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Abstract

Neurons form complex networks that evolve over multiple time scales. In order to thoroughly

characterize these networks, time dependencies must be explicitly modeled. Here, we pres-

ent a statistical model that captures both the underlying structural and temporal dynamics of

neuronal networks. Our model combines the class of Stochastic Block Models for commu-

nity formation with Gaussian processes to model changes in the community structure as a

smooth function of time. We validate our model on synthetic data and demonstrate its utility

on three different studies using in vitro cultures of dissociated neurons.

Author summary

Neurons form complex networks that play a critical role in the development and aging of

the brain, as well as in health and disease. Understanding how these networks form and

evolve over time can lead us to advances in neuronal and cognitive health. Previous stud-

ies have mainly used summary statistics or graph features recorded at different points in

time to analyze neuronal networks. However, this approach ignores the temporal depen-

dency of these features and may lead to discovering spurious patterns in the data. In order

to thoroughly characterize neuronal networks, time dependencies must be explicitly mod-

eled. We present a statistical model that captures both the underlying structural and tem-

poral dynamics of neuronal networks.

Introduction

Neurons in the brain form incredibly complex networks with trillions of synapses that provide

the basis for information processing and underlie all physiological functions of the brain [1].

These networks change and evolve over multiple time scales, and their temporal dynamics

have been shown to play a critical role in development and aging [2], learning [3], as well as in

health and disease [4]. Understanding how these networks adapt under different conditions,

and how they can be actively manipulated, could have profound implications for advancing

neuronal and cognitive health in the face of disease and aging.
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Even though advances in non-invasive brain imaging techniques have enabled substantial

advances in human brain studies, in vivo experimentation remains challenging. In this context,

in vitro systems continue to play an essential role in the neuroscientist’s toolbox, providing a

more controllable experimental framework to study the functional activity of neuronal net-

works. Dissociated neurons are commonly seeded and grown on multi-electrode arrays

(MEAs), which are then used to record the electrical signals associated with neuronal firing.

Thus, MEAs represent a means of non-invasively measuring the functional activity of neuronal

networks that develop over time in vitro. Recently, MEAs have been leveraged to evaluate the

effect of different compounds on neuronal activity [5, 6], to characterize functional differences

in the activity of neurons from different brain regions (i.e., cortical and hippocampal) [7], and

to investigate the impact of the extracellular matrix on neuronal activity [8]. However, obser-

vations from dissociated neuronal cultures do not always translate to animal models [9].

Therefore, in order for in vitro MEA systems to be truly used as bona fide proxies for in vivo
system they need to be thoroughly characterized.

Electrophysiology studies with MEA systems are generally long-term studies monitoring

neural network activity every few days over a period of weeks to months [7, 10]. Electrical sig-

nals produced by the cells in each recording session are represented as action potential spikes.

The temporal organization of these spikes can be summarized into a number of features,

which are subsequently used to compare recordings across time or experimental conditions.

Traditional features include mean firing rate, inter-spike intervals, and number of bursts.

These features are useful at summarizing the overall level of activity of the cultures; however,

they fail to capture the complex network structures that neurons form on an MEA. To this

end, more recent studies [10] have deployed graph-theoretical features, such as small-world-

ness, clustering coefficient, and density, to characterize neuronal cultures in MEAs. In either

case, these features are analyzed at each time point (typically, referred to as day-in-vitro or

DIV) independently, such that temporal dependencies are ignored.

In order to understand the temporal dynamics of in vitro neuronal networks under various

experimental conditions, we present here a statistical model that explicitly captures both the

underlying structural and temporal dynamics of neuronal networks on MEAs. Our model

combines the class of Stochastic Block Models for community formation with Gaussian pro-

cesses to model changes in the community structure as a smooth function of time. Inference is

jointly performed on multiple graphs across recordings conducted over different time points.

This allows us to learn 1) community structure, 2) how the community structure changes over

time, and 3) how community structure varies across experimental conditions. We validate our

model on synthetic data, and demonstrate its utility on modeling experimental data from three

different studies wherein two or more types of cultures are compared.

Functional network analysis in neuronal cultures

Graph theory provides a well-founded framework to study in vitro neuronal networks in

MEAs. Typically, functional networks are derived from electrophysiology data by modeling

electrodes as nodes of a graph and correlated spiking activity between electrodes as edges con-

necting nodes. It is known that in vitro functional networks exhibit important structural prop-

erties present in the corresponding in vivo networks. Neuronal cultures have small-world
topology [10, 11], which is a common characteristic of complex graphs, such as social networks

and the Internet. MEAs have shown that neuronal cultures develop rich-club topology [12],

where a small group of tightly interconnected hub nodes is involved in exchange of informa-

tion between separate areas of the network. This result mimics the earlier finding of rich-club

structure on the human connectome [13]. By analyzing cultures on MEAs, it is possible to
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study changes in network structure under different experimental conditions in a controllable

environment. For example, Srinivas et al. [11] found that the small-world structure is dis-

rupted when cultures are exposed to glutamate to induce epilectic activity. Another line of

research, and closest to our work, involves observing cultures across long periods of time—

e.g., 30 days—to study how functional networks develop [7, 8, 10]. In these previous studies,

the bulk of the analysis involves computing various graph-theoretic measures—i.e., clustering

coefficient degree distribution, path length distribution, modularity—and comparing these

measures across experimental conditions and time. In these studies, networks in each time

point are treated independently. In the current work, we study the community structure of the

networks and explicitly consider temporal relationships in our model. There are three primary

motivations for this work. First, features measured in each DIV independently are prone to

overfitting—i.e., finding patterns in each DIV that may be merely noise. Second, our proposed

temporal model is learned on a larger dataset consisting of multiple DIVs, which reduces

model uncertainty. Finally, our proposed model provides the opportunity to make predictions

and estimate uncertainty on unseen future time points.

Modeling community structure with the Stochastic Block Model

Even though graph measures provide a concise summary to compare networks across experi-

mental conditions and time, these features by themselves are not sufficient to capture complex

network structure and temporal evolution. Further, from a few observations, it is challenging

to make general statements about the range of networks that can be observed in future experi-

ments. These disadvantages motivate us to apply generative models, which try to capture the

underlying statistical rules that produce the observed networks. In particular, we consider the

Stochastic Block Model (SBM).

The Stochastic Block Model [14] is a generative model for community structure and graph

formation. In the generative story for a single recording (i.e., a single device recorded at a par-

ticular DIV), each node u first chooses one of k groups or communities to join, which we

denote by zu. Then, edges are generated based on the community assignment. The probability

η that an edge (u, v) exists depends only on the group membership of u and v. Formally, let G
be an unweighted undirected network of n nodes, u = {1, . . ., n}, and let A 2 Rn�n

be the adja-

cency matrix of G, such that Auv = 1 if (u, v) 2 E and 0 otherwise. Then, A is generated as fol-

lows:

p � Dirichletða1; . . . ; akÞ

zujp � Categoricalðp1; . . . ; pkÞ 8u 2 f1; . . . ; ng

Zij � Betaða; bÞ 8i; j 2 f1; . . . ; kg

AuvjZ; z � BernoulliðZzuzvÞ 8u; v 2 f1; . . . ; ng

If there are multiple networks—i.e., multiple MEA devices with cultures under the same exper-

imental condition—we can extend the SBM to jointly learn the common community structure

for all these networks. Such model would 1) reveal commonalities across cultures under the

same condition, and 2) give us more information about the range of networks that are likely

under a given experimental condition. In this model, we have a set of d networks with adja-

cency matrices A(1), . . ., A(d). All of these graphs have the same set of nodes—i.e., the same set

of electrodes—whose communities are generated from the same base distribution with param-

eter π. Now, in the generative process, each node u chooses a different community in each

device; the choice in device d is denoted by zðdÞu . Then, we generate edges according a common

distribution shared across devices. This model reflects our belief that all the cultures under the
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same experimental condition have the same underlying community generation process—i.e.,

same edge probabilities—but, because of the uncertainty of the seeding process and variations

on the location of cells in the MEA, the particular community of a node may differ across

devices. Formally, the model is the following:

p � Dirichletða1; . . . ; akÞ

zðdÞu jp � Categoricalðp1; . . . ; pkÞ

Zij � Betaða; bÞ

AðdÞuv jZ; z
ðdÞ � BernoulliðZzðdÞu zðdÞv

Þ

We show a plate diagram representation of the model in Fig 1.

Materials and methods

Temporal Stochastic Block Model (T-SBM)

We propose an extension of the SBM, called T-SBM, that performs inference on longitudinal

network data, inferring the community structure of the graphs under study as well as the

changes in the graphs over time. In the T-SBM we assume that the community assignment of

each node is fixed across all time points but that the relationships across communities may

change over time. An interpretation of this set of assumptions is that, once formed, the physi-

cal connections among neurons do not change. However, over time the strength—i.e., how

much they are used— of the various connections change, resulting in different probabilities of

edges within and between communities.

The primary impetus for the proposed model, over the standard static SBM, is to be able to

model temporal dependencies of neuronal cultures as they develop and/or adapt to stimuli

over time. In order to analyze longitudinal data with a standard SBM, one would need to fit a

model to each DIV separately. It is not clear how to compare communities across time without

some post-processing community disambiguation—which is a nontrivial problem. Such longi-

tudinal study is straightforward with the T-SBM. Additionally, the temporal model allows us

to make predictions and estimate uncertainty on unseen future time points as well as interpo-

lation for DIVs where data was not recorded. Finally, because of constraints imposed by the

Gaussian process as well as because of the fact that the temporal model is trained on more

data, it is also more robust to noise than the static model and less prone to overfitting.

Fig 1. Plate diagram for the SBM on multiple networks for the same experimental condition. Each node u has a

device-specific community assignment zðdÞu . The edge probabilities, ηij, are shared across devices.

https://doi.org/10.1371/journal.pcbi.1007834.g001
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Model specification. We model the temporal dynamics of the neuronal networks with a

latent function x(t) that varies smoothly across DIVs. Specifically, we impose a Gaussian pro-

cess prior on x with squared exponential covariance structure:

kðt; t0Þ ¼ s2 exp �
ðt � t0Þ2

2‘
2

� �

þ �

xðtÞ � GPð0; kÞ;

where σ, ℓ, and � are parameters to be inferred. By applying a sigmoid transform, we convert

x(t) into an edge probability η, which is a function of time.:

ZðtÞ ¼ sigmoidðxðtÞÞ ¼
1

1þ e� xðtÞ
:

For ease of interpretation and to reduce the computational complexity of the model, we

assume that the temporal changes can be modeled using two covariance functions, κin and

κout, corresponding to edge probabilities within and across communities, respectively. These

covariance functions are used to generate latent functions xij for every pair of communities,

which in turn are converted to edge probabilities by applying the sigmoid transform. That is,

xijðtÞ �

(GPð0; kinÞ; i ¼ j

GPð0; koutÞ; i 6¼ j
; ZijðtÞ ¼ sigmoidðxijðtÞÞ:

Under this model, the temporal dynamics of the connectivity within all communities is gov-

erned by the same covariance structure, κin, whose parameters will be jointly inferred from all

the intra-community edges—analogously, for κout and inter-community edges. In order to

also capture connectivity variations for each pair of communities, we let each latent process xij
be a different sample of a Gaussian process, and we also infer an offset parameter βij for every

pair of groups. Our proposed model, the T-SBM, is depicted in Fig 2 and is formally defined as

Fig 2. Plate diagram for the T-SBM. η is an time-evolving edge probability matrix governed by 1) a latent Gaussian

process x(t) shared across community pairs and 2) a coefficient β that captures variations of specific community pairs.

https://doi.org/10.1371/journal.pcbi.1007834.g002
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follows:

p � Dirichletða1; . . . ; akÞ

zðdÞu jp � Categoricalðp1; . . . ; pkÞ

kinðt; t0Þ ¼ s2
in exp �

ðt � t0Þ2

2‘
2

in

� �

þ �

koutðt; t0Þ ¼ s2
out exp �

ðt � t0Þ2

2‘
2

out

� �

þ �

xi¼jðtÞ; � GPð0; kinÞ

xi6¼jðtÞ; � GPð0; koutÞ

bij � N ð0; 1Þ

ZijðtÞ ¼ sigmoidðbij þ xijðtÞÞ

AðdÞuv ðtÞjZ; z
ðdÞ � BernoulliðZzðdÞu zðdÞv

ðtÞÞ

Multi-electrode array data

We considered three datasets collected from in vitro MEAs with 60 electrodes. In these studies,

neurons were seeded and matured on MEAs whereby two or more experimental conditions

were compared. We give a brief description of each dataset below and provide a summary in

Table 1. Note that because the datasets were generated at different laboratories with differing

experimental setups, we don’t combine data from different studies; rather, we analyze each

one of datasets independently of the others.

Culture Complexity. This experiment evaluated the functional differences between cul-

tures containing primarily neuronal cells—with a small percentage of glial cells—and cultures

where neurons and glial cells are grown together with cell ratios mimicking the in vivo envi-

ronment (denoted here as simple and complex cultures, respectively). Cortical rat cells were

grown on poly-D-lysine (PDL)-coated MEA devices, and 10-minute electrophysiology (ephys)

recordings were taken at 3-4 day intervals over 31 DIVs.

Extracellular Matrix [8]. This study investigated the effect of culturing the neurons on

MEAs with different extracellular matrix (ECM) coatings. Neurons co-cultured with glial cells

were grown under three different ECM conditions: ECM extracted from decellularized brain

tissue (bECM), a commercial ECM product (MaxGel), and control polymeric coating (PDL).

10-minute measurements were taken at 3-4 day intervals over 31 DIVs.

Neuronal Type [7]. This study assessed functional differences in cultures of mouse corti-

cal (CTX) and hippocampal (HPC) neurons. 15-minute electrophysiology measurements were

taken at 3-4 day intervals over 31 DIVs. The original data set had 32 CTX and 57 HPC devices.

Table 1. Datasets used in our experimental evaluation. In the “Experimental condition” column, the numbers in the parenthesis indicate the number of MEA devices for

the corresponding experimental condition.

Name Description Experimental condition DIV

Culture Complexity Simple (primarily neurons) and complex (neurons, astrocytes, and oligodendrocytes)

cultures

simple (5), complex (7) 11, 14, 18, 21, 25, 28,

31

Extracellular Matrix

[8]

Neurons and glia grown with and without extracellular matrix (ECM) coatings PDL (5), MaxGel (4), bECM

(6)

13, 16, 20, 23, 27, 30

Neuronal Type [7] Cortical (CTX) and hippocampal (HPC) neuronal cultures CTX (5), HPC (2) 7, 11, 14, 18, 21, 25,

28

https://doi.org/10.1371/journal.pcbi.1007834.t001
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However, recordings were taken at different DIV, and most devices were missing one or more

recordings in the duration of the study. In order to keep the evaluation consistent across all 3

studies, we only used those devices with recordings in all DIV considered in the study, result-

ing in 5 CTX and 4 HPC devices.

Functional networks from electrophysiology data

We model an MEA as a graph where the set of nodes consists of the 60 electrodes in the device,

and there is an edge between two electrodes if they show correlated activity. Because electrode

activity is sparse (Fig 3 bottom left), directly measuring the cross-correlation of two electrodes

on the entire recording time would yield artificially high correlation values and spurious

edges. Instead, we followed a similar procedure to Downes et al. [10] for measuring correla-

tion. First, we identified channel bursts, defined as 4 or more spikes in a channel occurring

within a 100ms period, with the duration of the burst being the difference between the first

spike and the last spike. Then, we defined global bursts as a time period when channel bursts

start in 4 or more channels within 250ms of each other. Then, we measured the average cross-

correlation over global bursts for every pair of electrodes, which gives us a cross-correlation

matrix (Fig 3 bottom center).

Several methods of obtaining networks from correlation matrices have been previously

explored. For instance, one could estimate the expected cross-correlation of two random

spike trains and add an edge if the observed cross-correlation is significantly higher than this

expected value [15]. Another possibility is to add edges in descending order of cross-correla-

tion until the graph satisfies some property–e.g., until the graph is connected [16]. As noted

by [17], all these methods have advantages and disadvantages; the most appropriate choice

Fig 3. Modeling electrophysiology activity as a network. We compute the pairwise cross-correlation on active electrodes of a recording. Then, we construct a

graph where the nodes are the 60 electrodes, and we add an edge between two electrodes if their cross-correlation is above some threshold.

https://doi.org/10.1371/journal.pcbi.1007834.g003
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depends on the particular data set and goals of the study. We opted for the simpler approach

of setting a fixed threshold and adding an edge between a pair of electrodes if their cross-corre-

lation is above the threshold. In our experiments, we set this threshold to 0.20. As we discuss

in the Results section, the choice of threshold affects all the networks similarly, so that it has lit-

tle effect when performing a relative comparison of one network to another.

Experimental setup

Inference was performed by Markov-Chain-Monte-Carlo (MCMC) sampling using the

PyMC3 module for probabilistic programming [18]. We trained a separate model for each of

the three datasets described above using all of the available devices and DIV. For the inference,

we ran two MCMC chains with 5,000 samples each. We performed model selection for choos-

ing k, the maximum number of communities, by varying it from 6 to 12 in increments of 2.

We determined that k = 10 was a reasonable value; in all experimental conditions, the data was

well-represented by less than 10 communities, so our choice of k did not arbitrarily constrain

the model. We provide more details about choosing this parameter in S3 Appendix. We chose

relatively “weak” hyperparameters for the prior distributions, which had little effect on the

inference.

For validation on synthetic data, we generated 4 networks of 20 nodes each. There were two

communities in these graphs, each containing 10 nodes. The parameters for both covariance

matrices were σ = .25, ℓ = 3, and � = 0.01. For the β coefficients, we chose β11 = .5, β12 = −2,

and β22 = .7. This configuration resulted in a modular network, with many edges inside the

communities and only a few edges across. We show the adjacency matrices for temporal syn-

thetic network generated with these parameters in Fig 4.

Results

Model validation using synthetic data

The T-SBM accurately inferred the true parameters in the synthetic data, namely the parame-

ters of the covariance functions and the β coefficients associated with each pair of communi-

ties. Fig 5 summarizes the results of the inference. For each parameter, we show the prior and

posterior distribution in gray and blue, respectively. We also show the posterior mean and the

true value of the parameter—green and red lines, respectively. We observed that the posterior

mean was very close to the ground truth for all parameters, even in cases where the true value

had low probability in the prior distribution. We also analyzed the uncertainty of each esti-

mate. The narrow standard deviation bounds on the β coefficients indicate that the model

could infer these parameters with great precision, whereas there was more uncertainty on the

estimate of the covariance.

We analyzed the inference of z, the community assignment vector. We took the last 500

samples of the MCMC trace and computed the adjusted mutual information score between

Fig 4. Adjacency matrices of synthetic networks generated for model validation.

https://doi.org/10.1371/journal.pcbi.1007834.g004
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the sample and true community assignment. We obtained an average score of 1, indicating

that all the 500 posterior samples match the ground truth assignment.

Application to functional network analysis on electrophysiology datasets

In Fig 6A, we show the inferred number of communities for each experimental condition. In

most cases, the simple cultures (i.e., primarily neurons) developed less communities than the

complex cultures, which contained glial cells at relevant ratios in vivo. In the Neuronal Type

experiment, cortical networks formed fewer communities than hippocampal networks. It is

noteworthy that, in this experiment, the variability in the number of communities was much

smaller than the other two experiments. Finally, we did not observe significant differences

across conditions in the Extracellular Matrix experiment, which is not entirely surprising

given that the only difference across the cell cultures in this experiment was the ECM substrate

coating, which was previously shown to accelerate neural network activity but not affect the

structure of the cultures [8].

We then looked closely at how electrodes are distributed across communities. In Fig 6B–

6D, we show the density of the communities in each device. Each row represents an individual

MEA used in the study, and each column represents a community. Communities are ordered

by size, so that community 1 is the most populated community. We note that community

labels are consistent across rows—e.g., community 2 in row 3 is the same as community 2 in

row 4. The numbers in each cell indicate how many nodes (i.e., electrodes) were assigned to a

community in each device. Fig 6B reveals that both simple and complex devices shared a com-

mon core of communities, namely communities 1 through 5. However, in addition, electrodes

in the complex networks occupied communities 6 through 8, meaning that these functional

networks developed additional structures not observed in the simple devices. We observed a

similar result in the Neuronal Type experiment (Fig 6D), where there was a noted separation

between communities used in cortical and hippocampal networks. On the other hand, in the

Extracellular Matrix experiment, there was little difference on community assignment across

the three conditions (Fig 6C).

The discussion above is already useful to compare and contrast network structure in differ-

ent kinds of devices. Additionally, the aggregate heatmaps from the previous figure provide

one method for checking model parameters—e.g., ensuring that the maximum number of

communities is not imposing unnecessary constraints on the model. Our next step is to

Fig 5. Inference on synthetic dataset. The T-SBM accurately recovers the true generative parameters even when the target notably differs from the prior

distribution.

https://doi.org/10.1371/journal.pcbi.1007834.g005
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examine the behavior of these communities and assign more descriptive labels. In particular,

we focus on changes in connectivity over time for each experiment.

Culture Complexity. In Fig 7, we show the posterior η parameters as a function of DIV.

Recall that ηij indicates the probability that a node from community i is connected to a node

from community j. Since we modeled the MEAs as undirected networks, η is symmetric (i.e.,

ηij = ηji), so we only show the lower half of the ηmatrix. A line plot in row i and column j
shows the probability of connection ηij (y-axis) across DIV (x-axis). We observed, for instance,

that community 1 had connection probability close to 0 with every other community in all

DIVs. Thus, community 1 denotes a community of inactive electrodes, those that never inter-

acted with the rest of the device. As depicted in Fig 6B, most electrodes were assigned to the

inactive community, either because they did not show any spike activity at all or because their

activity was not correlated with that of other electrodes.

While easy to interpret, the behavior of community 1 is not particularly interesting, and it

could be discovered without modeling by computing simpler summary features. A more inter-

esting way to analyze Fig 7 is to focus on the communities associated with complex devices,

namely communities 6, 7, and 8. A commonality of these communities is that they exhibited

Fig 6. (A) Number of communities inferred by the model for the different experimental conditions—blue crosses correspond to individual MEAs. Community

density in each device in the (B) Culture Complexity, (C) Extracellular Matrix, and (D) Neuronal Type datasets. White cells represent empty communities. We

observed differences in community assignment when adding glial cells to simple cultures (B) or changing the cell type (D), but not from changing the ECM coating

(C). See text for Discussion.

https://doi.org/10.1371/journal.pcbi.1007834.g006
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high connection probability in the later DIVs. For communities 6 and 8, the probability of an

edge inside the community (η66 and η88) was close to 1 from DIV 25 onward. For community

7, η77 was relatively low; however, the probability of an edge from community 7 to communi-

ties 6 or 8 was at least 50% in the later DIV. These observations suggest that in this study:

Fig 7. Posterior η as a function of DIV for the Culture Complexity experiment. Blue numbers denote community IDs, and a subplot in row i and column j shows

the posterior ηi,j—i.e., probability of connection—between a node in community i and a node in community j. Communities associated with complex devices (6–8)

showed high probability of connection in later DIV.

https://doi.org/10.1371/journal.pcbi.1007834.g007

PLOS COMPUTATIONAL BIOLOGY Modeling the temporal network dynamics of neuronal cultures

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007834 May 26, 2020 11 / 20

https://doi.org/10.1371/journal.pcbi.1007834.g007
https://doi.org/10.1371/journal.pcbi.1007834


1. Complex cultures are more likely to exhibit non-trivial network structure in later DIVs

than primarily-neuron cultures.

2. Complex networks have one or two communities of synchronized electrodes—i.e., either 6

or 8, or both, are present—and a community that is only spuriously synchronized to the

aforementioned one—i.e., 7.

Another way to use the model is to analyze the network structure of specific devices instead

of making statements about an experimental condition as a whole. For example, in Fig 6B, we

see that simple device 4 had 21 nodes in community 2, which is unusually high compared to

all the other devices. Then, from Fig 7, this community had very high connectivity in DIV 18

and almost no connectivity elsewhere. Going back to the spike train for device 4 in DIV 18, we

found a spike occurring simultaneously in all the electrodes assigned to community 2, explain-

ing the behavior of the model.

Extracellular Matrix. We performed a similar analysis for the Extracellular Matrix data-

set. As with the previous dataset, Fig 8 shows that community 1 was the community of inactive

electrodes. We also observed that, except for community 8, edge probabilities were close to 0

before DIV 20. Since community 8 was mostly present in bECM devices, the model agrees

with the findings of [8] that bECM aids on early development of functional networks even

though the three different ECM substrate coatings arrive at the same structure in later DIV.

The other communities were generally present in all experimental conditions, revealing com-

monalities of the networks regardless of coating. Communities 2, 3, 5, 6, and 7 can be labeled

as transient, since they showed heightened connection probability only during one DIV. Com-

munity 4 showed increasing probability over the duration of the study.

Neuronal Type. In this last study, we observed a more uniform distribution of nodes

across communities for both cortical and hippocampal cultures. In contrast to the two previ-

ous datasets, in the current dataset, both CTX and HPC devices had fewer nodes allocated to

the inactive community—community 1 in Figs 6D and 9. Recall from Fig 6D that communities

1 through 5 were mostly associated with cortical cultures, whereas communities 6 through 10

corresponded to hippocampal cultures. Examining the posterior η parameters, we observed

that the former five communities had temporal trends comparable with the previous two stud-

ies; that is, we see an inactive community (1), transient communities (2, 3, and 5), and a com-

munity with increasing connectivity over time (4). Finding these similar trends is reasonable,

since the two studies above were performed on cortical cells. In contrast, the communities in

hippocampal networks were connected essentially with probability 1 for most of the duration

of the study, showing a much higher level of synchronized activity than cortical cultures. Fig 9

also suggests that some of the communities in the hippocampal cultures were redundant, as

they captured similar temporal trends. We could infer the same number of patterns—as well

as increasing the interpretability—with a smaller value of the parameter k in the T-SBM.

Effect of cross-correlation in graph modeling

We analyzed the effect of the threshold applied to the cross-correlation matrix to obtain an

unweighted network. In Fig 10, we show the average degree for the three datasets that we con-

sider as we vary the threshold from 0.10 to 0.90. Increasing the threshold caused the average

degree to decrease, which is reasonable, since the graphs had fewer edges. Importantly, this

change was similar for all DIVs, and thus the threshold did not affect the relative trend of the

graph property. We observed similar results for other graph features.

To further analyze the effect of the threshold, we repeated our experiments for the Culture

Complexity dataset using values of 0.05, 0.10, and 0.30 cross-correlation. We did not examine
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higher thresholds because, as show in Fig 10, the graphs become almost completely discon-

nected at higher thresholds. We report these results in S1 Fig. Briefly, for thresholds 0.05

and 0.10, we observe the effects discussed in the Results section above, where the threshold

was 0.20. That is, complex devices have more communities than simple devices, and these

Fig 8. Posterior η(t) for the Extracellular Matrix experiment. The model captured various types of temporal behavior. Community 8—mostly associated with

bECM cultures—showed high probability of connections throughout the duration of the study. Community 4, in contrast, showed an upward trend with time. The

remaining communities captured transient behavior of electrodes that were correlated only in a particular DIV.

https://doi.org/10.1371/journal.pcbi.1007834.g008

PLOS COMPUTATIONAL BIOLOGY Modeling the temporal network dynamics of neuronal cultures

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007834 May 26, 2020 13 / 20

https://doi.org/10.1371/journal.pcbi.1007834.g008
https://doi.org/10.1371/journal.pcbi.1007834


additional communities are associated with higher connectivity at later DIVs. For threshold

0.30, there are no noticeable differences in community structure across culture type, which is

expected given the little connectivity.

We also studied the relationship between level of activity on the MEA and connectivity in

our graph model. This analysis is useful to verify that increased graph connectivity is not

Fig 9. Posterior η(t) for Neuronal Type experiment. Communities 1–5, which were predominant in cortical cultures, showed similar temporal patterns to the

cultures in the other studies above. Communities 6–10, associated with hippocampal cultures, formed almost fully-connected networks with high probability.

https://doi.org/10.1371/journal.pcbi.1007834.g009
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merely a function of higher spike rates in the corresponding electrodes. In Fig 11, we compare

the mean firing rate of each electrode in every device to its degree (i.e., number of connections)

on the graph—each dot in the graph is one electrode of one MEA. We did not observe a corre-

lation between firing rate and node degree, which indicates that the graph model provides

additional information not captured by this simple spike train feature. As an aside, we also

Fig 10. Average degree as a function of cross-correlation threshold for the Culture Complexity (top), Extracellular Matrix (middle), and Neuronal Type

(bottom) datasets. Changes in the threshold do not affect the relative trend on graph properties, only the magnitude.

https://doi.org/10.1371/journal.pcbi.1007834.g010
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observed that, except for the Neuronal Type dataset, the mean firing rate by itself is not a useful

feature for classifying experimental conditions.

Discussion

We have presented a generative model for analyzing the community structure of in vitro neu-

ronal cultures. Our applications to three experimental datasets show that the T-SBM has the

modeling power to characterize different connectivity patterns encountered on in vitro net-

works, both in the same MEA and across time. By analyzing the parameters inferred using the

T-SBM, it is possible to obtain a more in-depth characterization of the network dynamics that

develop under different experimental conditions.

In the Results section, we discussed several observations obtained from the model in each

dataset. These observations are in agreement with previous analysis of the data, but we also

made some additional observations based on the temporal community modeling, which are

missing from those previous studies. For instance, the T-SBM showed that hippocampal cul-

tures tend to form more connected networks than cortical cultures, which has been observed

before based on differences in correlation and interburst intervals [7]. In addition, we found

that all communities in the hippocampal networks were highly connected throughout the

duration of the study, whereas cortical networks contained both transient or sporadic commu-

nities, as well as communities that increased in connectivity over time. We also observed tran-

sient and sporadic communities in the Culture Complexity and Extracellular Matrix studies,

which were conducted using cortical cells. Finally, analysis of the model also revealed some

similarities and differences across the three datasets. In particular, we observed in Fig 6 that

the communities appearing in cortical networks were different than those in hippocampal

networks. In contrast, in the Culture Complexity study, the communities in complex cultures

were a superset of those in the simple cultures. While further studies with larger datasets would

be necessary for making definite conclusions about this, our results are consistent with previ-

ous studies on the functional networks of cortical and hippocampal cells [19, 20], where the

networks from these two cell types are significantly different at least for some regimes. Our

results on the other two datasets suggest that the addition of glial cells or extracellular matrix

molecules to cortical neuronal cultures does not change the network structure; rather, it accel-

erates the formation of the networks [8].

Modeling considerations and alternatives

There are various options to model temporal changes in the communities. We could assume

that the community memberships of the nodes in the graph evolve over time, with nodes

switching communities and communities merging together or splitting apart. In the model,

Fig 11. Mean firing rate compared to the degree of the nodes in our networks. Connectivity cannot be merely explained by the level of activity in an electrode.

https://doi.org/10.1371/journal.pcbi.1007834.g011
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this assumption corresponds to making zðdÞu a function of time. Alternatively, we could assume

that the community assignment is fixed, but the connection probabilities, η, in these commu-

nities change with time. However, as noted by [21], allowing both the connectivity parameters

and the group membership to vary simultaneously without any additional constraints leads

to identifiability problems. In the T-SBM, we opted for modeling changes in η while keeping

the group membership fixed over time. In the context of the generative process, this modeling

choice amounts to assuming that each node chooses a community at the beginning of the pro-

cess and never reconsiders this choice.

There are also several options for modeling the mechanism that drives the changes over

time. One natural approach that has been previously proposed [21–23] is to make a Markovian

assumption, such that the community memberships and/or connectivity at time t depend only in

those at time t − 1. Then, as part of the inference, we would learn transition probabilities as well

as the other parameters of the SBM. One drawback of these models, however, is that they implic-

itly assume that the observations are regularly-sampled in time—e.g., recordings are always taken

in 3-day intervals—which is generally not the case with experimental MEA data. Instead, by

using a Gaussian process prior, the T-SBM learns a continuous transition function, and it is resil-

ient to irregular samples. Furthermore, the proposed model can interpolate missing DIVs to gen-

erate a distribution of plausible networks for the days where no measurements are taken.

We also note that other probabilistic models for temporal networks besides the SBM have

been considered. Durante and Dunson [24] proposed a latent space model, where for each

node v they learn a vector representation that varies over time, xv(t). Then, the probability that

two nodes u and v are connected is proportional to the dot product of their vector representa-

tion. Similar to our setting, the temporal evolution (i.e., changes on the latent vectors) is mod-

eled using Gaussian processes.

We emphasize that all the above modeling assumptions are reasonable, and the choice of

model should be guided by domain knowledge as well as the goals of the study. For example, if

we are interested in using a temporal model for predicting future network structure, we would

prefer a model with higher predictive likelihood. In S2 Appendix, we compare our proposed

T-SBM to the HMM-SBM of Matias and Miele [21] and to a static SBM for this predictive

task. We trained the models with all data, except for the last DIV. Then, we compute the pre-

dictive likelihood for networks in the last DIV. The static SBM and the HMM-SBM have

higher predictive likelihood in the simple devices. These devices have little connectivity across

all DIVs, and the previous observation in time is a good predictor of the current observation.

In the complex devices, T-SBM has generally better performance, but the static SBM is com-

petitive. This observation suggests that our modeling assumption of fixed community struc-

ture over time is more appropriate for this dataset than the HMM-SBM, where nodes move

around communities.

Limitations and future work

As described in Materials and Methods, we defined functional networks based on cross-corre-

lation between electrodes. As such, the results obtained from our model have to be interpreted

in the context of cross-correlation as a measure of similarity and its inherent limitations. For

example, if we discover a community with high intra-connection probability in all DIV, we

can state that there is a group of electrodes all highly correlated to each other. However, it is

not clear what is causing the high correlation (and thus the high connectivity)—i.e., one elec-

trode communicating with others in a cascade vs. some external effect.

There are numerous directions of future work both in the modeling side and in applica-

tions. One promising extension is to increase the relevance of the networks by modeling the
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direction and strength of the edges. One way to do so is to consider the displacement that pro-

duces the highest cross-correlation between two electrodes, as well as the magnitude, instead

of making the edge binary based on a fixed threshold. As for applications, probabilistic models

like the one that we propose can be used to assess whether or not a chemical agent causes a sig-

nificant change in the network. For example, in a study of epilepsy, we can train separately a

T-SBM using a set of control cultures and a T-SBM for cultures exposed to an epilepsy-induc-

ing chemical. Presumably, these two sets will have different community structures. Then, we

could assess the efficacy of a treatment by applying it to an unhealthy culture and checking

whether the community structure after the treatment is likely to be generated by the T-SBM

trained on the control group.

Conclusions

In conclusion, we demonstrate an approach to evaluate in vitro longitudinal network data,

ensuring that the temporal dynamics are incorporated in an SBM framework. This approach

inherently reduces model uncertainty while providing predictive capability for inferring future

network function. We anticipate that this model will be used to provide greater understanding

on the impact of exogenous effects on in vitro neuronal network function, including adverse

effects from chemical, biological, and disease as well as restorative effects of therapeutics and

countermeasures.
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