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Coordinated Turning Behaviour of 
Loitering Honeybees
Mandiyam Y. Mahadeeswara1 & Mandyam V. Srinivasan1,2

Turning during flight is a complex behaviour that requires coordination to ensure that the resulting 
centrifugal force is never large enough to disrupt the intended turning trajectory. The centrifugal 
force during a turn increases with the curvature (sharpness) of the turn, as well as the speed of flight. 
Consequently, sharp turns would require lower flight speeds, in order to limit the centrifugal force to 
a manageable level and prevent unwanted sideslips. We have video-filmed honeybees flying near a 
hive entrance when the entrance is temporarily blocked. A 3D reconstruction and analysis of the flight 
trajectories executed during this loitering behaviour reveals that sharper turns are indeed executed at 
lower speeds. During a turn, the flight speed is matched to the curvature, moment to moment, in such 
a way as to maintain the centrifugal force at an approximately constant, low level of about 30% of the 
body weight, irrespective of the instantaneous speed or curvature of the turn. This ensures that turns 
are well coordinated, with few or no sideslips - as it is evident from analysis of other properties of the 
flight trajectories.

It is a common experience that driving too fast around a corner can cause a car to skid or roll over; a passenger 
standing in a bus can tip over if the bus makes a turn at high speed; or an aircraft attempting to make a very tight 
turn can experience a sideslip. The reason is that the act of turning while simultaneously moving forward creates 
a centrifugal force that is directed away from the centre of curvature of the turn. Newtonian mechanics dictates 
that the magnitude of the centrifugal force is proportional to (a) the curvature (the reciprocal of the radius of 
the turn), and (b) the square of the speed1. Hence, the sharper the turn, and the higher the speed, the greater the 
danger of losing control. Clearly, therefore, it makes sense to reduce one’s speed before commencing a turn, and to 
ensure that sharper turns are executed at a slower speed, in order to limit the centrifugal force to a safe and man-
ageable value. This behaviour is adopted not only by car drivers, motorcyclists, bicyclists and runners, but also by 
several terrestrial and flying animals. Qualitative evidence to support such behaviour has been documented in 
race horses2, quolls3, houseflies4, fruitflies5, and bats6. However, a quantitative analysis of the relationship between 
flight speed and curvature, and the implications for the resulting centrifugal force that is experienced during 
turns, has not yet been explored in any animal.

Fruitflies (Drosophila) flying in a contained environment display segments of straight flight, interspersed with 
saccadic turns7,8. These turns are executed by performing a pitch and a roll of the body axis, which together 
induce a rapid change in the direction of flight. Visually evoked escape maneuvers of fruit flies also include sharp 
turns9, which are much faster than the stereotyped body saccades. While these turns enable rapid, aggressive 
changes of flight direction, they are inevitably associated with sideslips arising from the high centrifugal force. It 
is of interest to enquire whether flying insects are also capable of performing turns that are coordinated in such a 
way as to prevent sideslips - for example, during loitering flight. In our study, we induce bees to loiter in front of a 
beehive by blocking the entrance to the hive, which causes returning foragers to cruise in the vicinity of the hive 
entrance while they await entry. The behaviour of the bees in this ‘bee cloud’ is filmed using stereo video cameras 
and reconstructed in 3D to analyse their turning characteristics. The results reveal that loitering bees perform 
turns that are fully coordinated, and free of sideslips.

Materials and Methods
A non-captive honeybee colony (Apis Mellifera) was maintained on a semi-outdoor terrace on the rooftop of a 
building on the campus of the University of Queensland (St. Lucia). The bees were allowed to forage freely from 
the surrounding vegetation, without any restrictions. The experiment was commenced by temporarily blocking 
the hive entrance with a wooden strip (Fig. 1a). The returning foraging bees were thus temporarily denied entry 
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into the hive but flew near the vicinity of the hive entrance, making multiple attempts to gain access. The resulting 
‘bee cloud’ was filmed using two synchronized digital cameras (Redlake), configured to obtain stereo data. The 
cameras recorded video at 60 fps with 500 × 500 pixel resolution.

Before commencing the experiment, stereo camera calibration was performed to obtain the cameras’ intrinsic 
and extrinsic parameters. The video streams acquired by the two cameras were subsequently analysed by digitis-
ing the bee’s head and tail positions manually in each frame, to obtain the bee’s position coordinates in each view. 
A triangulation routine was executed to obtain the three-dimensional positional coordinates of each bee. The 3D 
coordinates of a bee were computable only when it was within the FOV of both cameras. The recording duration 
was 5.8 seconds (349 frames). The frames in the video footage carried varying numbers of bees, as individual bees 
entered or departed from the fields of view (FOV) of the two cameras. The method used to compute the kinematic 
parameters of the flight were based on vector calculus1. The magnitudes of the tangential and normal accelera-
tions at any time instant ‘t’ can be computed as
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where aT  tangential acceleration (TA) magnitude; aN  normal or centripetal acceleration (CA) magnitude; 
r t( )  position vector; ′ tr ( )  velocity vector and ″ tr ( )  total acceleration vector as function of time.
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Figure 1.  (a) Perspective view of the bee cloud. (b) Reconstructed 3D trajectories of 66 bees. (c) Successive 
head positions (dark circles) and body orientations (dark lines) of a bee (Bee 2), along with the acceleration 
and its vector components during a turn. The red, blue, and green arrows represent the total, tangential and 
centripetal acceleration vectors respectively.
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Mathematically, the curvature can be expressed as the rate of change of the unit tangent vector at a point. 
Using this concept, one can compute the magnitude of the curvature as function of time using the following 
vector algebra:

=
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r t
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The radius of curvature (ρ) is expressed as the reciprocal of the curvature:

ρ =t
k t

( ) 1
( ) (4)

The raw data was pre-processed as follows: (i) A 5-point moving average filter was used to smooth the 3D 
position data; (ii) A central differencing method was used to compute a bias-free estimate of the gradient of the 
position vectors to compute the velocity vector, and subsequently the acceleration vector. No further filtering of 
these vectors was found to be necessary.

Results
The bee cloud data contains 3D position coordinates of a total of 66 bees. Figure 1a shows a perspective view of 
the bee cloud at a particular instant of time. Figure 1b shows the reconstructed 3D trajectories of the 66 bees, 
where each colour represents the trajectory of an individual bee. We used techniques of vector calculus to exam-
ine the flight characteristics of bees maneuvering in the cloud, by computing the following parameters:

	 a)	 The speed of each bee in the cloud, and its variation as a function of time;
	 b)	 The acceleration of each bee in the cloud, and its tangential and centripetal components, and the variation 

of these parameters as a function of time;
	 c)	 The curvature and radius of curvature (ROC) of the flight trajectory, and its variation with time.

A flight segment illustrating the successive head positions and body orientations of a bee (Bee 2) during a 
turn is shown in Fig. 1c. This figure includes vector representations of the acceleration, and of its tangential and 
centripetal components. The variation of each of the above parameters as a function of time is shown in Fig. 2 for 
a longer turning segment from a different bee (Bee 57).

General relationship between instantaneous speed, curvature and centripetal acceleration.  
In general, the speed of a bee varies continuously through its flight path, as shown in Fig. 2a for an individual bee.  
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Figure 2.  Variation of (a) speed, (b) acceleration, (c) tangential acceleration, (d) centripetal acceleration, (e) 
radius of curvature and (f) curvature of the trajectory of an individual bee (Bee 57) in the cloud.
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The mean speed of this particular bee is 0.68 m/s, measured over its entire flight. Certain bees exhibited high 
speeds, despite flying in close proximity to other bees. For example, one individual reached a top speed of 
2.61 m/s, while flying amidst 33 other bees in the cloud.

The average speed, measured over all bees in the cloud, was found to be 0.66 m/sec and the curvature of the 
trajectories displayed an average magnitude of 18 m−1. Average histograms of the speed and the curvature mag-
nitudes of the trajectories of all 66 bees are shown in Fig. 3a,b, respectively. These histograms were obtained by 
computing an area-normalized histogram for each bee, and then averaging the results across the 66 bees.

The averaged histograms reveal a large variation in speed (ranging from 0 to 2.61 m/s; Fig. 3a), as well as cur-
vature magnitude (ranging from 0 to ~300 m−1; Fig. 3b). However, these histograms include the variations across 
all bees, which have different mean speeds and mean curvature magnitudes.

A more representative measure of the average variability of speed and curvature within the trajectory of an 
individual bee is conveyed by the coefficient of variation (CV). This displays a value of 0.32 for speed, and 1.5 for 
curvature magnitude, when computed separately for each bee, and then averaged across all the bees.

Next, we calculated the tangential and centripetal components of the acceleration and plotted their variation 
as a function of time (Fig. 2c,d). The normalised histograms of tangential acceleration and the magnitude of 
the centripetal acceleration are shown in Fig. 3c,d respectively. The histogram of tangential acceleration clearly 
reveals that the flight contains acceleration and deceleration components, distributed approximately symmetri-
cally about a value of zero (which corresponds to a constant tangential speed). The mean tangential acceleration, 
averaged across all bees, is 0.42 m/s2 (Fig. 3c), which is not significantly different from zero (p = 0.07; two tailed 
t-test). The mean standard deviation of the tangential acceleration is 2.0 m/s2. For many bees, the mean value of 
the tangential acceleration measured over the entire flight is very close to zero. Consequently, the CV of the tan-
gential acceleration can become very large, approaching infinity, and not provide a useful measure of the variabil-
ity of the tangential acceleration. A more useful measure is the CV of the magnitude of the tangential acceleration, 
which has a mean value of 1.86 m/s2, and a mean CV of 0.75, when computed separately for each bee, and then 
averaged across all bees. The relatively high CV value is likely due to the large variations in the magnitude of the 
tangential acceleration, which is maximal at the beginning and end of a turn, and zero near the middle.

The magnitude of the centripetal acceleration, averaged over each bee’s entire flight, and across all bees, has a 
mean value of 2.80 m/s2 (Fig. 3d), which is significantly different from zero (p = 2.6 × 10−25; two tailed t-test). This 
is obviously consistent with the fact that the bees are not always flying in straight lines, and that turns constitute 
a significant proportion of their flight trajectories. The mean CV of the magnitude of the centripetal acceleration 
is 0.51. Interestingly, the relatively low CV of the centripetal acceleration, compared to the CV for the tangential 
acceleration, raises the possibility that the centripetal acceleration may be regulated or restricted to particular 
limits while executing turns. This is explored in greater detail in the following section.

Analysis of turning flights.  We began by computing the overall mean speed of all bees during straight and 
turning segments.
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Figure 3.  Average histogram of (a) speeds, (b) curvature magnitudes, (c) tangential acceleration and (d) 
centripetal acceleration magnitudes.
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Points along the flight trajectories at which the curvature magnitude was greater than 250 were not included 
in the plots, because such measurements could be dominated by the errors in the image digitization process. 
Points at which the curvature magnitude was lower than 5 were considered to represent flight in an approximately 
straight line. These curvature limits were used to select the turning parts of the flight trajectory, and exclude seg-
ments that corresponded to straight flight or very sharp turns.

The mean speed was 0.83 m/s (s.d. = 0.15 m/s) during straight flights and 0.49 m/s (s.d. = 0.12 m/s) during 
turning flights. These speeds are significantly different (p = 2.88 × 10−08; paired sample t-test), indicating that the 
bees fly at a significantly slower speed when they are executing turns.

We were interested to examine how the variables of speed, centripetal acceleration, tangential acceleration, 
and curvature, discussed in the previous section, vary during turning segments. By imposing a curvature thresh-
old of 5 m−1–250 m−1 (ROC equivalent of 0.004 m–0.20 m) on the curvature data, we were able to extract the turn-
ing segments from the complete flight trajectory. We then estimated the temporal variation of curvature, speed, 
centripetal acceleration and tangential acceleration during these turning segments. Examples of this analysis for 
3 different bees are shown in Fig. 4. These flights were recorded at 335fps in order to visualise the variations of the 
turning parameters with a higher temporal resolution. In each case, the magnitude of the curvature (dark curve, 
upper right-hand panels in Fig. 4a–c) is low at the beginning of the turn, reaches a maximum value at the middle 
of the turn, and then declines toward zero as the turn is completed. The flight speed, on the other hand, (magenta 
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Figure 4.  Variation of curvature, speed, centripetal and tangential acceleration during turning segments of 
three individual bees, shown in (a–c). In each subfigure the left hand panel shows the turning segment, with 
the red symbols defining the duration of the turning segment that was analysed. The upper right hand panel 
shows the variation of curvature (left ordinate) and speed (right ordinate) as a function of time (abscissa). The 
lower right hand panel shows the variation of centripetal acceleration (left ordinate) and tangential acceleration  
(right ordinate) as a function of time. The dashed black lines show the zero-crossing point of the tangential 
acceleration. The numbers next to the curves show the CVs of the curvature, speed and centripetal acceleration. 
These flights were recorded at 335fps in order to visualise the variations of the turning parameters with a higher 
temporal resolution. Here, we applied a 29-point moving average filter to smooth the 3D position data, and 
subsequently a 11-point moving average filter to smooth out higher-level noise arising from computation of the 
second order derivatives.
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curve, upper right-hand panels in Fig. 4a–c) varies in the opposite sense. Each bee gradually decreases its speed 
while entering the turn, reaching a minimum speed close to the point of maximum curvature, and then subse-
quently speeds up. This behaviour is confirmed by the plots in the lower right-hand panels in Fig. 4a–c, which 
show that the tangential acceleration (blue curve) is negative during the first half of the turn and positive during 
the second half, indicating that the bee is decelerating while entering the turn and accelerating while exiting it. 
Thus, the tangential component of acceleration varies dramatically during the flight - even changing its polarity 
halfway through the turn.

On the other hand, the magnitude of the centripetal component of the acceleration is more or less constant 
throughout the turn, as illustrated by the red curve in the lower right-hand panels of Fig. 4a–c.

The CVs of the centripetal acceleration maintained by these three bees displayed relatively low values of 
0.16, 0.13 and 0.09, respectively, as shown in Fig. 4, indicating that the centripetal acceleration remains more 
or less constant (relative to its mean value) during the turn. On the other hand, the variations of the curvature 
(CV = 0.48, 0.37, 0.23) and speed (CV = 0.18, 0.25, 0.11) are higher.

The relative constancy of the centripetal acceleration throughout the course of the turn suggests that bees may 
be orchestrating turns by varying the flight speed and the curvature, moment for moment, in such a way that the 
centripetal acceleration is held constant during the course of the turn.

Do bees really hold the CA constant during turns? To test this hypothesis, we examined the predictions of a 
constant-CA model as follows. We may write the centripetal acceleration as:

ρ
=centripetal acceleration v

(5)

2

where ‘ρ’ is the instantaneous radius of curvature of the trajectory, and ‘v’ is the instantaneous bee speed.
If the centripetal acceleration is constant, we have

ρ
=

v constant
(6)

2

Therefore,

ρ∝ ∝v v
k

or 1
(7)

2 2

where k is the curvature of the trajectory, which is a measure of the sharpness of the turn.
If the bees are holding their centripetal acceleration constant (as hypothesised), then either of the following 

two (equivalent) predictions must hold:

	(a)	 a linear relationship between the radius of curvature and speed2;
	(b)	 an inverse relationship between curvature and speed2.

To test the hypothesis, we examined the variation of speed2 with the radius of curvature (ROC) of the tra-
jectory for individual bees. We plotted the variation of speed2 versus ROC for the three example bees illustrated 
in Fig. 4, which maintained their centripetal acceleration more or less a constant value. These relationships are 
shown as scatterplots in Fig. 5. This data is plotted for a ROC range of 0.004 m−0.20 m, which corresponds to a 
curvature magnitude range of 5 m−1– 250 m−1, as explained at the beginning of this Section. As a result of this 
windowing process, the trajectories of five bees were removed from the total of 66 bee trajectories. Unless explic-
itly stated, the number of bees included in all of our subsequent analyses is 61.

For the three scatterplots of speed2 versus ROC in Fig. 5, we performed regression analysis on the data by 
forcing the ‘Y’ intercept to be zero and estimating the slope of the regression line. We used the ‘robust regression’ 
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Figure 5.  Variation of speed2 with radius of curvature (ROC) for the three bees of Fig. 4. The regression line is 
shown in black in each plot.
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routine in Matlab, which removes outliers in the data. The correlation efficient values (r) computed for the plots in 
Fig. 5a–c indicate that the regression lines fits the data very well, demonstrating a strong positive, linear correla-
tion between speed2 and ROC, as per our prediction. This suggests that each bee is indeed holding the centripetal 
acceleration constant during the course of its turn. Additional examples from other bees (57 bees in total) are 
given in Section I (Fig. S1) of the Supplementary Material (SM). The mean value of the slope of the linear regres-
sion, computed individually for each of 57 bees, is 2.78 (see Table S1, SM). The correlation coefficients of these 
linear regressions are consistently high, displaying a mean value of 0.81, with over 85% of the values exceeding 
0.70 (see Table S1, SM).

The relationship between speed2 and ROC for all the bees is illustrated in the scatterplot of Fig. 6a. Each colour 
in the scatterplot represents a different bee. The relatively high degree of variation in this scatterplot is due to the 
fact that, although each bee tends to show a strong linear correlation between speed2 and ROC, the slope of this 
relationship varies from individual to individual, as can be seen from the plots for individual bees (see Section I 
of the SM). The overall slope of a linear regression, performed on the data in Fig. 6a, is 2.17. This implies that the 
magnitude of the centripetal acceleration during a turn, averaged over all the bees, is approximately 2.17 m/s2.

To further test our hypothesis, we plotted the log-log relationship between speed2 and radius of curvature 
(ROC). As per our hypothesis, if there exists a linear relationship between speed2 and ROC, then the relationship 
between log(speed2) and log(ROC) should be linear, with a slope of 1.0.

Figure 6b shows the relationship between log(speed2) and log(ROC), plotted as a scattergram for the data 
pooled from the 61 bees. This relationship is approximately linear, with a slope of 0.92. This value is close to the 
value of 1.0 predicted by the hypothesis. The Y-axis intercept of the regression line shown in Fig. 6b is 0.62, from 
which the average centripetal acceleration can be calculated to be e0.62 = 1.86 m/s2. This is similar to the value of 
2.17 m/s2 estimated from the slope of the regression of the data in Fig. 6a, the slight difference arising probably 
because the scatterplot in Fig. 6a is transformed nonlinearly to obtain the scatterplots of Fig. 6b.

Our hypothesis, namely, that bees hold the centrifugal acceleration constant during turns, predicts that at each 
point in the turn the instantaneous radius of curvature, ρ, should be proportional to the square of the instantane-
ous speed, v. Another way to test this hypothesis critically would be to examine whether ρ is indeed proportional 
to the square of v – or to the cube of v, for example, or some other integer or fractional power of v. To do this test, 
we express equation (5) in a more general form as:

ρ= ∗v c (8)n

where n is the power of v and c is the constant of proportionality
Taking logarithms on both sides,

ρ= ∗v clog( ) log( )n

which can be written

ρ= +n v clog( ) log( ) log( ) (9)

or

ρ
= +v c

n n
log log( ) log( )

(10)
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trajectories.
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Thus, the slope of the regression between log(v) and log(ρ), equal to 
n
1 , would allow us to estimate the appro-

priate value of the power. The y-axis intercept of the regression, equal to c
n

log( ) , would then enable us to estimate 
the value of c, the coefficient of proportionality.

The scatter plot of log(v) vs log(ρ) is shown in the SM (Fig. S2). The slope of the regression line is 0.46, yielding 
a value of 2.2 for n. This is very close to the predicted value of 2, additionally supporting our hypothesis of con-
stant centripetal acceleration. The y-axis intercept of the regression line is 0.31. Using n = 2.2, we obtain 

= . × . = .log(c) 2 2 0 31 0 68, from which we estimate the value of c to be 1.97 m/s2. This value is similar to those 
obtained from evaluating the slope of the regressions of the data in Fig. 6a,b (see above).

Thus, broadly speaking, the data of Figs 4–6 and S2 support the hypothesis that bees maintain a more or less 
constant centripetal acceleration of approximately 2 m/s2 during their turns, irrespective of the instantaneous 
speed or curvature at each point along the turn.

Another way to test our prediction - that the bees are holding their CA constant during their turns - is to 
re-express equation 6 in terms of the speed, heading rate and CA of the bee as follows:

α ω= v (11)

or, equivalently,

α ω= −v (12)1

where: α is the centripetal acceleration in m/s2, ω is the heading rate of the bee in rad/s, v is the flight speed of the 
bee in m/s.

According to equation (12), the heading rate should vary inversely with the speed, if the centripetal accel-
eration is held constant during the turn. In other words, one would then expect a linear relationship between 
speed and the reciprocal of the heading rate (heading rate−1). The slope of this relationship should represent the 
magnitude of the centripetal acceleration (α). These predictions are analysed and discussed in detail in Section-1 
of the SM, under the subheading “Relationship between heading rate and speed”. The interpretation of the results 
of this analysis is discussed here briefly.

The time course of the variation of the speed and the heading rate are shown for 6 different bees in the 
left-hand panels of Fig. S3 of the SM. In each case, the heading rate (magenta curve) varies inversely with the 
speed of the bee (dark curve). This implies that when the bee’s heading rate goes up, its speed decreases in such a 
way that the variation in CA is small. This observation is supported by the low values of the coefficient of variation 
of the CA in the six examples (0.14 ± 0.04).

We also verified the constant-CA prediction in a more direct way by plotting the relationship between the 
instantaneous speed and the reciprocal of the instantaneous heading rate as a scattergram for the 6 examples 
(Fig. S3, right-hand panels) and performed a linear regression analysis on the data. For each example, the cor-
relation coefficient (r) is greater than 85%, demonstrating a strong positive and linear correlation between the 
speed and the reciprocal of the heading rate, as per the prediction in equation 12. These findings reinforce our 
hypothesis that bees hold the centripetal acceleration more or less constant during turns, thereby facilitating 
coordinated turns.

Table 1 compares the coefficients of variation (CV) of the variables that characterise the trajectories. We 
observe that, although the CV of the curvature is relatively high, signifying relatively large variations in curvature 
magnitude, the CV of the centripetal acceleration magnitude is relatively low.

This is because the bees are tailoring the flight speed to the curvature in such a way that a potential increase in 
CA arising from an increase in curvature during the turn is compensated by reducing the speed, and vice-versa, 
so that the centripetal acceleration is maintained at a more or less constant value through the course of the turn. 
Thus, the variations in centripetal acceleration during a turn are always low, despite considerable variations in 
the instantaneous curvature and the speed of the bee. This is evidenced by the relatively low value of CV for the 
centripetal acceleration, compared to the CVs for the curvature and speed2 for all of the 61 bees (see Table 1). In 
quantitative terms, the centripetal acceleration depends upon the product of (speed2) and (curvature), in which 
both terms display relatively high coefficients of variation (0.54 for speed2 and 0.81 for curvature, see Table 1). 
Despite these high variations, the CV of the product is comparatively low (0.40, Table 1), indicating that changes 
in the curvature are compensated by changes in speed that are of the appropriate direction and magnitude to 
ensure that the product (the centripetal acceleration) is held at a more or less constant value.

Loitering versus close encounter flights.  The above analysis includes flight trajectories in which bees 
make obligatory turns to avoid collisions with other bees, as well as ‘voluntary’ turns while they are loitering in 
the vicinity of the hive entrance. These can be broadly classified as ‘close encounter’ turns and ‘loitering’ turns. 
We were interested to compare the characteristics of the two types of turns – one might, for example, expect 
close encounter turns to be more aggressive, featuring tighter turns and perhaps larger CAs. We distinguished 

Parameter Curvature Speed speed2

Centripetal 
acceleration 
magnitude

CV 0.81 0.28 0.54 0.40

Table 1.  Mean coefficients of variation (CV) of curvature, speed, speed2, and centripetal acceleration 
magnitude, averaged over 61 bees.
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between loitering turns (LTs) and close encounter turns (CETs) by using the following criterion. A bee’s turn was 
considered to be a LT when there was no other bee within a radius of 100 mm, and a CET when another bee was 
within a radius of 30 mm. Using this criterion, we classified the turns of 34 bees. In total, there were 77 LTs and 
68 CETs. The number of turns executed by each bee is given in Section III (Table S3) of the SM. A comparison of 
the characteristics of the LTs and the CETs is shown in Table 2 (also see SM Table S2 for data from each individual 
bee). There are no statistically significant differences between the minimum speed during the turn, the maximum 
curvature of the turn, or the mean centripetal acceleration during the turn. Thus, LTs and CETs display very 
similar characteristics.

Comparison of characteristics of left and right turns.  We were interested to examine whether the 
bees showed any preferences for turning direction. If the bee’s rotation about its dorsoventral axis (Zn) is in the 
clockwise direction, then the bee turns to the right, and vice versa. In order to determine the turning direction, 
we computed the 3D rotation vector, which is given by the cross product between the unit velocity vector and the 
unit centripetal acceleration vector (see Section IV of the SM for explanation). The bee’s turning direction is then 
obtained by taking the dot product of the 3D rotation vector with the unit vector representing the dorsoventral 
axis of the bee. If the dot product is positive, the bee is turning right; and vice versa.

This procedure was used to classify the turning direction, and then to compare the curvatures and centripetal 
accelerations during left turns with those during right turns. The histogram in Fig. 7a compares the distributions 
of the curvatures of right turns with those of left turns. Positive curvatures represent right turns, and negative cur-
vatures left turns. The histogram is nearly symmetrical. The mean curvature magnitudes during left (−19.3 m−1) 
and right (17.2 m−1) turns are more or less equal and not significantly different (p = 0.230; two tailed t-test). The 
overall mean curvature for all turns (−0.97 m−1) is very close to zero and is not significantly different from zero 
(p = 0.277; two tailed t-test). This indicates that turns in either direction are (a) equally likely, and (b) display the 
same distribution of curvature magnitudes. Thus, the bees flying in our experimental situation do not display any 
noticeable left-right biases in their turning behaviour.

We also looked for possible biases in the centripetal accelerations associated with left versus right turns. 
Figure 7b shows a histogram of the distribution of centripetal acceleration for all bees. The peak value of the 
centripetal acceleration is slightly higher for left turns than for right turns. Apart from this, the histograms for 
the left and right turns are nearly symmetrical - the mean centripetal acceleration for right turns (+2.5 m/s2) is 
not significantly different from that for the left turns (−2.7 m/s2; p = 0.460, two tailed t-test). The overall mean 
centripetal acceleration for all turns (−0.28 m/s2) is very close to zero and is not significantly different from zero 
(p = 0.683; two tailed t-test). Thus, as with the curvature magnitudes, there is no major overall bias in the distri-
bution of the centripetal accelerations.

Body deviation angle analysis of turning bees.  From the analysis presented above, we have hypoth-
esized that bees keep their centripetal acceleration almost constant during turns. This strategy might help them 
perform coordinated turns, without deviating from the intended flight trajectory. Accordingly, we were interested 
to look for evidence of sideslip. This was done by examining the body deviation angle (BD angle) during turns. 
We define the BD angle as the angle, measured in the horizontal plane, between the instantaneous flight direction 
vector and the instantaneous bee’s body orientation vector. This angle is zero when the body axis is aligned with 
the flight direction. Its polarity is defined to be negative when the body axis points into the turn, and positive 
when the body axis points away from the turn.

We commenced the analysis by calculating the BD angles and plotting their histograms during left turns, right 
turns and straight flight. “Straight flights” were defined to be sections of the trajectory in which the curvature 
magnitude was lower than a threshold of 5.0, and turning flights were sections in which the curvature magnitude 
exceeded 5.0, with the polarity of the curvature defining the direction of the turn. The results are shown in Fig. 8, 
where each histogram has been fitted to a Gaussian distribution.

The mean and standard deviation of the body deviation angle after correction for estimated errors in the meas-
urement of the direction of body orientation and flight direction from the video images, are given in Section V of 
the SM. The results (see SM Table S4) reveal that the BD histograms for left turns, right turns and straight flight 
display a mean value close to zero, but a broad standard deviation of about 50 deg. This implies that, although the 
body orientation can occasionally deviate substantially from the direction of flight, the deviations are more or less 
symmetrical, with roughly half of the deviations pointing into the turn and the other half pointing outward. This 
is true for all three conditions - left turns, right turns, and even in straight flight. This suggests that the observed 
BDs are not a reflection of uncontrolled turns that involve sideslips; rather, they are a natural characteristic of the 
loitering bees, in which the body does not point consistently in the flight direction. Sideslips, if present, would be 
reflected in the left and right-turn histograms by an increased frequency of negative BD angles (body pointing 
into the turn) - which is not the case. Instances where the magnitude of the BD angle exceeds 90 deg represent 

Parameter
Mean minimum 
speed (m/s)

Mean maximum 
curvature (m−1)

Mean centripetal 
acceleration (m/s2)

Average LT CET LT CET LT CET

0.39 0.34 74.8 73.6 2.88 2.86

P value (paired sample t-test) 0.16 0.94 0.87

Table 2.  Comparison of minimum speed, maximum curvature and mean CA for LTs and CETs of 34 bees.
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situations where the bee is moving temporarily backwards. In this condition, the BD angles are again positive or 
negative equally frequently.

To further explore the existence of sideslips, we computed the mean value of the magnitude of the centripetal 
acceleration in each bin of the body deviation angle histograms of Fig. 8. The results, shown in Fig. 9, indicate 
that the magnitude of the centripetal acceleration is more or less constant, independent of body deviation angle. 
This is true for right turns, left turns, and straight flights. BD angles greater than 90 deg are not included in the 
histograms of Fig. 9, since those instances are not turning flights, but rather situations in which the bee is moving 
temporarily backwards.

The mean value of the CA magnitude, computed from the histograms of Fig. 9, are −2.80 m/s2 for left turns, 
2.57 m/s2 for right turns, and 1.70 m/s2 for close-to-straight flights. Secondly, the observation that the CA mag-
nitudes are similar even at large negative and positive values of BD angle (i.e. irrespective of whether the body is 
pointing sharply into or away from the turn), makes it very unlikely that the large negative values of BD angles 
(when the body is pointing sharply into the turn) are associated with uncontrolled sideslips or skids. In summary, 
the data in Figs 8 and 9 and Table S4 suggest that the bees flying in the cloud are never overcome by the centrifugal 
forces that are encountered while executing these turns, which would result in uncontrolled sideslips.

Discussion
We have investigated the turning flight characteristics of loitering honeybees in a semi-outdoor environment 
comprising a number of bees flying in close proximity to each other, trying to enter a blocked hive. We com-
menced our analysis by studying how the kinematics of bees vary in a cloud. In general, the speed of the bee varies 
continuously through its flight path.

Bomphrey et al.10 measured the characteristics of the flight envelope of freely flying blowflies (Calliphora 
vicinia) in an ingeniously designed ‘corner cube’ arena, which enabled them to film and reconstruct the flies’ 
3D trajectories using a single video camera. Their results, compared to ours, indicate that blowflies display flight 
manoeuvres that are generally more aggressive than those of honeybees in similar conditions, featuring higher 
mean tangential and centripetal accelerations, but shallower turns. However, their study did not explore the rela-
tionships between these variables during turning behaviour.
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acceleration for all bees.



www.nature.com/scientificreports/

1 1SCIEnTIfIC REPOrTS | (2018) 8:16942 | DOI:10.1038/s41598-018-35307-5

Our study, which focuses on turning behaviour, shows that the flight speed tends to decrease whilst entering a 
turn, and increase whilst exiting it. This general pattern of speed variation has been documented in a number of 
other aerial and terrestrial animal species, for example fruit flies5, bats6, horses2 and northern quolls3. However, 
none of these studies have quantitatively examined the relationship between speed and turning radius. Our study 
does this and finds that, during the course of a turn, flight speed varies with curvature in such a way that the cen-
trifugal force is maintained at a more or less constant value, irrespective of the moment-to-moment variations in 
speed and curvature.

Figure 8.  Histogram of BD angles, fitted to a Gaussian distribution during (a) left turns, (b) right turns and (c) 
straight flights. The inset in panel (a) illustrates the parameters involved in estimating the body deviation angle.
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Our results also provide an estimate of this centrifugal force. The histogram of Fig. 7b indicates that the mean 
centripetal acceleration is −2.69 m/s2 during left turns, and 2.52 m/s2 during right turns. This is in good agree-
ment with the data from Fig. 3d (2.80 m/s2), and from Fig. 9a,b, which indicate mean centripetal accelerations 
of −2.80 m/s2 for left turns, and 2.57 m/s2 for right turns. It is also in good agreement with the mean value of 
2.78 m/s2 obtained from the individual slopes of the speed2 vs ROC regressions for 57 bees (Table S1, SM). All of 
these numbers are consistently slightly higher than those inferred from the analyses of the scatterplots of Fig. 6a 
(2.17 m/s2), Fig. 6b (1.86 m/s2) and Fig. S2 (1.97 m/s2). We believe that the reason for this slight discrepancy is 
that, in the scatterplots, data from the bees were pooled without accounting for the flight duration of each bee, 
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Figure 9.  Variation of mean centripetal acceleration magnitude with BD angle during (a) left turns, (b) right 
turns and (c) straight flights. The dashed red line represents the overall mean in each case.
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which would mean that bees that flew longer trajectories would have made a greater contribution to the estimated 
parameters. Therefore, it is likely that the values obtained from Figs 3d, 7b, 9a,b and Table S1 are most representa-
tive of the true mean magnitude of the centripetal acceleration. The grand mean of these mean values is 2.69 m/s2,  
which is about 27% of the acceleration due to gravity (9.81 m/s2). This means that the average centrifugal force 
experienced by a turning bee is approximately 30% of the bee’s weight, which we propose is low enough to permit 
coordinated turns without incurring unwanted sideslips. Orchestrating turns in this way would ensure that the 
insect is never overcome by the centrifugal force during the turn, and always maintains the intended (curved) 
trajectory.

To probe our hypothesis further, we examined whether bees undergo sideslips during turns. If a bee is unable to 
resist the centrifugal force that it experiences during a turn, we would expect its body to point into the turn – anal-
ogous to a car that skids out of control while making a sharp turn. Our findings (Fig. 8) indicate that there is no sys-
tematic bias in the body deviation angle that is correlated with the direction of the turn – in other words, there is no 
evidence that the body points preferentially into the turn. Moreover, the finding that the width of the body deviation 
histogram is approximately the same for left turns, right turns and nearly straight flights (see SM Table S4), suggests 
that the variations in the body deviation angle are a normal feature of honeybee flight in these experimental condi-
tions, and do not reflect sideslips. Additional evidence for the lack of sideslips comes from the plots of centripetal 
acceleration versus body deviation angle (Fig. 9), which reveal that the centripetal acceleration is roughly constant – it  
does not vary with the body deviation angle. If sideslips were to occur, one would expect large body deviations into 
the turn (negative body deviation angles) to be associated with larger centripetal accelerations. This is clearly not 
the case – there is no correlation between the body deviation angle and the centripetal acceleration (or, equivalently, 
centrifugal force) – which, again, suggests that the observed variation in the body deviation angles is not due to the 
presence of uncontrolled turns. Our data of course includes several instances of turning bees in which the axis of 
the body is not aligned with the flight direction – as is evidenced by the broad histograms in Fig. 8. However, such 
flight segments, where the bee’s translational motion contains a lateral component, are likely to be controlled lateral 
motions, rather than uncontrolled sideslips resulting from a capitulation to the centrifugal force.

Our observation that turning bees hold the centripetal acceleration constant is further supported by the finding 
that the magnitude of this acceleration is practically the same during loitering turns and turns that involve a close 
encounter with another bee. Thus, it appears bees flying in a cloud display the same turning dynamics, regardless of 
the context in which the turn occurs. Further investigation is currently under way to explore the nature of the sen-
sory information that is used to guide collision avoidance manoeuvres during these close encounter turns.

Finally, our study also indicates that, under our experimental conditions, left and right turns display similar 
characteristics, when the data are pooled across the bees that were investigated. Thus, it appears that, as a whole, 
the group of bees flying in our bee cloud does not exhibit a preferred turning direction (left or right) -although 
we cannot rule out the possibility that individual bees have turning biases, which would be a topic for future 
investigation. On the other hand, army ants, fish11 and bats12 rotate in a particular direction displaying a collective 
turning behaviour that could promote collision avoidance. In summary, our study documents a turning strategy 
that is used by honeybees to execute controlled, side-slip free turns while they are in a loitering mode of flight 
in a bee cloud. It would be interesting to examine whether this strategy also applies to flight in other conditions.

Data Availability
The datasets generated during the current study are available from the corresponding author on reasonable request.
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