanying Table 4 summarizes the main assumptions that are invoked by
the various methods reviewed in this section when aiming to estimate the ATE (in addition to no interference and causal
consistency). The table is self-explanatory and highlights that the core difference lies in whether we are prepared or not
to assume NUC, given a vector of measured confounders L. However it is worth stressing these additional points.

For those methods assuming NUC:

• Outcome regression assumes a correct specification of the outcome model.
• PS-matching and PS stratification assume that the PS balances the confounder distribution.
• IPW assumes that the PS model is correctly specified given a sufficient set of confounders.
• Linear outcome regression models that condition on the estimated PS, as opposed to the original vector of

confounders L, require that either the outcome model or the PS model is correct and that the treatment effect does not
vary with the PS.71

• The specification of the PS model should achieve balancing of the distribution of the measured confounders across
treatment arms. Achieving this aim is substantially different from achieving treatment prediction, and hence the
criteria used for the latter do not apply here.

T A B L E 3 Considerations for the ATE for exposures A1, … , A4; the same issues arise in estimation of the ATT and ATNT

Exposure Estimand Comments

A1 ITT effect Randomization ensures unbiased estimation using simple contrasts

A3 ATE|A1 = 1, or ATE|A1 = 0 Effect of starting breastfeeding in a world where all (or no) women are offered the
program. If we do not condition on A1, then we mix the two populations (or two
“worlds”), which would never coexist outside of a trial where only half of women are
offered the intervention. Furthermore, A2 is an effect modifier. Thus, correct
specification of the outcome model requires an A2A3 term, and the ATE must then
marginalize over the distribution of A2. Note that the conditioning on A1 is not
relevant for estimating the causal effect of A2, as A1 has the role of an instrument for
A2, but not for A3 or indeed for A4

A4 ATE|A3 = 1 There is no support in the data for an effect of A4 in women with A3 = 0. Note also that
A4 = 0 is a mixture of durations of breastfeeding, potentially from 1 day up to just shy
of 3 months. The consistency assumption implies that its estimated effect refers to
settings with the same distribution of breastfeeding discontinuation times. An
equivalent statement holds for the interpretation of A3 = 0 in the row above

Abbreviation: ITT = Intention-to-treat.
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T A B L E 4 Sufficient assumptions for estimation methods of the ATE of a binary single point exposure A (assuming throughout
that no interference and consistency hold)

Assumptions

Correct specification of

Method NUC Y model PSa model Core IV assumption No Z-A interaction

Outcome regression

conditional on L ✓ ✓

conditional on PS= e(L) ✓ ✓a ✓a

Stratification by e(L) ✓ ✓

Matching by e(L) ✓ ✓

IPW by e(L) ✓ ✓

DR via L and e(L) ✓ Either Or

IV Z ✓ ✓

aEither of these if the outcome model is linear.

• In general, outcome regression is more efficient than a PS-based method.
• The choice between PS-based methods (ie, stratifying, regression adjustment, matching, and IPW) depends on effi-

ciency is an issue. Weighting may be inefficient (unless a doubly robust approach is used) if there are subjects with a
very high or low PS value; matching has a trade-off between a close match (which implies loss of efficiency because not
all subjects are matched) vs residual confounding. PS-regression adjustment has the advantage that it is robust against
misspecification of the outcome model when the PS model is correctly specified. It can also be made more efficient
with the inclusion of a selection of elements in L.23

When not assuming NUC

• IV estimation replaces the NUC assumption with other rather stringent assumptions.
• IV methods yield estimates that are very inefficient when instruments are weak and suffer from small sample bias.69

With any given approach come choices in implementation that imply a trade-off between bias and variance. For
example, in the context of PS matching, the use of smaller calipers to determine a match will reduce bias but may lead to a
smaller matched sample and hence loss in efficiency. In PS-inverse weighting, the use of weight truncation to reduce the
influence of a small number of points has the effect of decreasing the variance at the cost of introducing some bias. It is
hence impossible to recommend a single “best” approach, but rather choices are specific to the context where researchers
must balance bias, statistical efficiency, and in some cases computational efficiency.

5 RESULTS FROM THE SIMULATION LEARNER

We applied the methods discussed in the previous section to estimate the ATE and the ATT of A1, A2, and A3 on weight at
3 months using the data from the simulation learner PROBITsim. More details and the code used to produce the reported
results are given in Appendix 2 and in the material available at www.ofcaus.org.

5.1 Effect of the randomized program offer (A1)

First we estimate the causal effect of the randomized offer of the BEP (A1) on weight at 3 months. This is sim-
ply the difference in mean weight at 3 months between those with A1 = 1 and A1 = 0 because A1 is randomized.
This is also an estimate of the intention-to-treat (ITT) effect, in this case an “intention to educate,” and is most

www.ofcaus.org
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Estimand Estimation method Estimate (SE)

ATE

True value 165.1

Crude regression 196.0 (9.6)

Regression adjustment (without interactions) 155.4 (9.5)

Regression adjustment (with interactions) 165.0 (9.7)

PS stratificationb (six strata) 165.0 (9.4)

Regression with PSb 156.2 (9.0)

PS matching (one match)c 155.7 (10.1)

PS matching (three matches)c 154.9 (10.1)

PS IPWb 164.7 (9.3)

PS DR IPWb 164.7 (9.7)

IV 146.2 (14.0)

ATT

True value 152.8

Regression adjustment (with interactions) 148.7 (9.4)

PS stratificationb (six strata) 148.7 (9.6)

PS matching (one match)c 145.8 (9.8)

PS matching (three matches)c 145.4 (9.7)

PS IPWb 148.0 (9.6)

aThe variables controlled for in each of these analyses were: maternal age (linear and quadratic term),
maternal education, maternal allergy status, smoking status in the first trimester (ie, before program
allocation), and area of residence.
bSE estimated by bootstrap with 1000 replications.
cSE estimated according to Abadie and Imbens (2012), assuming that the conditional outcome variance is
homoscedastic, that is, does not vary with the covariates or treatment. This is implemented in Stata with the
option vce(iid). This assumption can be relaxed using the option vce(robust, nn(2)) for the one
match analysis and vce(robust, nn(4)) for the three matches analysis.

T A B L E 5 Estimated ATE and ATT
of A2 on weight at 3 months (in grams)
obtained using alternative estimation
methods controlling for relevant
confoundersa; PROBITsim study

relevant for health policy makers. This estimate is 94.2 g (95% confidence interval: 76.4 to 112.0 g). It indicates
that inviting all expecting mothers in the study population to attend this specific program increases their baby’s
weight, on average, by 94 g. The true value obtained from Table 2 was 98 g and is well within the confidence
interval.

5.2 Effect of program uptake (A2)

Table 5 shows the estimated ATE for A2, which is the effect most directly relevant to women deciding whether or not to
attend the program if offered. We also show the corresponding estimated ATT. In Section 3 we showed that the true ATE2
was greater than ATT2 (165.1 vs 152.8 g), whereby the treated, that is, the mothers who attended the program, were on
average, more educated and their infants had higher weight at 3 months but smaller increases from attending the program.
We estimated these target parameters under different assumptions and model specifications, starting from crude estimates
where confounding is ignored (ÂTE2 = 196.0 g and ÂTT2 = 148.7 g). We then controlled for measured confounding via
outcome regression, adopting two alternative model specifications that included all the potential confounders for the
A2 to weight at 3 months relationship: maternal age, education, allergy status, smoking during pregnancy, and area of
residence. In the first specification we included a quadratic term for maternal age, and in the second we also included
interactions between A2 and each confounder. The first led to ÂTE2 = 155.4 g and the second to ÂTE2 = 165.0 g, much
closer to the true value of 165.1 g.
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T A B L E 6 Estimated ATE and ATT of A3 on weight at 3 months (in grams) obtained using alternative
estimation methods controlling for relevant confoundersa and stratified by whether mothers were offered the
BEP program; PROBITsim study

A1 = 0 A1 = 1

Estimand Estimation method Estimate (SE) Estimate (SE)

ATE

True value 386.8 422.3

Crude regression 503.2 (11.6) 582.0 (12.2)

Regression adjustment (without interactions) 384.3 (2.8) 428.0 (3.3)

Regression adjustment (with interactions) 384.7 (3.3) 425.3 (2.7)

Regression with PSb 384.4 (3.2) 425.9 (3.3)

PS stratificationb (6 strata) 392.2 (4.1) 442.0 (6.7)

PS matching (one match)c 386.5 (13.7) 429.0 (17.4)

PS matching (three matches)c 380.7 (12.4) 437.2 (15.2)

PS IPWb 384.7 (4.0) 426.6 (6.9)

PS DR IPWb 384.8 (3.9) 426.7 (7.1)

ATT

True value 380.1 421.4

Regression adjustment (with interactions) 378.0 (2.9) 421.7 (2.5)

PS stratificationb (six strata) 388.8 (5.1) 438.3 (9.5)

PS matching (one match)c 384.3 (15.8) 435.6 (21.2)

PS matching (three matches)c 387.9 (13.5) 441.2 (18.0)

PS IPWb 381.9 (5.1) 429.2 (10.1)

aThe variables controlled for in each of these analyses were: maternal age (linear and quadratic term), maternal education,
maternal allergy status, smoking status in the first trimester (ie, before program allocation), area of residence, baby’s birth
weight (linear and quadratic term), whether birth was by caesarian section and, in the analyses restricted to A1 = 1, whether
the mother attended the program.
bSE estimated by bootstrap with 1000 replications.
cSE estimated according to Abadie and Imbens (2012), assuming that the conditional outcome variance is homoscedastic, that
is, does not vary with the covariates or treatment. This is implemented in Stata with the option vce(iid). This assumption
can be relaxed using the option vce(robust, nn(2)) for the one match analysis and vce(robust, nn(4)) for the
three matches analysis.

When applying the PS-based methods, we fitted the PS model by logistic regression with the same confounders (includ-
ing the quadratic term for maternal age). Stratification (over six strata) led to the same estimates as the more general
outcome regression models (ÂTE2 = 165.0 and ÂTT2 = 148.7 g), while matching, either to 1 or 3 other infants, led to
slightly smaller and less precise estimates. Balance checks revealed that the PS model was well specified (see Appendix 2).
Adopting inverse weighting or doubly robust estimation gave point estimates and standard errors close to those from
outcome regression.

The reported IV estimate used A1 as the instrument and assumed no A1–A2 interaction to be interpreted as an ATE.
This was estimated at 146.2 g and, as expected, has a very large estimated standard error.

5.3 Effect of starting breastfeeding (A3)

The estimated ATE and ATT for the effect of A3 on infant weight at 3 months are found in Table 6. As before they are
obtained under different assumptions and using different methods. As their true values depend on whether the exposure
is set in a world where the BEP is or not present, results are reported separately under these two scenarios.
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Note also that the true average potential outcome in the world where no program was offered but all mothers start
breastfeeding was lower than in the world where BEP is offered to all mothers and they all start breastfeeding (Table 6,
rows 8 and 9) because of the effect of the BEP on breastfeeding duration. This impacts on the causal effect of breastfeeding:
when A1 is set at 0, that is, no BEP is available to anyone, the effect of starting breastfeeding is ATE3,𝔞1(0) = 386.8 g and
ATT3,𝔞1(0) = 380.1 g; while when A1 set to 1, ATE3,𝔞1(1) = 422.3 g and ATT3,𝔞1(1) = 421.4 g.

The confounders of the A3 to weight at 3 months relationship include not only maternal age, education, allergy status,
smoking during pregnancy, and area of residence (ie, those involved in the analyses of A2) but also the infant’s sex, birth
weight (including a quadratic term), and whether the infant was born by caesarian section. In the analyses concerning
the world where A1 is set to be 1, A2 is also a confounder as it influences both A3 and infant weight.

There is little difference across the ATE estimates, obtained using either outcome regression or PS-based methods: the
results are all very similar and standard errors, while variable, all still lead to the conclusion that A3 meaningfully and
statistically affects the outcome. Balance checks for these two scenarios revealed that the PS model was relatively well
specified in both, and there was good overlap in propensity of exposure between the groups defined by A2 and A3 (see
Appendix 2).

We do not produce an equivalent IV estimate as there is no suitable IV for this effect, since A1 violates the second IV
assumption: A1 influences the outcome not only via A3 but also via A2.

For the ATT estimates, regression adjustment seems to perform better than the other methods, especially in the world
where A1 = 1. Of course, our simulation learner has generated just one relatively simple world model where both our
outcome and propensity model are easy to specify.

6 DISCUSSION

We set out to discuss “the making of” a causal effect question involving a well-defined point exposure for which we seek to
find the average treatment effect, possibly conditional on baseline characteristics. We have maintained an emphasis on the
framing of the scientific causal question, and in considering many methods together, in their basic form, so as to compare
and contrast the required assumptions of different principled estimation approaches for directly targeted estimands.

We applied the concept of principled estimation in turn to four different options for exposure levels which present
themselves along the path from treatment prescription to completion. As we moved with the selected exposure along
this path, the sufficient set of baseline confounders (and effect modifiers) became richer, and we had to account for what
happened earlier in the path. In doing so, we saw that we cannot treat randomization as “once an instrument, always an
instrument.” Rather, randomization (our A1) may act as an instrument for the effect of following the program (A2), but it
violated the assumptions required for it to be an instrument when studying the effect of “starting breastfeeding” (A3). At
every instance, thought is required to adapt to the new situation and estimate a relevant causal effect in a (sub)population
of interest.

In a similar vein, confounders that act as effect modifiers could be conditioned on to estimate average causal effects
within specific population strata (or by including interaction terms). Subsequently, we can average over their distribution
in the population of interest. With additional averaging, we lose some ability to offer stratified evidence and provide
personalized information but uphold a more global public health perspective. This pertains to both the ATE and ATT
target.

For selected estimands, we showed how the various estimating approaches perform in their most basic form. We rec-
ognized that many of them operate under similar identifying assumptions. For example, the different propensity methods
all assume correct specification of the PS model, and when choosing one of the methods one should consider addi-
tional issues. For the stratification, the choice of the number of strata and residual bias, for the matching the trade-off
between finding matched individuals and the fineness of the matching, and for the inverse probability weighting, the
size of the weights, truncation. Of course, differences remain in operating characteristics when key (untestable) assump-
tions are violated. The list of available approaches under the NUC assumption includes familiar standardized means
derived from the classic regression of outcome on baseline covariates and the exposure. This need not perform worse,
and can even be better than more novel PS-based methods that seek covariate balance after using the propensity score
for regression, matching, stratification, or inverse probability weighting. Doubly robust methods may be expected to out-
perform others when one set of model assumptions is violated, but equally loses precision (increases error) when both
the outcome regression and PS model are ill-fitting, and may be inefficient in finite samples when only one model is
correctly specified.65
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When we cannot find a sufficient set of confounders, instrumental variable approaches form an appealing alternative
provided an instrument can be found. To interpret the resulting estimator additional assumptions are needed that are not
always easy to justify; and one should consider whether those can lead to very broad confidence intervals. There are other
alternative routes still, such as regression discontinuity approaches for instance,72 a variation on pseudorandomization
that is found in specific designs.

We set out to give an overview of the basic principles that guide causal inference, however in practice, many compli-
cations conspire to challenge the applied statistician when performing causal inference. We, for instance, have implicitly
assumed all covariates are measured without error and there is no selection bias or drop-out. In practice, data may be
not just confounded, but may also suffer from missingness31 and measurement error on exposure73 or confounders74 is
likely. Flexible models may be more appropriate to capture the associations involved. Clustering and no-interference may
require extension of the presented setup to incorporate interference.12,13,75 With substantial dropout from a longitudi-
nal outcome due to mortality, one must adapt the definition of the outcome explicitly or reduce the target population to
potential survivors on all treatments considered.76 In the international initiative of Strengthening Analytical Thinking for
Observational Studies (STRATOS),77 other topic groups focus on guidance for these topics and joint developments with
our causal inference topic group are envisaged for the future.

We have purposefully focused on the point (ie, fixed) exposure perspective, even though we considered a natural
sequence of such exposures with corresponding decisions to be made. This allowed us to present an overview of differ-
ent estimation principles, showing how they resemble one another, and where and how they differ in their fundamental
assumptions and performance. The natural next step is to consider the joint effect of a sequence of exposure options
𝔞2, 𝔞3, 𝔞4 as a time-varying treatment regime and engage in estimating causal effects of different (static or dynamic) treat-
ment strategies. To achieve this, we would need to formally account for time-varying confounders along that path (see, eg,
References 78,79). We might further aim to explain the total effect and engage in mediation analysis to evaluate the pos-
sible role of intermediate variables on the causal path.71,80,81 For all these endeavors in higher dimensions, the principles
laid out here continue to form an important foundation.

Even at the point exposure level, the literature on adaptations of these estimators under additional or alternative
assumptions is vast, but beyond the scope of this tutorial. Here, we focused on a binary exposure and a continuous,
uncensored outcome. When exposures are categorical or continuous, a generalized propensity score can be used.82,83

There is course material available that accompanies this article, where practical exercises discuss estimation when the
primary outcome is binary, using the Right Heart Catheterisation data set84 (www.ofcaus.org). Estimating a linear effect,
a risk difference, is less obvious there and requires extra care.

We hope the layout of this principled approach will inspire practicing statisticians to think carefully about what
they are estimating and to report as clearly as possible on the nature of their exposure and causal estimand, as well
as the assumptions on which they have relied. While an abundance of machine learning techniques can handle elec-
tronic health records, they too need to integrate fundamental principles of causal inference to address causal questions.85

A naive analysis can be dangerous when followed by either implicit or explicit causal claims that are made without
regard for confounding or effect modification or for their population-level interpretation. We hope this contribution can
generate confidence and insight into methodological ground-rules, and promote better thinking, reliable estimates, and
clear reporting.
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