
Received: 18 July 2023 Revised: 8 November 2023 Accepted: 20 November 2023

DOI: 10.1002/dad2.12511

R E S E A RCH ART I C L E

Exploratory correlation of the human structural connectome
with non-MRI variables in Alzheimer’s disease

ImanAganj1,2 JocelynMora1 Aina Frau-Pascual1,2 Bruce Fischl1,2 for the

Alzheimer’s Disease Neuroimaging Initiative

1Athinoula A.Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, Boston, Massachusetts, USA

2Radiology Department, HarvardMedical School, Boston, Massachusetts, USA

Correspondence

Iman Aganj, 149, 13th St., Suite 2301, Boston,

MA 02129, USA.

Email: iaganj@mgh.harvard.edu

Funding information

National Institutes of Health (NIH), National

Institute on Aging (NIA), Grant/Award

Numbers: R56AG068261, RF1AG068261;

BRAIN Initiative Cell Census/Atlas Network,

Grant/Award Numbers: U01MH117023,

UM1MH130981; the National Institute for

Biomedical Imaging and Bioengineering,

Grant/Award Numbers: P41EB015896,

R01EB023281, R01EB006758,

R21EB018907, R01EB019956,

P41EB030006; the NIA, Grant/Award

Numbers: R21AG082082, R56AG064027,

R01AG064027, R01AG008122,

R01AG016495, R01AG070988; the National

Institute ofMental Health, Grant/Award

Numbers: R01MH121885, RF1MH123195;

the National Institute for Neurological

Disorders and Stroke, Grant/Award Numbers:

R01NS0525851, R21NS072652,

R01NS070963, R01NS083534,

U01NS086625, U24NS10059103,

R01NS105820; the NIH Blueprint for

Neuroscience Research, Grant/Award

Number: U01MH093765; theMassachusetts

Life Sciences Center andNIH Shared

Instrumentation Grants, Grant/Award

Numbers: S10RR023401, S10RR019307,

S10RR023043, S10RR028832; NIH andDoD

for the Alzheimer’s Disease Neuroimaging

Initiative (ADNI), Grant/Award Numbers:

U01AG024904,W81XWH-12-2-0012

Abstract

Introduction:Discovery of the associations between brain structural connectivity and

clinical and demographic variables can help to better understand the vulnerability and

resilience of the brain architecture to neurodegenerative diseases and to discover

biomarkers.

Methods:We used four diffusion-MRI databases, three related to Alzheimer’s disease

(AD), to exploratorily correlate structural connections between 85 brain regions with

non-MRI variables, while stringently correcting the significance values for multiple

testing and ruling out spurious correlations via careful visual inspection. We repeated

the analysis with brain connectivity augmentedwithmulti-synaptic neural pathways.

Results: We found 85 and 101 significant relationships with direct and augmented

connectivity, respectively, which were generally stronger for the latter. Age was con-

sistently linked to decreased connectivity, and healthier clinical scores were generally

linked to increased connectivity.

Discussion:Our findings help to elucidatewhich structural brain networks are affected

in AD and aging and highlight the importance of including indirect connections.

KEYWORDS
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1 INTRODUCTION

Normal aging, as well as debilitating neurodegenerative diseases such

as Alzheimer’s disease (AD), affect not only individual brain regions,

but also the connectivity between them.1,2 A focus on brain regions,

but not interregional connectivity, may have hindered progress in

understanding and treating diseases such as AD that are characterized

as disconnection syndromes.3 Mapping the complex brain networks

through which information flows—that is, the human connectome4—

can help to better understand the vulnerability and resilience of these

networks to the effects of AD, potentially leading to the discovery

of diagnostically and therapeutically important connectomic biomark-

ers. Analysis of structural brain networks, by means of noninvasive

diffusion-weighted magnetic resonance imaging (dMRI), has proved

valuable in revealing the structural basis of dysfunction in mild cogni-

tive impairment (MCI) and AD, demonstrating changes distinct from

those with healthy aging.5–9

Brain connectivity is often represented as a graph adjacency matrix

of connection strengths between the brain regions of interest (ROIs),

with its number of elements (graph edges) growing quadratically

with respect to the number of ROIs (graph nodes). In population

connectomic studies, it is often desired to find links between brain con-

nectivity and non-MRI (clinical and/or demographic) variables. Such a

study typically has sufficient statistical power to test pre-hypothesized

relationships involving specific brain connections and variables. In con-

trast, an exploratory investigation to discover previously unknown

relationships would require correlating the connectivity strength of

every brain ROI pair with every available variable, amounting to hun-

dreds of thousands (sometimes millions) of tests. In that scenario, the

correction for multiple comparisons wouldmake the study statistically

lesspowerful andconsequently lessdesirable to conduct.Alternatively,

one could reduce the number of tests considerably by focusing on net-

work summary features10 rather than brain connections, which would

informabout how the variables relate to thenetwork as awhole7,11 but

not to individual brain connections.

Structural connectivity between two brain regions is commonly

defined based on the dMRI tractography-derived12,13 streamlines

between them. The direct fiber bundle connecting two brain areas is

expected to be the major signal carrier between them; however, multi-

synaptic neural pathways (those mediated through other regions) also

provide connectivity.14,15 We have previously developed computa-

tional methods to augment direct structural connectivity graphs with

indirect connections16 as well as quantify brain structural connectivity

while accounting for indirect pathways,17 and have shown the impor-

tance of these pathways in predicting functional connectivity 17 and

deriving connectomic biomarkers forMCI and AD.18

Here, we take an exploratory approach to discovering relationships

that individual structural connections in the brain may have with clin-

ical and demographic variables. We use anatomical and diffusion MR

images along with non-MRI data from four public databases (three of

which are related toAD) to find links between brain connections—both

direct and augmented—and non-MRI variables that remain significant

after stringent correction for multiple testing and visual inspection.

RESEARCH INCONTEXT

1. Systematic review: The literature was reviewed in

Google Scholar. Most structural connectomic analyses

of Alzheimer’s disease (AD) examined network features,

predefined fiber tracts, and/or pre-hypothesized non-

MRI variables, thereby falling short of being anexhaustive

exploratory analysis. They also almost exclusively studied

direct structural connections.

2. Interpretation: Consistent with prior literature, the

significant relationships that we found showed increased

brain structural connectivity with healthier clinical

scores, youth, and retention rate. The relationships

with augmented (direct + indirect) connectivity were

generally stronger than—but not totally overlapping

with—those with direct connectivity.

3. Future directions: The significant relationships between

brain connectivity and non-MRI variables that were

found in this exploratory study can be hypothesized and

directly tested in additional databases and/or with differ-

ent connectivity quantification techniques in the future,

thereby validated (or falsified) through replication. The

generated knowledgewill help to define the specific brain

networks that are affected in AD.

We describe our processing and analysis methods in Section 2,

report our results in Section 3, discuss them in Section 4, and conclude

the paper in Section 5.

2 METHODS

2.1 Datasets

We used the following four public dMRI databases. The number of

subjects indicates the subset of subjects that were processed and

included in our analysis, and thenumber of non-MRI variables indicates

variables thatwere available for at least some of the included subjects.

∙ The second phase of the Alzheimer’s Disease Neuroimaging Ini-

tiative (ADNI-2)19: 217 subjects (from cognitively normal to AD),

47 non-MRI variables from the ADNIMERGE table (demographics,

cerebrospinal fluid [CSF] markers, dementia/cognitive exam scores,

positron emission tomography [PET], apolipoprotein E4 [APOE4],

diagnosis, etc.).

∙ The third release in the Open Access Series of Imaging Studies

(OASIS-3)20: 771 subjects (from cognitively normal to AD), 588 non-

MRI variables (demographics, UniformData Set, dementia/cognitive

exam scores, APOE, etc.).
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∙ The Pre-symptomatic Evaluation of Experimental or Novel Treat-

ments for Alzheimer’s Disease (PREVENT-AD)21: 340 cognitively

unimpaired older individuals with a parental or multiple-sibling his-

tory of AD, 199 non-MRI variables (demographics, medical history,

vitals, CSF markers, dementia/cognitive exam subscores, genetics,

lab results, auditory/olfactory processing, etc.).

∙ The WashU-UMN Human Connectome Project (HCP)22: 617

healthy young adults, 488 non-MRI variables (demographics, medi-

cal history, family history, dementia/cognitive exam scores, person-

ality/emotion tests, motor/sensory tests, task performance, etc.).

2.2 Data processing

Anatomical MR images of the databases were processed with

FreeSurfer.23 All time points of PREVENT-AD were also more

robustly processed using the FreeSurfer longitudinal pipeline.24 For

all databases, we included each subject only once, that is, the earliest

visit containing dMRI (frequently the baseline), in order to keep our

analyzed data points independent and our study cross-sectional. We

then ran the FreeSurfer dMRI processing pipeline, which also includes

commands from the FMRIB Software Library (FSL),25 and propa-

gated 85 automatically segmented cortical and subcortical regions

from the structural to the diffusion space using boundary-based image

registration.26

Next, we used our public toolbox (www.nitrc.org/projects/

csaodf-hough) to (1) reconstruct the diffusion orientation

distribution function in constant solid angle (CSA-ODF),27

(2) run Hough-transform global probabilistic tractography13

to generate an optimal (highest-score) streamline

passing through each of the 10,000 seed points per subject, (3)

compute a symmetric structural connectivity matrix (with positive

elements) for each subject by summing the tracts passing through each

pair of ROIsweighted by the tract score (hence an emphasis on stream-

lines best aligned with the dMRI-derived fiber orientations as well as

fiber tracts with the highest white-matter integrity), and (4) augment

the raw matrices with indirect connections (see Section 2.3).16 We

transformed the connectivity value c (each element in the raw or

augmented connectivity matrix) as c← 1 − exp(−c∕c̄), where c̄ is the

cross-subject average of c, thereby confining the connectivity values

to the range [0,1].

2.3 Augmentation of structural connectivity with
indirect connections

Strong functional connectivity between brain regions is commonly

observed between regions with no direct structural connection.14,28–34

Some variance in functional connectivity unexplained by direct

connections can be accounted for rather by indirect structural

connections,14,15,17 implying that the network nature of the brain

makes the interaction between two brain areas sensitive to influences

from other remote areas.29

Wehavepreviouslydevelopedamethod toaugment a tractography-

generated structural connectivity matrix with indirect connections via

the mathematics of circuit laws,16 thereby producing a new matrix

that additionally reflects multi-synaptic pathways. This approach is

based on the intuition that total connectivity for multiple direct con-

nections is expectedly their sum if they are parallel, or smaller than

each connection if they are in series (as total connectivity is presum-

ably bottlenecked by theweakest link along theway). These conditions

are accommodatedbymodeling thebrain similarly to a resistive electri-

cal circuit, where a resistor represents each direct connection, with its

conductance (inverse of resistance) being the tractography-measured

strength of the connection.16,35 Total (augmented) connectivity is then

calculated via Kirchhoff’s laws as the overall conductance among

regions, using graph Laplacianmethods.

2.4 Analysis

We used the cross-sectional data of each database to independently

test if there is a statistically significant relationship between each non-

MRI (clinical or demographic) variable and the computed structural

brain connection between each ROI pair. To perform a true exploratory

analysis, we did not exclude any available variable based on its per-

ceived relevance. To deal with data source heterogeneity, we analyzed

the databases (and report their results) separately. The homogeneity

within each database is expected to lead to findings that would be

strengthened if they independently replicated in several databases.

If a non-MRI variable had categorical (rather than numeric) values,

we converted it to numeric by assigning a natural number to each cat-

egory, while making our best effort to sort the categories (if more than

two) in amonotonic order; for instance, for the variable “BaselineDiag-

nosis” in ADNI-2, we assigned the following: Control Normal → (1),

Significant Memory Concern→ (2), Early MCI→ (3), Late MCI→ (4),

and AD → (5). We computed the Pearson correlation coefficient (r),

along with its significance (p) value, between each variable and each

connection. The p-values were then corrected for multiple compar-

isons via the conservative Bonferroni method (pb); that is, they were

multiplied by the number of (undirected) connections, #ROIs × (#ROIs

− 1) ÷ 2 = 85 × 84 ÷ 2 = 3570, as well as by the number of studied

variables (see Section 2.1). Since the quantified structural connectivity,

which is the score-weighted number of streamlines passing through a

pair of ROIs, is affected by the tract length, we controlled for the extra-

neous variable of intracranial volume (ICV) by computing the partial

correlation instead. For robustness of the correlation,36 we removed

connectivity values that were marginal outliers from the correlation

analysis by excluding any element in the connectivity matrix of a sub-

ject (but not the subject’s entire matrix) that was larger than 0.9 (recall

the range [0,1] of values). This was principally because we deemed a

connectivity value with a large deviation from the population mean to

be less reliable, since such a deviation indicated an increased likelihood

of lower image quality or a data-processing issue. Therefore, slightly

different numbers of subjects contributed to the correlation analysis

of different brain connections.

http://www.nitrc.org/projects/csaodf-hough
http://www.nitrc.org/projects/csaodf-hough
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For each variable, we selected the connection most significantly

correlating with it, that is, with the lowest pb-value. If pb was smaller

than the threshold α = 0.05, then we scatter-plotted the connection

strengthwith respect to the variable and visually inspected it to ensure

the significant Pearson correlation was real and not spurious due to

some outliers, thus avoiding situations withmost data points clustered

togetherwith no obvious relationship.36 The correlations surviving the

Bonferroni correction andpassing the visual inspection are reported as

follows.

3 RESULTS

Cross-subject medians of the raw and augmented connectivity matri-

ces are shown in Figure 1 for the four databases. We correlated 3570

brain structural connections with 47, 588, 199, and 488 non-MRI vari-

ables for the ADNI-2, OASIS-3, PREVENT-AD, and HCP databases,

respectively, while controlling for the ICV. Out of those variables, 15,

230, 32, and 84, respectively, were found to have a significant Pear-

son correlation (pb < 0.05) with raw connections, and 20, 79, 1, and

1 variables, respectively, had a significant correlation with augmented

connections. After visual inspection to remove spurious correlations,

variables with significant correlation with raw connectivity were

reduced to 15, 65, 3, and 2, respectively, whereas the variables signif-

icantly correlated with augmented connectivity remained unchanged.

The findings are detailed in Tables 1-4 for the four databases. The

right column of each table indicates the total number (out of 3570) of

connections reachingBonferroni-level significance for a given variable.

Controlling for ICV had several effects on the results; for example, it

made the correlation of brain connectivity with the variable Everyday

Cognition Study Partner Report–Memory in ADNI-2 andwith theMul-

tilingualNamingTest (both the total score and the total correctwithout

semantic cue) in OASIS-3 significant (see Tables 1 and 2). Without sep-

arating the effects of ICV, conversely, we would observe significant

correlations of brain connectivity with grip strength (−) and the max-

imum number of drinks consumed in a single day (−) in HCP, and with

posture issues (−) and with Montreal Cognitive Assessment: Abstrac-

tion (+) in OASIS-3. The confounding effect of ICV was especially

drastic on the correlation with sex. Significant correlation of connec-

tivity (of the most related brain connection) with the male sex was as

follows:

∙ initially not found in ADNI-2 but appeared as positive by including

ICV as a covariate,

∙ negative in OASIS-3 regardless of controlling for ICV (but stronger

without),

∙ initially positive in PREVENT-AD but disappeared after including

ICV as a covariate,

∙ negative in HCP regardless of controlling for ICV (but stronger

without).

Next, we focused on three representative variables of age, theMini-

Mental State Examination (MMSE), and the Clinical Dementia Rating

(CDR; sum of boxes). Among all the augmented brain connections that

were significantly correlated with age (after Bonferroni correction)

consistently in ADNI-2, OASIS-3, and PREVENT-AD, the one between

the right superior frontal cortex and the left hippocampus was most

significant (in terms of the geometric mean of the p-values across

databases). Similarly, for both the MMSE and CDR, the augmented

connection between the right superior frontal cortex and the right hip-

pocampus had the most significant correlation consistently in ADNI-2

and OASIS-3. These relationships are plotted in Figure 2 for all three

variables.

4 DISCUSSION

Although more correlations were initially found to be significant with

raw than augmented structural connectivity (in three out of four

databases), visual inspection of the data led to discarding many of the

former—but none of the latter—as spurious, implyingmore robustness

and reliability of the augmented structural connections. Spuriousness

was often because raw (direct) connectivity between an ROI pair was

zero for all except a few subjects who dramatically influenced the

correlation calculation, in contrast to augmented connectivity, which

is always positive in a network with a single connected component.

Eventually, a total of 85 relationships with raw connectivity and 101

with augmented connectivity passed the Pearson correlation thresh-

old, Bonferroni correction, and visual inspection. Each variable may

have been significantly correlated with multiple brain connections, the

number of which is listed in the tables (right column). Out of 76 vari-

ables correlated with both types of connectivity (see the taller cells in

the left column of the tables), 72 were more significantly correlated

with augmented than raw connectivity, always with a greater or equal

number of total connections correlated with augmented than raw con-

nectivity. For a significance plot of the correlation with age, MMSE,

and CDR for all connections (albeit in a non-exploratory context and

with a different connectivity quantification method), see our previous

report.18

More variables were found to be significantly related to brain con-

nectivity in ADNI-2 andOASIS-3 (Tables 1 and 2) than in PREVENT-AD

and HCP (Tables 3 and 4), possibly due to the fact that PREVENT-AD

and HCP (which include only healthy subjects) are more homogenous

populations with narrower ranges of scores (e.g. MMSE) than ADNI-2

and OASIS-3 (which include a mix of healthy, MCI, and AD subjects).

Moreover, the fact that proxies for disease severity, such as MMSE

and CDR, correlate with brain connectivity (only with the presence of

MCI and AD patients) suggests that the corresponding changes in the

connectome are possibly disease-related and a potential marker of the

disease.

The most prominent non-MRI variable that was consistently corre-

lated with structural connectivity was age. A negative correlation was

observed between age and hippocampal connectivity in all databases

except HCP. The limited age range in the young population of HCP

may be the reason why this relationship was not detected in this

database, given that the standard deviations of age were (in decreas-
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F IGURE 1 Element-wise cross-subject median of the raw (left) and augmented (right) connectivity matrices for the four databases. ADNI-2,
Alzheimer’s Disease Neuroimaging Initiative; HCP, Human Connectome Project; OASIS-3, Open Access Series of Imaging Studies; PREVENT-AD,
Pre-symptomatic Evaluation of Experimental or Novel Treatments for Alzheimer’s Disease.
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TABLE 1 Significant correlations of non-MRI variables with brain connectivity in ADNI-2.

Non-MRI variable

Most correlated brain structural connection

(type [raw/augmented], Pearson correlation,

Bonferroni-corrected p-value)
#

Sig.Conn

Baseline diagnosis L. Lingual cortex—L. Entorhinal cortex

Augmented, r=−0.41, pb = 0.0005

79

Age L. Hippocampus—L. Ventral diencephalon

Raw, r=−0.42, pb = 0.0002

7

L. Hippocampus—R. Superior frontal cortex

Augmented, r=−0.47, pb = 7× 10−7
67

Sex R. Putamen—Brainstem

Raw, r= 0.36 (with themale sex), pb = 0.04

2

FDG-PET

Mean of angular, temporal, and posterior

cingulate

R. Hippocampus—R. Fusiform cortex

Raw, r= 0.43, pb = 0.0001

3

R. Hippocampus—R. Precuneus cortex

Augmented, r= 0.46, pb = 4× 10−6
67

AV45 PET (binding to β-amyloid)

Mean of whole cerebellum

R. Hippocampus—R. Precuneus cortex

Augmented, r=−0.43, pb = 8× 10−5
45

Clinical Dementia Rating (CDR)

Sum of boxes

R. Hippocampus—R. Fusiform cortex

Raw, r=−0.38, pb = 0.007

3

R. Entorhinal cortex—L. Pallidum

Augmented, r=−0.43, pb = 6× 10−5
135

ADAssessment Scale (ADAS)

11 items

R. Hippocampus—R. Fusiform cortex

Raw, r=−0.37, pb = 0.03

2

R. Hippocampus—R. Precuneus cortex

Augmented, r=−0.43, pb = 0.0001

45

ADAssessment Scale (ADAS)

13 items

R. Hippocampus—R. Fusiform cortex

Raw, r=−0.39, pb = 0.005

2

R. Hippocampus—R. Precuneus cortex

Augmented, r=−0.44, pb = 4× 10−5
86

ADAssessment Scale (ADAS)

DelayedWord Recall

R. Hippocampus—R. Ventral diencephalon

Raw, r=−0.38, pb = 0.01

4

L. Entorhinal cortex—R. Caudal anterior

cingulate cortex

Augmented, r=−0.40, pb = 0.0008

42

Mini-mental state examination (MMSE) R. Hippocampus—R. Entorhinal cortex

Raw, r= 0.37, pb = 0.02

2

L. Amygdala—R. Entorhinal cortex

Augmented, r= 0.42, pb = 0.0003

75

Rey Auditory Verbal Learning Test (RAVLT)

Immediate

Sum of 5 trials

R. Hippocampus—R. Entorhinal cortex

Raw, r= 0.39, pb = 0.006

1

R. Isthmus cingulate cortex—L. Entorhinal cortex

Augmented, r= 0.41, pb = 0.0005

70

Functional assessment questionnaire (FAQ) R. Hippocampus—R. Fusiform cortex

Raw, r=−0.38, pb = 0.01

2

R. Hippocampus—R. Rostral middle frontal

cortex

Augmented, r=−0.46, pb = 10−6

142

Montreal cognitive assessment (MoCA) L. Hippocampus—L.Middle temporal cortex

Raw, r= 0.39, pb = 0.01

2

(Continues)
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TABLE 1 (Continued)

Non-MRI variable Most correlated brain structural connection

(type [raw/augmented], Pearson correlation,

Bonferroni-corrected p-value)

#

Sig.Conn

R. Hippocampus—R. Isthmus cingulate cortex

Augmented, r= 0.44, pb = 6× 10−5
71

ADNImodified Preclinical Alzheimer’s

Cognitive Composite (PACC)

with Digit Symbol Substitution

R. Hippocampus—R. Entorhinal cortex

Raw, r= 0.40, pb = 0.001

6

R. Hippocampus—L. Rostral middle frontal cortex

Augmented, r= 0.44, pb = 2× 10−5
161

ADNImodified Preclinical Alzheimer’s

Cognitive Composite (PACC)

with Trails B

R. Parahippocampal cortex—R. Fusiform cortex

Raw, r= 0.41, pb = 0.0005

6

R. Hippocampus—L. Rostral middle frontal cortex

Augmented, r= 0.44, pb = 10−5
173

Everyday Cognition Study Partner Report

(ECog SP)—Memory

L. Entorhinal cortex—L. Banks of superior

temporal sulcus

Augmented, r=−0.37, pb = 0.02

1

Everyday Cognition Study Partner Report

(ECog SP)—Language

L. Isthmus cingulate cortex—L.Middle temporal

cortex

Augmented, r=−0.38, pb = 0.01

4

Everyday Cognition Study Partner Report

(ECog SP)—Plan

R. Isthmus cingulate cortex—L. Inferior temporal

cortex

Augmented, r=−0.39, pb = 0.009

2

Everyday Cognition Study Partner Report

(ECog SP)—Total

L. Hippocampus—L. Entorhinal cortex

Raw, r=−0.37, pb = 0.04

1

R. Isthmus cingulate cortex—L. Inferior temporal

cortex

Augmented, r=−0.39, pb = 0.006

4

LogicalMemory

Delayed Recall

R. Hippocampus—L. Rostral middle frontal cortex

Augmented, r= 0.37, pb = 0.01

6

Trail Making Test, Part B

Time to complete

R. Parahippocampal cortex—R. Fusiform cortex

Raw, r=−0.40, pb = 0.001

1

R. Hippocampus—R. Isthmus cingulate cortex

Augmented, r=−0.37, pb = 0.04

1

Abbreviation: ADNI-2, Alzheimer’s Disease Neuroimaging Initiative; AV45, florbetapir; FDG, fludeoxyglucose-18; MRI, magnetic resonance imaging; PET,

positron emission tomography; # Sig.Conn, number of significantly correlated connect.

ing order) 9.1 years in OASIS-3, 6.9 years in ADNI-2, 5.1 years in

PREVENT-AD, but only 3.6 years in HCP. In fact, the statistical sig-

nificance of the age correlation decreased in the same database

order.

Clinical scores that were found to be significantly related to brain

connectivity showed the consistent trend of healthier scores being

linked to increased connectivity. The only exceptionwas the significant

relationship of phosphorylated tau with the raw connection between

the right caudate and the left caudalmiddle frontal cortex inPREVENT-

AD, which was unanticipatedly positive. Nonetheless, we had already

observed—in a different database with a different connectivity quan-

tification method—a similarly unexpected strengthening of caudal

structural connectivity with worsening cognitive status.18,37 In fact,

volume38 and fractional anisotropy (FA)39 of the caudate have been

reported to increase in presymptomatic familial AD, which might have

also led to the aforementioned relationship we observed in PREVENT-

AD (which includes healthy subjects at risk of AD). Such an increase

in the measured structural connectivity in presymptomatic subjects

may indicate a compensatory effect,40 or could stem from other

factors (eg, selective axonal loss can increase FA in regions with fiber

crossing39,41,42).

The number of imaging sessions and clinical data available for a

subject in OASIS-3 were positively related to (mostly) hippocampal

connectivity. This could be attributable to a higher follow-up rate for

thosewith healthier hippocampi, as individualswithMCI and dementia

havebeen shown tohave lower retention rates in research studies than

those with normal cognition.43,44

With larger ICV, brain regions become farther apart from each

other, thus harder to reach by streamline tractography. Therefore,

we decided to control for ICV in our regression analysis to avoid

underestimation of brain connectivity. Doing so eliminated (in some

databases) correlation of brain connectivity with several variables,
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TABLE 2 Significant correlations of non-MRI variables with brain connectivity in OASIS-3.

Non-MRI variable

Most correlated brain structural connection (type [raw/augmented],

Pearson correlation, Bonferroni-corrected p-value)
# Sig.

Conn

Age L. Hippocampus—L. Thalamus

Raw, r=−0.48, pb = 9× 10−35
266

L. Hippocampus—R. Lingual cortex

Augmented, r=−0.5, pb = 3× 10−41
2232

Sex R. Thalamus—L. Thalamus

Raw, r=−0.21 (with themale sex), pb = 0.04

1

Uniform data set (UDS)

Number of available sessions

L. Superior parietal cortex—L. Precuneus cortex

Raw, r= 0.37, pb = 5× 10−18
73

R. Inferior parietal cortex—L. Inferior parietal cortex

Augmented, r= 0.34, pb = 3× 10−13
1430

Neuropsychological assessment

Number of available sessions

L. Superior parietal cortex—L. Precuneus cortex

Raw, r= 0.38, pb = 9× 10−13
105

L. Pericalcarine cortex—L. Parahippocampal cortex

Augmented, r= 0.41, pb = 10−16
2519

ADRC clinical data

Number of available sessions

L. Superior parietal cortex—L. Precuneus cortex

Raw, r= 0.31, pb = 4× 10−11
58

R. Inferior parietal cortex—R. Fusiform cortex

Augmented, r= 0.31, pb = 2× 10−11
1060

Number of PET sessions R. Hippocampus—R. Fusiform cortex

Raw, r= 0.3, pb = 4× 10−7
19

L. Hippocampus—R. Cuneus cortex

Augmented, r= 0.34, pb = 7× 10−11
574

Number ofMRI sessions R. Hippocampus—R.Middle temporal cortex

Raw, r= 0.35, pb = 3× 10−15
74

R. Hippocampus—R. Precuneus cortex

Augmented, r= 0.38, pb = 10−20
1937

Number of CT sessions R. Hippocampus—R. Superior frontal cortex

Augmented, r= 0.25, pb = 0.01

1

Presumed disease status at enrollment

(higher is healthier)

R. Hippocampus—R. Ventral diencephalon

Raw, r= 0.25, pb = 0.0004

10

R. Hippocampus—L. Superior frontal cortex

Augmented, r= 0.3, pb = 7× 10−10
336

Level of independence

(higher is more dependent)

R. Hippocampus—L. Hippocampus

Augmented, r=−0.29, pb = 4× 10−8
182

FormA3 has been submitted previously

and there have been no changes.

R. Precuneus cortex—L. Precuneus cortex

Raw, r=−0.31, pb = 5× 10−7
39

R. Rostral anterior cingulate cortex—L. Temporal pole cortex

Augmented, r=−0.37, pb = 10−12
1822

Mother living L. Hippocampus—R. Superior frontal cortex

Augmented, r= 0.25, pb = 0.001

8

Father living R. Thalamus—L. Isthmus cingulate cortex

Raw, r= 0.26, pb = 0.0007

2

Sibling 1 living R. Hippocampus—R. Fusiform cortex

Raw, r= 0.24, pb = 0.02

1

R. Hippocampus—R. Superior frontal cortex

Augmented, r= 0.25, pb = 0.006

10

Sibling 2 living R. Hippocampus—R. Fusiform cortex

Raw, r= 0.28, pb = 0.04

1

Subject wearing a hearing aid L. Lingual cortex—L. Putamen

Raw, r=−0.21, pb = 0.02

1

(Continues)
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TABLE 2 (Continued)

Non-MRI variable

Most correlated brain structural connection (type [raw/augmented],

Pearson correlation, Bonferroni-corrected p-value)
# Sig.

Conn

R. Lingual cortex—L. Pallidum

Augmented, r=−0.22, pb = 0.006

10

History or presence of hypertension R. Superior frontal cortex—R. Thalamus

Augmented, r=−0.23, pb = 0.001

14

Hachinski Ischemic score R. Superior frontal cortex—R. Ventral diencephalon

Raw, r=−0.22, pb = 0.03

1

R. Superior frontal cortex—R. Thalamus

Augmented, r=−0.25, pb = 9× 10−5
20

Mini-mental state examination

(MMSE)

R. Hippocampus—R. Putamen

Raw, r= 0.29, pb = 7× 10−9
40

R. Hippocampus—L. Precentral cortex

Augmented, r= 0.38, pb = 3× 10−20
702

CDR

memory

R. Hippocampus—R. Amygdala

Raw, r=−0.33, pb = 3× 10−13
65

R. Hippocampus—L. Thalamus

Augmented, r=−0.41, pb = 7× 10−25
1499

CDR

orientation

R. Hippocampus—R. Amygdala

Raw, r=−0.3, pb = 10−9
37

R. Hippocampus—L. Insula cortex

Augmented, r=−0.37, pb = 2× 10−18
1080

CDR

Judgment and problem-solving

R. Hippocampus—R. Amygdala

Raw, r=−0.31, pb = 2× 10−10
48

R. Hippocampus—R. Superior frontal cortex

Augmented, r=−0.39, pb = 3× 10−21
993

CDR

Community affairs

R. Hippocampus—R. Superior frontal cortex

Augmented, r=−0.35, pb = 2× 10−16
594

CDR

Home and hobbies

R. Hippocampus—R. Amygdala

Raw, r=−0.29, pb = 7× 10−9
38

R. Hippocampus—L. Thalamus

Augmented, r=−0.38, pb = 10−20
938

CDR

Sum of boxes

R. Hippocampus—R. Amygdala

Raw, r=−0.32, pb = 10−11
46

R. Hippocampus—L. Thalamus

Augmented, r=−0.4, pb = 2× 10−23
1199

CDR

Total score

R. Hippocampus—R. Amygdala

Raw, r=−0.33, pb = 10−12
55

R. Hippocampus—L. Thalamus

Augmented, r=−0.41, pb = 10−24
1163

Difficulty or needing help with

paying bills

R. Hippocampus—R. Amygdala

Raw, r=−0.27, pb = 2× 10−6
19

R. Hippocampus—R. Superior frontal cortex

Augmented, r=−0.33, pb = 2× 10−12
579

Difficulty or needing help with

taxes and business affairs

R. Hippocampus—R. Amygdala

Raw, r=−0.27, pb = 10−6
23

R. Hippocampus—L. Thalamus

Augmented, r=−0.34, pb = 5× 10−14
535

Difficulty or needing help with

shopping alone

R. Hippocampus—R. Ventral diencephalon

Raw, r=−0.25, pb = 0.0004

4

R. Hippocampus—L. Thalamus

Augmented, r=−0.3, pb = 10−9
225

(Continues)
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TABLE 2 (Continued)

Non-MRI variable

Most correlated brain structural connection (type [raw/augmented],

Pearson correlation, Bonferroni-corrected p-value)
# Sig.

Conn

Difficulty or needing help with

games and hobbies

L. Hippocampus—L. Ventral diencephalon

Raw, r=−0.22, pb = 0.03

1

L. Hippocampus—R. Hippocampus

Augmented, r=−0.28, pb = 2× 10−7
97

Difficulty or needing help with

preparing a balancedmeal

R. Hippocampus—R. Amygdala

Raw, r=−0.23, pb = 0.003

4

R. Hippocampus—L. Pallidum

Augmented, r=−0.3, pb = 10−9
213

Difficulty or needing help with

keeping track of current events

R. Hippocampus—R. Ventral diencephalon

Raw, r=−0.23, pb = 0.01

1

R. Hippocampus—L. Thalamus

Augmented, r=−0.28, pb = 3× 10−8
112

Difficulty or needing help with

paying attention

R. Hippocampus—R. Fusiform cortex

Raw, r=−0.23, pb = 0.002

2

R. Hippocampus—L. Precuneus cortex

Augmented, r=−0.29, pb = 5× 10−9
369

Difficulty or needing help with

remembering dates

R. Hippocampus—R. Ventral diencephalon

Raw, r=−0.24, pb = 0.001

2

R. Hippocampus—L. Insula cortex

Augmented, r=−0.29, pb = 5× 10−9
106

Difficulty or needing help with

traveling and driving

R. Hippocampus—R. Ventral diencephalon

Raw, r=−0.29, pb = 10−7
24

R. Hippocampus—R. Superior frontal cortex

Augmented, r=−0.35, pb = 6× 10−16
452

Decline

reported by subject

L. Thalamus—L. Parahippocampal cortex

Raw, r=−0.22, pb = 0.02

4

L. Hippocampus—R. Superior frontal cortex

Augmented, r=−0.29, pb = 6× 10−9
292

Decline

reported by informant

R. Hippocampus—R. Amygdala

Raw, r=−0.28, pb = 10−7
40

L. Hippocampus—R. Superior frontal cortex

Augmented, r=−0.39, pb = 3× 10−20
1341

Decline

reported by clinician

R. Hippocampus—R. Fusiform cortex

Raw, r=−0.32, pb = 10−10
66

R. Hippocampus—R. Superior frontal cortex

Augmented, r=−0.43, pb = 10−24
1611

Cognitive impairment

reported by clinician

R. Hippocampus—R. Fusiform cortex

Raw, r=−0.28, pb = 0.0001

18

L. Hippocampus—R. Lingual cortex

Augmented, r=−0.36, pb = 6× 10−11
223

WAIS

Information

R. Hippocampus—R. Inferior temporal cortex

Raw, r= 0.26, pb = 0.001

9

R. Hippocampus—L. Caudate

Augmented, r= 0.35, pb = 10−11
344

WAIS

block design

R. Hippocampus—R. Fusiform cortex

Raw, r= 0.36, pb = 2× 10−12
54

R. Hippocampus—L. Precentral cortex

Augmented, r= 0.4, pb = 4× 10−17
1505

WAIS

WAIS-R digit symbol

L. Hippocampus—L. Fusiform cortex

Raw, r= 0.39, pb = 3× 10−15
96

(Continues)
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TABLE 2 (Continued)

Non-MRI variable

Most correlated brain structural connection (type [raw/augmented],

Pearson correlation, Bonferroni-corrected p-value)
# Sig.

Conn

L. Hippocampus—R. Superior frontal cortex

Augmented, r= 0.45, pb = 5× 10−24
1541

WMS

Associate learning

summary score

L. Hippocampus—L. Thalamus

Raw, r= 0.31, pb = 10−8
41

L. Hippocampus—R. Superior frontal cortex

Augmented, r= 0.38, pb = 3× 10−17
691

WMS

Digit Span Backward

L. Hippocampus—L. Thalamus

Raw, r= 0.25, pb = 0.01

1

L. Hippocampus—L. Superior frontal cortex

Augmented, r= 0.27, pb = 0.0005

29

WMS

WMS-III letter-number sequencing

L. Parahippocampal cortex—L. Ventral diencephalon

Raw, r= 0.26, pb = 10−5
16

R. Hippocampus—L. Superior frontal cortex

Augmented, r= 0.33, pb = 10−12
255

Total animals named in 60 s R. Hippocampus—R. Ventral diencephalon

Raw, r= 0.27, pb = 3× 10−6
29

R. Hippocampus—L. Superior frontal cortex

Augmented, r= 0.35, pb = 8× 10−16
350

Total vegetables named in 60 s L. Hippocampus—L. Inferior temporal cortex

Raw, r= 0.27, pb = 5× 10−5
10

R. Hippocampus—L. Precentral cortex

Augmented, r= 0.31, pb = 6× 10−9
181

Mental control

total score

L. Hippocampus—R. Superior frontal cortex

Augmented, r= 0.27, pb = 0.0001

72

Trail Making Test, Part A

Time to complete

R. Hippocampus—R. Fusiform cortex

Raw, r=−0.29, pb = 3× 10−8
35

R. Hippocampus—L. Superior frontal cortex

Augmented, r=−0.37, pb = 5× 10−18
836

Trail Making Test, Part B

Time to complete

L. Hippocampus—L. Fusiform cortex

Raw, r=−0.34, pb = 2× 10−13
94

L. Hippocampus—R. Superior frontal cortex

Augmented, r=−0.43, pb = 3× 10−26
1643

BostonNaming Test

60 items

R. Hippocampus—R. Inferior temporal cortex

Raw, r= 0.29, pb = 2× 10−5
20

R. Hippocampus—R. Thalamus

Augmented, r= 0.37, pb = 2× 10−12
1142

Current logical memory IA

story units recalled

R. Hippocampus—R. Amygdala

Raw, r= 0.3, pb = 7× 10−6
13

R. Hippocampus—L. Ventral diencephalon

Augmented, r= 0.36, pb = 4× 10−11
478

Logical memory IIA—Delayed

story units recalled

R. Hippocampus—R. Amygdala

Raw, r= 0.31, pb = 5× 10−7
26

R. Hippocampus—L. Ventral diencephalon

Augmented, r= 0.38, pb = 3× 10−13
757

Simon

percent correct

R. Hippocampus—L. Hippocampus

Augmented, r= 0.25, pb = 0.0003

36

Simon

number of correct on all trials

L. Hippocampus—R. Superior frontal cortex

Augmented, r= 0.26, pb = 4× 10−5
53

Switch pure CV

number correct

L. Hippocampus—R. Superior parietal cortex

Augmented, r= 0.23, pb = 0.006

7

(Continues)
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TABLE 2 (Continued)

Non-MRI variable

Most correlated brain structural connection (type [raw/augmented],

Pearson correlation, Bonferroni-corrected p-value)
# Sig.

Conn

Switchmixed

number correct

L. Hippocampus—L. Ventral diencephalon

Raw, r= 0.26, pb = 0.0002

15

L. Hippocampus—R. Caudate

Augmented, r= 0.34, pb = 2× 10−11
205

Switch

percent correct

L. Hippocampus—L. Fusiform cortex

Raw, r= 0.27, pb = 2× 10−5
11

L. Hippocampus—R. Precuneus cortex

Augmented, r= 0.34, pb = 8× 10−13
338

Benson complex figure copy R. Hippocampus—L. Inferior temporal cortex

Augmented, r= 0.26, pb = 0.02

3

Craft Story 21 recall (Immediate)

verbatim scoring

R. Hippocampus—R. Superior frontal cortex

Augmented, r= 0.29, pb = 0.0008

6

Craft Story 21 recall (Immediate)

paraphrase scoring

R. Hippocampus—R. Superior frontal cortex

Augmented, r= 0.32, pb = 9× 10−6
42

Craft Story 21 recall (Delayed)

verbatim scoring

R. Hippocampus—R. Superior frontal cortex

Augmented, r= 0.28, pb = 0.003

8

Craft Story 21 recall (Delayed)

paraphrase scoring

R. Hippocampus—R. Superior frontal cortex

Augmented, r= 0.3, pb = 0.0002

26

MINT

total score

R. Hippocampus—L. Caudate

Augmented, r= 0.28, pb = 0.04

1

MINT

total correct without semantic cue

R. Hippocampus—L. Caudate

Augmented, r= 0.28, pb = 0.04

1

MINT

phonemic cues: number given

R. Hippocampus—L. Caudate

Augmented, r=−0.3, pb = 0.004

4

MoCA

Total Raw Score—uncorrected

R. Hippocampus—R. Thalamus

Raw, r= 0.31, pb = 4× 10−5
8

R. Hippocampus—R. Superior frontal cortex

Augmented, r= 0.32, pb = 3× 10−7
95

MoCA

Delayed recall—no cue

R. Hippocampus—R. Thalamus

Raw, r= 0.31, pb = 3× 10−5
3

R. Hippocampus—L. Superior frontal cortex

Augmented, r= 0.26, pb = 0.006

4

Free and Cued Selective Reminding Test

Trial 1 Free Recall

R. Hippocampus—R. Precentral cortex

Raw, r= 0.33, pb = 8× 10−12
30

R. Hippocampus—L. Thalamus

Augmented, r= 0.34, pb = 2× 10−13
158

Free and Cued Selective Reminding Test

Trial 1 Cued Recall

R. Hippocampus—R. Precentral cortex

Raw, r=−0.25, pb = 0.0002

2

R. Hippocampus—R. Precentral cortex

Augmented, r=−0.21, pb = 0.03

3

Free and Cued Selective Reminding Test

Trial 2 Free Recall

L. Hippocampus—L. Ventral diencephalon

Raw, r= 0.32, pb = 4× 10−10
38

R. Hippocampus—L. Hippocampus

Augmented, r= 0.38, pb = 10−18
350

Free and Cued Selective Reminding Test

Trial 2 Cued Recall

R. Hippocampus—R. Precentral cortex

Raw, r=−0.28, pb = 2× 10−6
16

L. Hippocampus—R. Superior frontal cortex

Augmented, r=−0.3, pb = 4× 10−10
94

Free and Cued Selective Reminding Test

Trial 3 Free Recall

R. Hippocampus—R. Putamen

Raw, r= 0.31, pb = 7× 10−10
41

(Continues)
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TABLE 2 (Continued)

Non-MRI variable

Most correlated brain structural connection (type [raw/augmented],

Pearson correlation, Bonferroni-corrected p-value)
# Sig.

Conn

R. Hippocampus—R. Superior frontal cortex

Augmented, r= 0.39, pb = 5× 10−21
687

Free and Cued Selective Reminding Test

Trial 3 Cued Recall

R. Hippocampus—R. Precentral cortex

Raw, r=−0.28, pb = 10−6
26

R. Hippocampus—R. Superior frontal cortex

Augmented, r=−0.34, pb = 6× 10−14
233

Free and Cued Selective Reminding Test

free summary score

R. Hippocampus—R. Precentral cortex

Raw, r= 0.35, pb = 4× 10−13
44

R. Hippocampus—R. Superior frontal cortex

Augmented, r= 0.39, pb = 7× 10−21
541

Free and Cued Selective Reminding Test

total score

R. Hippocampus—R. Ventral diencephalon

Raw, r= 0.23, pb = 0.02

2

R. Hippocampus—L. Thalamus

Augmented, r= 0.27, pb = 10−6
167

Clinician diagnosis:

normal cognition

R. Hippocampus—R. Amygdala

Raw, r= 0.32, pb = 2× 10−11
69

R. Hippocampus—R. Superior frontal cortex

Augmented, r= 0.41, pb = 3× 10−24
1648

Clinician diagnosis:

Alzheimer’s disease

R. Hippocampus—R. Fusiform cortex

Raw, r=−0.3, pb = 6× 10−6
19

L. Hippocampus—R. Lingual cortex

Augmented, r=−0.35, pb = 2× 10−10
308

Amyloid burden (Centiloid scale)

mean cortical

binding potential

L. Parahippocampal cortex—L. Ventral diencephalon

Raw, r=−0.27, pb = 0.007

2

L. Hippocampus—R. Superior temporal cortex

Augmented, r=−0.31, pb = 2× 10−5
46

Amyloid burden (Centiloid scale)

mean cortical

standardized uptake value ratio (SUVR)

L. Parahippocampal cortex—L. Ventral diencephalon

Raw, r=−0.26, pb = 0.0003

8

L. Hippocampus—R. Superior temporal cortex

Augmented, r=−0.31, pb = 10−7
144

Amyloid burden (Centiloid scale)

mean cortical

binding potential

(partial-volume corrected)

L. Parahippocampal cortex—L. Ventral diencephalon

Raw, r=−0.28, pb = 0.001

4

L. Hippocampus –R. Superior temporal cortex

Augmented, r=−0.34, pb = 10−7
86

Amyloid burden (Centiloid scale)

mean cortical

standardized uptake value ratio (SUVR)

(partial-volume corrected)

L. Parahippocampal cortex—L. Ventral diencephalon

Raw, r=−0.29, pb = 5× 10−6
20

L. Hippocampus—R. Superior temporal cortex

Augmented, r=−0.35, pb = 6× 10−12
608

Abbreviations: ADRC, Alzheimer’s Disease Research Center; CDR, Clinical Dementia Rating; CT, computerized tomography; MoCA, Montreal cognitive

assessment; MINT, Multilingual Naming Test; MRI, magnetic resonance imaging; OASIS-3, Open Access Series of Imaging Studies; PET, positron emission

tomography; Sig.Conn, significant correlation;WAIS,Wechsler Adult Intelligence Scale;WMS,WechslerMemory Scale.
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TABLE 3 Significant correlations of non-MRI variables with brain connectivity in PREVENT-AD.

Non-MRI variable

Most correlated brain structural connection (type

[raw/augmented], Pearson correlation,

Bonferroni-corrected p-value) # Sig.Conn

Age R. Hippocampus—R. Thalamus

Raw, r=−0.33, pb = 0.002

2

L. Hippocampus—R. Thalamus

Augmented, r=−0.33, pb = 0.001

13

Age of mother at AD-like dementia onset R. Ventral diencephalon—L. Banks of superior temporal

sulcus

Raw, r=−0.36, pb = 0.006

1

Tau phosphorylated at Thr181 (P-tau)

concentration in CSF

R. Caudate—L. Caudal middle frontal cortex

Raw, r= 0.45, pb = 0.04

1

Abbreviations: AD, Alzheimer’s disease; CSF, cerebrospinal fluid; MRI, magnetic resonance imaging; PREVENT-AD, Pre-symptomatic Evaluation of

Experimental or Novel Treatments for Alzheimer’s Disease; Sig.Conn, significant correlation.

TABLE 4 Significant correlations of non-MRI variables with brain connectivity in HCP.

Non-MRI variable

Most correlated brain structural connection (type

[raw/augmented], Pearson correlation,

Bonferroni-corrected p-value) # Sig.Conn

Sex Brainstem—L. Paracentral cortex

Raw, r=−0.24 (with themale sex), pb = 0.007

2

Height R. Parahippocampal cortex—L. Paracentral cortex

Augmented, r=−0.22, pb = 0.0497

1

Weight R. Ventral diencephalon—L. Ventral diencephalon

Raw, r=−0.24, pb = 0.008

5

Abbreviations: HCP, Human Connectome Project; MRI, magnetic resonance imaging.

some of which might have been spurious due to possible correlation

with ICV, for example, strength, sex, alcohol consumption, and posture.

Correlation of brain connectivity with sex,45,46 in particular, remained

inconclusive, given that it disappeared inPREVENT-AD (andwasweak-

ened in OASIS-3 and HCP) after ICV adjustment, as is typically seen

in neuroimaging studies,47,48 and appeared in ADNI-2 only after ICV

adjustment, which could be a sign of an introduced (previously absent)

ICVbias49 (especially as thedirectionof the relationship inADNI-2was

opposite to that in OASIS-3).

Differences in scanner hardware, population characteristics, and

protocols across databases introduce database-dependent effects on

both the acquired images and themeasured variables (see the figures).

Such effects could create large variances in both measured brain con-

nectivity and non-MRI variables (those common inmultiple databases)

if databaseswere combined in a single heterogeneous correlation anal-

ysis. To prevent the natural population-level variances—which lead to

true correlations—from being overshadowed by heterogeneity vari-

ances due to multi-database combination, we decided to analyze the

databases independently and then compare the findings. Although

data harmonization50 in a combined database setting could reduce the

heterogeneity to some extent, it would take away the benefit of repli-

cability assessment across databases. Note that even within a single

database, data may come from various sites; however, the within-

database site effect is expected to be smaller, as all sites supposedly

often follow the same database-wide protocol. Data harmonization

could nevertheless increase the statistical power when analyzing a

multi-site database.

To correct for multiple comparisons, we took the conservative

Bonferroni approach to avoid false-positive relationships with brain

connectivity (reducing type I errors). Strong interdependencies both

between brain connections and between non-MRI variables can never-

theless be exploited to design a complex but more forgiving correction

scheme in order to avoid false negatives and missing existing relation-

ships (reducing type II errors).

5 CONCLUSIONS

We conducted a retrospective exploratory study to examine the

associations between brain structural connectivity and non-MRI vari-

ables, using data from four (including three AD-related) public dMRI

databases. Unlike hypothesis-driven research, where conjectured rela-

tionships between specific variables are tested, we calculated the

correlation between all brain connections and non-MRI variables in

our dataset without prior assumption, while stringently correcting

for multiple comparisons, with the aim of discovering connectomic

relationships. Replication of our findings in other databases (such

as ADNI-3) and with other connectivity quantification methods and
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F IGURE 2 Augmented connectivity of the brain connectionmost
significantly correlated with age (top), MMSE (middle), and CDR
(bottom) consistently across databases. ADNI-2, Alzheimer’s Disease
Neuroimaging Initiative; CDR, Clinical Dementia Rating; MMSE,
Mini-Mental State Examination; OASIS-3, Open Access Series of
Imaging Studies; PREVENT-AD, Pre-symptomatic Evaluation of
Experimental or Novel Treatments for Alzheimer’s Disease.

conducting our study with harmonized dMRI data are subjects of

future research.
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APPENDIX

COLLABORATORS

Data used in the preparation of this article were obtained from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
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vided data but did not participate in the analysis or writing of

this report. A complete listing of ADNI investigators can be found

at http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_

Acknowledgement_List.pdf.
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