Hindawi Publishing Corporation
Advances in Bioinformatics

Volume 2013, Article ID 920325, 10 pages
http://dx.doi.org/10.1155/2013/920325

Research Article

A Multilevel Gamma-Clustering Layout Algorithm for
Visualization of Biological Networks

Tomas Hruz,! Markus Wyss,2 Christoph Lucas,' Oliver Laule,”
Peter von Rohr,’ Philip Zimmermann,’ and Stefan Bleuler?

! Institute of Theoretical Computer Science, ETH Zurich, 8092 Zurich, Switzerland

2 NEBION AG, HohlstrafSe 515, 8048 Zurich, Switzerland

Correspondence should be addressed to Markus Wyss; mw@nebion.com

Received 12 April 2013; Accepted 7 June 2013

Academic Editor: Guohui Lin

Copyright © 2013 Tomas Hruz et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Visualization of large complex networks has become an indispensable part of systems biology, where organisms need to be
considered as one complex system. The visualization of the corresponding network is challenging due to the size and density of
edges. In many cases, the use of standard visualization algorithms can lead to high running times and poorly readable visualizations
due to many edge crossings. We suggest an approach that analyzes the structure of the graph first and then generates a new graph
which contains specific semantic symbols for regular substructures like dense clusters. We propose a multilevel gamma-clustering
layout visualization algorithm (MLGA) which proceeds in three subsequent steps: (i) a multilevel y-clustering is used to identify
the structure of the underlying network, (ii) the network is transformed to a tree, and (iii) finally, the resulting tree which shows
the network structure is drawn using a variation of a force-directed algorithm. The algorithm has a potential to visualize very
large networks because it uses modern clustering heuristics which are optimized for large graphs. Moreover, most of the edges are
removed from the visual representation which allows keeping the overview over complex graphs with dense subgraphs.

1. Introduction

The development in systems biology has brought a strong
interest in considering an organism as a large and complex
network of interacting parts. Many subsystems of living
organisms can be modeled as complex networks. One impor-
tant example is a network of biochemical reactions which
constitutes a complex system responsible for homeostasis in
the living cell. An abstract network model of the biochemical
processes within the cell can be constructed such that reac-
tions are represented as nodes and metabolites (and enzymes)
as edges. In the past, this system was studied mainly on a
subsystem level through metabolic pathways. Recently, it has
become important to consider the metabolic system as one
complex network to understand deeper phenomena involv-
ing interactions across multiple pathways.

The need to study the whole network consisting of thou-
sands of reactions, metabolites, and enzymes requires a
visualization system allowing biologists to study the overall

structure of the system. Such a visualization should allow nav-
igation and comprehension of the global system structures.
In the present paper, we propose a visualization algorithm
for very large networks arising in systems biology and we
illustrate its usage on two complex biological networks. The
first case study is a metabolic network of Arabidopsis thaliana
and the second case study is a gene correlation network of
Mus musculus based on mRNA expression measurements.

Biological networks are usually represented as graphs
because such model can provide an insight into their struc-
ture. The goal of the subsequent visualization is to present the
information contained in the graph in a clear and structured
way. For instance, closely related nodes of a subsystem should
be positioned together. This can be achieved using a cost
function which formalizes the visualization criteria and
which controls the drawing algorithm. Several standard
algorithms exist to achieve this goal using continuous opti-
mization of the cost function, but the optimization of a
discrete cost function remains hard to solve.

http://dx.doi.org/10.1155/2013/920325

Advances in Bioinformatics

(b)

FIGURE 1: Arabidopsis thaliana metabolic network visualized with (a) a force-directed algorithm with all edges shown, (b) the MLGA method
which combines y-clustering with the force-directed algorithm. The underlying network has 1199 reactions (nodes) and 4386 metabolites

(edges).

A widely used graph drawing method for larger graphs
is the force-directed layout algorithm [I, 2]. Basically, the
graph is modeled as a physical system. A force is calculated
on every node: a repulsive force between every pair of nodes
and an attractive force if an edge exists between two nodes.
The forces direct the system into a steady state which defines
a final layout. However, the method has several disadvantages
for large graphs with many edges. First, a straightforward
implementation needs to calculate the forces between each
node-pair in each iteration. Second, for complex graphs too
many iterations are needed to find an optimal layout. Third,
a drawback results from the node degree distribution in bio-
logical networks which tends to be skewed (scale-free). Few
nodes have a high degree while a large number of nodes have
a small degree. The attractive forces will stick together the
nodes with many interactions in a small area which prevents
the identification of the network structure in the dense parts
of the network; see Figure 1(a). The repulsive force against
the other nodes leads to a scattered layout. To overcome
these disadvantages, other graph visualization methods have
emerged which are discussed later. On the other hand, for a
very specific class of graphs like trees, a modified version of
force-directed algorithm can be still a suitable method.

The visualization of very large biological networks was
considered in [3]. The large graph layout algorithm (LGL)
separates the graph into connected components, lays out
each connected component separately, and integrates these
layouts into one coordinate system. A grid variant of the
spring-based algorithm [1] is used to draw the graph for
each connected component. To separate dense parts of each
component, the minimum spanning tree (MST) is calculated
to define the order in which nodes are included in the
layout computation. Beginning from a root node of the MST,
new nodes with increasing edge distance from the root are

iteratively added to the layout. The new nodes are placed
randomly on spheres away from the current layout. At
each iteration, the spring-based layout algorithm is executed
until the layout is at rest. Under certain conditions, this
node placement strategy reduces cluttering and retains the
structure of core components; moreover, it separates highly
connected components. This layout phase is illustrated in [3,
page 181, Figure 1]. However, in some situations, the LGL
algorithm can even obfuscate the true structure of the graph.
Consider the situation where in the graph two cliques are
connected by a matching. The MST algorithm will represent
this subgraph as a star having many paths of length two
from the center and one path of length three leading to the
center of the second clique. The rendering according to LGL
would lead to a situation where the first clique is placed in the
interior of the second clique. Such starting configuration can
easily lead to a situation where the force-directed algorithm
cannot separate the cliques; moreover, the edges of the second
clique would cross the rest of the graph. The problem is that in
this situation the MST algorithm reduces the second clique to
one edge. In such cases a different solution would be needed
as we describe later.

The problem of fast visualization for protein interaction
networks was studied in [4]. The method uses an approach
with a grouping phase, and a layout phase. In the grouping
phase the algorithm identifies the connected components of
the graph and uniformly selects pivot nodes in each compo-
nent. The selection of the pivot nodes is controlled by a set of
rules based on empirical parameters. In the layout phase, the
pivot nodes define an initial layout of the connected compo-
nents. Afterwards, the layout of each connected component is
refined separately. The authors show that the method is faster
than many other algorithms; however, a certain disadvantage
of this algorithm is the choice of pivot nodes involving

Advances in Bioinformatics

many parameters and a complex set of rules. The rules and
its parameters are heuristically identified to give a uniform
distribution of the nodes within the connected component.
Another drawback is that the method per se cannot visualize,
the structure of dense subgraphs because of too many edge
crossings (see [4, page 1887, Figure 3]). To improve the visu-
alization the authors introduce visual operations to collapse
the cliques (and complete bipartite subgraphs) to reduce the
number of edges and nodes. Additionally, the problem of
finding maximal clique (or complete bipartite subgraph) is
NP hard together with its approximation there is almost
no chance to have fast identification heuristics for large
graphs. Our algorithm improves the situation in this respect
because relaxing requested density of the subgraph through
y-clustering (where 0 < y < 1 is the cluster density) allows
much more efficient heuristics for large graphs (order 10°
nodes and edges [5]).

A global optimization method was explored in [6] where
the authors describe a layout algorithm for metabolic net-
works. Nodes of the graph are placed on a square grid. A
discrete cost function between a pair of nodes is introduced
based on their relation and position on the grid. By min-
imizing the total cost, a layout is generated. A simulated
annealing heuristic is used to optimize the cost function
by choosing better layouts among possible candidates. Due
to the computationally costly calculation of the layout, the
approach is applicable to networks with a few hundred nodes
only. The authors showed that the algorithm works well on
sparse or planar graphs and clarifies the network structure as
the cost function of the method places closely related nodes
together. But this layout algorithm would place dense parts
of the graph in the same area leading to many edge crossings.
Additionally, as no reduction in the number of edges or nodes
is performed, the identification of the graph structure would
be very hard for large graphs with many edges.

2. MLGA Approach

The experience with the existing visualization methods has
shown that it is necessary to provide a structural view of
dense networks. Representing networks with a large number
of nodes and edges in a two-dimensional area results in many
edge crossings. Dense subgraphs prevent the recognition of
the network structure if drawn directly. Apart from other
technical problems, this is the main shortcoming of most
layout algorithms. We believe that the future progress in
visualization of large and dense networks lies in algorithms
which analyze the structure of the graph first and then gen-
erate a new graph which contains specific semantic symbols
for regular substructures like dense clusters. Additionally,
the algorithms may allow for drilling down and interactively
show all edges for a given substructure, described below (see
section visual representation and operation). Dense clusters
are ideal candidates for graph preprocessing because they
can be simply described, efficiently searched, and if they
are replaced with a specific symbol they significantly reduce
the complexity of the resulting low-dimensional (planar or
three dimensional) picture because they contain most of the
edges. Moreover, we focus on the graph clustering algorithms

because the underlying dimension of graphs can be very high
providing difficulties for other clustering algorithms.

Graph clustering is a large field with many algorithms
developed over the years [7]; however, there is no universal
solution for all cases. Even a definition of a cluster comes in
many flavors with different algorithmic consequences. There-
fore, it is important to consider a certain class of graphs which
is sufficiently general in the context of bioinformatics but
allows for using an efficient clustering method. Recently new
clustering methods emerged based on the idea of so-called
y-clusters [5] or («, B)-clusters [8]. These methods use fast
heuristics which allow for clustering efficiently large graphs.
The existence of such methods inspired the general idea
behind our research to use clustering algorithms to build a
hierarchical structure of a given graph which can be much
better visualized and which tells the users more about the
structure of the underlying biological network. In the fol-
lowing, we focus on y-clusters but other graph clustering
methods could be used as well.

3. Algorithm

The MLGA method introduces multilevel y-clustering and a
specific tree transformation with a force-directed layout algo-
rithm to visualize the structure of highly complex biological
networks. First, the original graph is preprocessed using a y-
clustering algorithm described in [5] to identify the clusters.
For every cluster, a new cluster node is created and these new
nodes are linked with new edges if there are edges between
the underlying cluster nodes as illustrated in Figure 2.

This process constructs the first hierarchical layer above
the original graph. Then, the clustering algorithm is recur-
sively applied to the cluster nodes itself to generate a cluster
hierarchy. Afterwards, this hierarchy is transformed to a tree
showing only the shortest paths from a root node through the
intermediate cluster nodes to the nodes of the initial graph.
Finally, a modified version of the force-directed algorithm
visualizes the tree structure of the remaining graph. This
combination of preprocessing and layout algorithm eases the
identification of the cluster structure and their interactions,
see Figure 1(b).

For the clustering step, we prefer y-clustering to («, f3)-
clustering or to other more complex methods because it
would be much more difficult to control the clustering param-
eters during the transitions between the hierarchy levels. The
only parameter which has to be specified for our algorithm at
every hierarchical level is the parameter y. It can be seen that
the density of the graph grows when the algorithm proceeds
to the higher levels. On the other hand, the number of nodes
decreases very rapidly so that after few steps there is only
one clique left. As a consequence, it is not meaningful to use
the same clustering parameters as the algorithm recursively
proceeds up the hierarchy. For more complex clustering algo-
rithms, it would be very difficult to define a good clustering
parameters if the parameter space has more dimensions.
In our case, the sequence of the values for the parameter
y must be growing. As we discuss later, the actual values
can be empirically determined and moreover 3-4 values are
sufficient for large graphs.

()

Advances in Bioinformatics

(®)

FIGURE 2: (a) The construction of a cluster hierarchy and (b) the transformation to a tree.

4. Algorithmic Phases

Let G = (V, E) be an undirected graph G with the vertex set
V and edge set E. A y-cluster for 0 < y < 1, also described as
y-clique or dense subgraph, is a subset S € V' such that for its
edge set E(S) and the vertex set V(S) the following is true:

o=y, <1)

Finding a y-clique of maximal cardinality in G is the
maximal y-clique problem. The I-clique problem is NP hard
and is proved to be hard to approximate [9].

To identify the clusters on one hierarchical level, we use
a heuristic developed in [5] to detect y-clusters for very
large graphs. Reference [5] introduced a potential function
on a vertex set relative to a given y-cluster and derived an
algorithm to discover maximal y-clusters. The time complex-
ity of the algorithm is O(IS||V|?) with S the set of vertexes
of the maximal y-cluster detected. Further, the authors use
a greedy randomized adaptive search procedure (GRASP)
version of the algorithm with edge pruning. The feasibility
of the resulting method was demonstrated by applying it to
telecommunication data with millions of vertexes and edges.

5. y-Cluster Detection

To find all y-clusters on one level in the graph a variant
(Algorithm 1) of the GRASP approach of [5] is used. The
cluster construction procedure construct_dsubg is the nonbi-
partite case for finding a high cardinality cluster of specified
density y in a graph with nodes V and edges E. Our algorithm
repeatedly applies the detection algorithm to the highest
hierarchical level of the new graph. It terminates if no more
y-clusters are found or the number of clusters with a cluster-
size below a given minimum size is reached.

6. Hierarchy Creation

The cluster detection algorithm is repeatedly applied to the
graph and the clusters to build a hierarchy; see Figure 2(a).
Each node of the graph has an attribute level which is

input: V: Vertices
input: E: Edges
input: y: density of cluster
begin
initialize empty list of clusters C;
count « 0;
cluster « construct_dsubg(y, V, E);
while cluster #0 A count < max_count do
size « |cluster];
if size > min_size then
add cluster to C;
count « 0;
else
count <« count + 1;
end
set V' to V without nodes of cluster;
set E to E without edges within cluster;
cluster « construct_dsubg(y, V, E);
end
end

ALGORITHM 1: createClusters.

initially assigned to zero. First, the cluster detection algorithm
retrieves the clusters of this initial graph. Afterwards, the
algorithm iteratively creates the clusters of the next level i
among the clusters one level below i — 1 (Algorithm 2). To
control the density of the clusters on each level a y;-value is
specified. At each level an edge between the cluster nodes
is created if an edge exists between the nodes one level
below. Additionally, a new edge is generated between the
cluster and the nodes belonging to the cluster. The algorithm
terminates if no more clusters are found. This phase resembles
hierarchical clustering where new nodes are introduced
for hierarchically different clusters but the y-clustering is
based on a completely different density measure and merges
multiple nodes in one step. Consequently, this leads to a
much lower tree depth (as described in the following section)
compared to the hierarchical clustering which generates a
binary tree.

Advances in Bioinformatics

begin
level « 0;
nodes « getNodes(level);
y < getGammaValue(level);
clusters « createClusters(nodes, y);
while clusters #0 do
create one node on the next level for each cluster;
create edges between clusters and nodes;
level « level + 1;
nodes « getNodes(level);
y < getGammaValue(level);
clusters « createClusters(nodes, y);
end
end

ALGORITHM 2: createMultiLevelClusters.

7. Tree Transformation

To gain the structure of the cluster hierarchy, a tree transfor-
mation is performed; see Figure 2(b). In the transformation
(Algorithm 3), a hidden root node is connected to all cluster
nodes at the highest level as their parent. Afterwards, only
the edges belonging to the shortest path from the root node
to each node is shown. If the shortest path is not unique a
path will be chosen at random. The distance for each node is
calculated beginning from the root using a breath-first search.
The parent of a node will be set to the neighbor node with the
shortest distance. If the node belongs to a cluster node at one
level above, the parent is set to this cluster.

8. Layout Algorithm

A modified version of a force-directed algorithm [2] is used
to lay out the transformed graph. Our method introduces
different edge length on each level. Longer edges are assigned
to higher levels than on lower levels. This results in a
natural visualization of the hierarchy. Furthermore, the initial
positions of the nodes are specifically calculated. The nodes of
the graph are located on concentric circles with the hidden
root node at the center. Nodes immediately connected to
the root are positioned at the next inner circle and so on. A
segment of the circle is assigned to each node within which its
location is calculated. Recursively, a fraction of this segment
is assigned to the children of the node on the next circle.
This initial setup reduces the rendering time and guides the
layout algorithm to visualize the tree structure. A random
initial positioning may result in a local minimum of the force-
directed layout with many edge crossings which would dis-
rupt the tree representation. Additionally, the repulsive forces
are ignored beyond a given distance depending on the size
of the drawing area. This restriction prevents disconnected
components of the graph from separating too far. To suppress
the well-known oscillation problem [10] of force-directed
algorithms a dumping heuristics is used where we compute an
average of the previous node positions during the force
calculation.

begin
create root;
set parent of highest level nodes to root;
candidates < highest level nodes;
foreach node € candidates do
if node belongs to a cluster one level above then
node.parent — cluster;
else
set node.parent to the neighbor with shortest
distance to the root;
end
node.dist < node.parent.dist + 1;
foreach neighbor of node except node.parent do
if neighbor has already been visited then
hide edge;
else
candidates < candidates U neighbor;
end
end
end
end

ALGORITHM 3: treeTransformation.

As the graph is transformed to a tree, other layout
algorithms can be used in the this phase. Reference [11] uses
a level-based approach which horizontally aligns nodes with
the same distance from the root node. As only a few levels are
created for our initial graph the resulting drawing would have
a much larger width than height. A ringed circular approach
like [12] where the children of the nodes are plotted on the
periphery of a circle has a better space efficiency on the 2D
plane than [11]. But a visual inspection of the resulting graph
in [12, page 11, Figure 7 (left)] shows that the force-directed
layout distributes the children of a node more evenly.

9. Visual Representation and Operation

After the creation of the cluster hierarchy and the tree
transformation many initial edge connections are hidden.
In the presentation of the resulting graph the nodes of the
inital graph are colored depending on the number of edges
in the initial graph. Additionally cluster nodes and edges are
visualized with different symbols and colors (Figure 3).

Our implementation of the visualization tool offers two
operations to get deeper insight into the original graph. First,
all edges between a selected node and its direct neighbors
can be highlighted (Figure 4(b)). If the marked node is a
cluster node, all connections to the nodes of the cluster
will be shown. During the tree transformation, most of
these connections were eliminated and a direct connection
between two nodes in different clusters was replaced by an
indirect connection between the cluster nodes. The second
operation will display all edges between the nodes forming
a p-cluster node (Figure 4(c)) which allows the user to
temporarily alter the view between the star-shaped cluster
node and the real connections of the cluster.

Node of initial graph (degree 0)
+ Node of initial graph (degree 1)
Node of initial graph (degree 2)
+# Node of initial graph (degree 3)
Node of initial graph (degree 4)
Node of initial graph (degree 5)
+ Node of initial graph (degree 6 or higher)
Cluster node level 1
Cluster node level 2
Edge of initial graph
Edge of a node belonging to a cluster
——— Edge between cluster nodes of same level

FIGURE 3: Semantic symbols used in MLGA visualization. Nodes
and edges are color encoded, nodes of the initial graph are colored
according to their degree and cluster nodes are enlarged at each level
of the hierarchy.

10. Computation Speed and
Memory Requirements

Retrieving a y-clique with the clustering algorithm of [5]
has a running time of O(ISIIV|?) with |S| the size of the
detected clique and |V] the size of the initial graph. As the
algorithm is recursively applied to the remaining nodes of
the graph, a time complexity of at most O(|[V]*) results on
each level of the hierarchy. The number of levels depends on
the number of clusters found on each level. It ranges from
the worst case where two nodes are clustered together log, |V
down to 1 if all nodes are in the same cluster. Therefore, the
total runtime order has an upper limit O((10g2|V|)4) and a
lower limit O([V]?) . The tree transformation of the resulting
hierarchy uses breath-first search. As new nodes and edges are
introduced during the hierarchy creation its runtime ranges
from O(4|V| + |E|) down to O(]V| + |E|) in terms of the inital
number of nodes |V| and initial number of edges |E|.

The implemented version of force-directed layout algo-
rithm needs a runtime of O(|V|?). A specialized tree layout
algorithm like [11] has a runtime of order O(|V]) and [12] an
order O(|V]) or O(|[V|log|V]) if an optimal solution for the
circle size is required.

The memory required by the algorithm mainly depends
on the graph representation. For biological networks a repre-
sentation between the worst case O(4|V|+|E|) and O(|V|+|E|)
space is suitable.

11. Results

11.1. Metabolic Networks. To provide experimental justifica-
tion of the proposed method, we extracted the metabolic
network for Arabidopsis thaliana from Genevestigator [13].
The network has 932 nodes and 2315 edges. The edges

Advances in Bioinformatics

represent metabolites and the nodes represent biochemical
reactions. We used two versions of the network as illustrated
in Figure 5(a) where the second version in Figure 5(b) con-
tains additionally the regulatory pathways with enzymes as
edges leading to 1199 nodes and 4386 edges.

The application of multi-level y-clustering to visualize the
A. thaliana biochemical network (Figure 5(a)) revealed that
both global view and lucidity were sustained, which is also
true when regulatory pathways were added to the network
(Figure 5(b)). We looked at plant isoprenoid biosynthesis, in
particular at the synthesis of brassinosteroids (BRs), a class of
plant hormones which are essential for the regulation of plant
growth and development [14, 15]. All individual reaction
steps, leading to BRs, were found structured according to
metabolite flux through the pathway as part of a level 2
cluster, also containing upstream pathways as well as reac-
tions leading to other isoprenoid end products (Figure 5(a)).
After inclusion of regulatory elements and signal-transduc-
tion chains, multi-level y-clustering assigned the biochem-
ical reactions from brassinosteroid biosynthesis to clusters
containing reactions known to be regulated by BRs and
elements that are involved in the regulation of this biosyn-
thetic pathway. As an example, the known fact that BRs act
synergistically with auxins to promote cell elongation [16] is
nicely reflected in the MLGA drawn network (Figure 5(b)).

11.2. Gene Interaction Networks. The MLGA method can
also be successfully used to analyze gene interaction net-
works. Gene interaction networks are constructed as graphs
where nodes represent genes and edges represent interactions
between genes on various biological levels, as for example,
interactions between the corresponding proteins or regula-
tory and causal interactions obtained from gene expression
experiments. There is a long-term research into methods how
to obtain networks which identify different kinds of gene
interaction networks based on different types of input data
[17-22]. However, as we illustrate later, even if a simplified
network generation method was used, our visualization algo-
rithm was able to identify correctly the biologically meaning-
ful subsystems from a genomewide correlation network.

To generate the gene correlation networks, we used a
Mus musculus dataset from the Genevestigator database. The
data consisted of 3157 publicly available Affymetrix arrays.
Each array measured the expression values of 12488 genes.
The gene correlation matrix was calculated using the Pearson
correlation and afterwards a network was generated, where
an edge was introduced between two genes if the correlation
value between the genes was above a certain threshold.
Two networks were constructed using a threshold of 0.72 in
Figure 6(a) and 0.80 in Figure 6(b).

We use a well-known ribosomal gene complex [23-25]
to illustrate the possibilities of MLGA to discover interesting
structures in the correlation network. An inspection of the
cluster highlighted in Figure 6(a) shows that it contains
genes which are documented to belong to the ribosomal
cluster. Moreover, our method has a structural stability in
a wide range of graph density. This can be seen comparing
Figures 6(a) and 6(b). Figure 6(a) has lower threshold; there-
fore, it contains 38 889 edges and 2774 nodes compared to

Advances in Bioinformatics 7

(a) (b) (©

FIGURE 4: (a) A part of a gene correlation network of Arabidopsis thaliana drawn with MLGA, (b) showing all edges connected to the y-cluster
node at the top right and (c) displaying all edges between the nodes defining the cluster. The inset shows a magnification of the edges of the
selected cluster.

(a) (b)

FIGURE 5: MLGA applied to (a) A. thaliana biochemical network without signaling effects and regulatory elements. Reactions directly
involved in the synthesis of brassinosteroids are highlighted with the red color and direct connections are depicted by red edges. The level
2 cluster, indicated by an arrow, combines the major parts of isoprenoid biosynthesis, resulting from the nonmevalonate pathway. (b) A.
thaliana biochemical network including signaling effects and regulatory elements. Reactions directly involved in brassinosteroid and auxin
metabolism/signaling are highlighted with red and direct connections are depicted by red edges. Black arrows point to reactions involved in
brassinosteroid metabolism/signaling. Green arrows point to reactions involved in auxin metabolism/signaling.

8659 edges and 1232 nodes in Figure 6(b). In both cases the ~ determined by a set of empirical values to achieve a uniform

ribosomal cluster can be clearly identified. distribution of these nodes in the network. Afterwards,
the layout is computed with respect to the selected pivot
12. Discussion nodes. In our method, the only important empirically set

parameters are the cluster densities y on each hierarchical
Visualization methods often contain parameters which must level. This influences the granularity of the visualization and
be empirically identified. In [4], the selection of pivot nodesis ~ the subsequent tree transformation supports the recovering

Advances in Bioinformatics

(®)

FIGURE 6: MLGA applied to (a) Mus musculus gene correlation network generated with a threshold of 0.72. (b) The gene correlation network
generated with a threshold of 0.80. The red highlighted nodes and direct connections belong to the ribosomal cluster.

of the network structure. The computational experience has
shown that it is recommended to use a slightly smaller y
value in the first than in the subsequent levels; we use 0.5 and
0.7, respectively. The density of the graph grows considerably
over the hierarchical levels. In most of the experiments with
a graph sizing up to 10° edges the third level was already a
clique. Therefore, very few y values are needed even for large
graphs.

A different approach in a similar direction as our research
is described in [26]. The authors consider weighted graphs
where vertexes with degree 1 are repeatedly removed until
no more vertex of degree 1 exists. The removed nodes can be
added at the end of the drawing algorithm. After that, a hier-
archy of clusters is calculated on the remaining graph using
an approximation of the graph distances. A cluster is formed
if the pairwise shortest path of its nodes is equal to or above a
threshold which depends on the hierarchy level. This leads to
different definition of clusters than in our algorithm together
with a different cluster heuristics. The algorithm preserves
more edges than in our case making the structure of the graph
more difficult to identify. Comparing the result of MLGA
Figure 1(b) with [26], the structure of graphs in [26] is only
partially resolved (see, e.g., [26, page 2, Figure 1]). Similarly
as in our case a version of force-directed algorithm is used
in the last stage to refine the visualization. A higher weight is
assigned to the edges between the nodes of a cluster than to
the edges between clusters. This forces the nodes of a cluster to
be drawn close to each other. In our approach, the additional
cluster node and the desired edge length have a similar effect.

In addition to complexity problems for large graphs (NP-
hard approximation), the algorithms based on identification
of cliques have also a drawback that it is often not clear which
cliques are relevant. This problem is particularly present
in cases of graphs with dense subgraphs, where we obtain

a system of large cliques with similar sizes which have
additionally large intersections. In particular, in the presence
of noise where every measurement defines a graph which
differs in a small percentage of edges, it is difficult to decide
during visualization based on cliques which part of the graph
can be emphasized as structurally important. An interesting
development is represented by [27] where the authors con-
centrate on intersections of large clusters under a condition
that these intersections are cliques. They identify so-called
“atom subgraphs” which represent clique minimal separator
decomposition (a separator is a set of vertexes whose removal
will disconnect the graph into several parts). However, the
relaxation from cliques to dense clusters in our method
improves also on the intersection problem because our
method would glue the cliques with large intersection into
one cluster.

13. Conclusion

As discussed, many approaches try to improve the layout of
complex networks through better placement of the nodes
alone. In our work, we pursue a different line of research
towards efficient visualization algorithms for large biological
networks. Our approach does not aim at rendering all edges
in a network, but we focus on the discovery and visualization
of important structural features. This approach is combined
with complementary visual operations which allow to drill-
down into the details of structurally identified elements. The
MLGA method is successful in identifying the biologically
relevant structures and allows for processing very large
graphs as we illustrated on two different case studies of bio-
logical networks. Naturally, this paradigm opens new ques-
tions on how to further improve the visualization output
and speed. Different clustering algorithms can be tried to

Advances in Bioinformatics

create the multi-level structure; however, in the case of
multiparameter clustering the control and analysis of the

parameter values between the levels would become more
difficult.

On the theoretical side, the next question to consider
is how to provide a provably good (optimal) sequence of y
values. Another question is whether the surprisingly good
structure identification features of our algorithm could be
traced back to the scale-free character of many biological
networks.

Disclosure

All materials, source code, and small case studies data can
be freely downloaded from http://www.pw.ethz.ch/research/
projects/complexnetworks/. Very large datasets are available
on request.

Acknowledgments

The authors would like to thank Professor Peter Widmayer
for the ongoing support of this project. This work was also
supported by Commission for Technology and Innovation of
the Swiss Federation under Grant 9428.1 PFLS-LS.

References

[1] T. Kamada and S. Kawai, “An algorithm for drawing general
undirected graphs,” Information Processing Letters, vol. 31, no. 1,
pp. 7-15, 1989.

[2] T. M. J. Ffuchterman and E. M. Reingold, “Graph drawing by
force-directed place-ment;” Software, vol. 21, no. 11, pp. 1129-
1164, 1991.

[3] A. T. Adai, S. V. Date, S. Wieland, and E. M. Marcotte, “LGL:
creating a map of protein function with an algorithm for visu-
alizing very large biological networks,” Journal of Molecular
Biology, vol. 340, no. 1, pp. 179-190, 2004.

[4] K. Han and B.-H. Ju, “A fast layout algorithm for protein inter-
action networks,” Bioinformatics, vol. 19, no. 15, pp. 1882-1888,
2003.

[5] J. Abello, M. Resende, and S. Sudarsky, “Massive quasi-clique
detection,” in LATIN 2002: Theoretical Informatics, S. Rajsbaum,
Ed., vol. 2286 of Lecture Notes in Computer Science, pp. 598-612,
Springer, Berlin, Germany, 2002.

[6] W. Li and H. Kurata, “A grid layout algorithm for automatic
drawing of biochemical networks,” Bioinformatics, vol. 21, no.
9, pp. 2036-2042, 2005.

[7] S. E. Schaeffer, “Graph clustering,” Computer Science Review,
vol. 1, pp. 27-64, 2007.

[8] N. Mishra, R. Schreiber, L. Stanton, and R. Tarjan, “Clustering
social networks,” in Algorithms and Models For the Web-Graph,
A. Bonato and E Chung, Eds., vol. 4863 of Lecture Notes in
Computer Science, pp. 5667, Springer, Berlin, Germany, 2007.

[9] J. Hastad, “Clique is hard to approximate within n'™*}” Acta
Mathematica, vol. 182, pp. 105-142, 1999.

[10] A. Frick, A. Ludwig, and H. Mehldau, “A fast adaptive layout
algorithm for undirected graphs (extended abstract and system
demonstration),” in Graph Drawing, R. Tamassia and I. Tollis,

Eds., vol. 894 of Lecture Notes in Computer Science, pp. 388-403,
Springer, Berlin, Germany, 1995.

[11] E.M. Reingold and J. S. Tilford, “Tidier drawings of trees,” IEEE
Transactions on Software Engineering, vol. SE-7, no. 2, pp. 223-
228, 1981.

[12] S. Grivet, D. Auber, J. P. Domenger, and G. Melancon, “Bubble
tree drawing algorithm,” in Computer Vision and Graphics, K.
Wojciechowski, B. Smolka, H. Palus, R. Kozera, W. Skarbek, and
L. Noakes, Eds., vol. 32 of Computational Imaging and Vision,
pp. 633-641, Springer, Dordrecht, The Netherlands, 2006.

(13] T.Hruz, O.Laule, G. Szabo etal., “Genevestigator v3: a reference
expression database for the meta-analysis of transcriptomes,”
Advances in Bioinformatics, vol. 2008, Article ID 420747, 5
pages, 2008.

[14] T. Asami, Y. K. Min, K. Sekimata et al., “Mode of action of brassi-
nazole: a specific inhibitor of brassinosteroid biosynthesis,” ACS
Symposium Series, vol. 774, pp. 269-280, 2001.

[15] J.-X. He, J. M. Gendron, Y. Yang, J. Li, and Z.-Y. Wang, “The
GSK3-like kinase BIN2 phosphorylates and destabilizes BZRI,
a positive regulator of the brassinosteroid signaling pathway in
Arabidopsis,” Proceedings of the National Academy of Sciences
of the United States of America, vol. 99, no. 15, pp. 10185-10190,
2002.

[16] K.]J.Halliday, “Plant hormones: the interplay of brassinosteroids
and auxin,” Current Biology, vol. 14, no. 23, pp. R1008-R1010,
2004.

[17] K. Y. Yip, R. P. Alexander, K.-K. Yan, and M. Gerstein,
“Improved reconstruction of in silico gene regulatory networks
by integrating knockout and perturbation data,” PLoS ONE, vol.
5, no. 1, Article ID 8121, 2010.

[18] M. Mutwil, B. Usadel, M. Schiitte, A. Loraine, O. Ebenhéh,
and S. Persson, “Assembly of an interactive correlation network
for the Arabidopsis genome using a novel Heuristic Clustering
Algorithm,” Plant Physiology, vol. 152, no. 1, pp. 29-43, 2010.

[19] D. Marbach, R. J. Prill, T. Schaffter, C. Mattiussi, D. Flore-
ano, and G. Stolovitzky, “Revealing strengths and weaknesses
of methods for gene network inference,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 107, no. 14, pp. 6286-6291, 2010.

[20] S. De Bodt, S. Proost, K. Vandepoele, P. Rouzé, and Y. Van de
Peer, “Predicting protein-protein interactions in Arabidopsis
thaliana through integration of orthology, gene ontology and
co-expression,” BMC genomics, vol. 10, p. 288, 2009.

[21] D. R. Rhodes, S. A. Tomlins, S. Varambally et al., “Probabilistic
model of the human protein-protein interaction network;
Nature Biotechnology, vol. 23, no. 8, pp. 951-959, 2005.

[22] A. de la Fuente, N. Bing, I. Hoeschele, and P. Mendes, “Discov-
ery of meaningful associations in genomic data using partial
correlation coefficients,” Bioinformatics, vol. 20, no. 18, pp.
3565-3574, 2004.

[23] J.-E Rual, K. Venkatesan, T. Hao et al., “Towards a proteome-
scale map of the human protein-protein interaction network,”
Nature, vol. 437, no. 7062, pp. 1173-1178, 2005.

[24] K. Ishii, T. Washio, T. Uechi, M. Yoshihama, N. Kenmochi, and
M. Tomita, “Characteristics and clustering of human ribosomal
protein genes,” BMC Genomics, vol. 7, article 37, 2006.

[25] O. Atias, B. Chor, and D. A. Chamovitz, “Large-scale analysis
of Arabidopsis transcription reveals a basal co-regulation net-
work,” BMC Systems Biology, vol. 3, p. 86, 2009.

[26] R. Bourqui, D. Auber, and P. Mary, “How to draw clus-
tered weighted graphs using a multilevel force-directed graph

http://www.pw.ethz.ch/research/projects/complexnetworks/
http://www.pw.ethz.ch/research/projects/complexnetworks/

10 Advances in Bioinformatics

drawing algorithm,” in Proceedings of the 1ith International
Conference Information Visualization (IV °07), pp. 757-764, July
2007.

[27] B.Kaba, N. Pinet, G. Lelandais, A. Sigayret, and A. Berry, “Clus-
tering gene expression data using graph separators,” In Silico
Biology, vol. 7, no. 4-5, pp. 433-452, 2007.

