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γ-aminobutyric acid (GABA) or glucagon-like peptide-1 based drugs, such as sitagliptin
(a dipeptidyl peptidase-4 inhibitor), were shown to induce beta cell regenerative effects
in various diabetic mouse models. We propose that their combined administration
can bring forth an additive therapeutic effect. We tested this hypothesis in a multiple
low-dose streptozotocin (STZ)-induced beta cell injury mouse model (MDSD). Male
C57BL/6J mice were assigned randomly into four groups: non-treatment diabetic
control, GABA, sitagliptin, or GABA plus sitagliptin. Oral drug administration was
initiated 1 week before STZ injection and maintained for 6 weeks. GABA or sitagliptin
administration decreased ambient blood glucose levels and improved the glucose
excursion rate. This was associated with elevated plasma insulin and reduced plasma
glucagon levels. Importantly, combined use of GABA and sitagliptin significantly
enhanced these effects as compared with each of the monotherapies. An additive effect
on reducing water consumption was also observed. Immunohistochemical analyses
revealed that combined GABA and sitagliptin therapy was superior in increasing beta
cell mass, associated with increased small-size islet numbers, Ki67+ and PDX-1+ beta
cell counts; and reduced Tunel+ beta cell counts. Thus, beta cell proliferation was
increased, whereas apoptosis was reduced. We also noticed a suppressive effect of
GABA or sitagliptin on alpha cell mass, which was not significantly altered by combining
the two agents. Although either GABA or sitagliptin administration delays the onset of
MDSD, our study indicates that combined use of them produces superior therapeutic
outcomes. This is likely due to an amelioration of beta cell proliferation and a decrease
of beta cell apoptosis.
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INTRODUCTION

Type 1 diabetes is characterized by extensive beta cell loss as a
result of apoptosis and lack of regeneration. Islet transplantation
has been an ultimate treatment for subjects with severe T1D,
but its application is limited due to the lack of donors and the
need for intense immunosuppression (Ricordi and Strom, 2004;
Shapiro, 2012; Sharples et al., 2016). Thus, it is urgent to develop
novel therapeutic approaches that can increase the survival and
proliferation of endogenous pancreatic beta cells.

During the past two decades, intensive investigation of the
incretin hormone GLP-1 has led to the development of two
categories of novel therapeutic agents for T2D: GLP-1 agonists
and DPP-4 inhibitors (Lee and Jun, 2014; Holst and Madsbad,
2016; Tian and Jin, 2016). The drugs in the latter category, with
sitagliptin as an example, prevent the degradation of GLP-1 and
another incretin GIP, and hence elevate endogenous incretin
levels. In addition to functioning as incretins, GLP-1 as well as
GLP-1 based drugs were shown to promote beta cell expansion
in various mouse models (Takeda et al., 2012; Drucker, 2013;
Nie et al., 2013). Although GLP-1-based drugs were shown to
ameliorate T2D (Wang and Brubaker, 2002; Buteau et al., 2003),
they showed very marginal therapeutic effects for T1D subjects in
both humans and rodent models, possibly due to their restricted
immune regulatory effects (Hadjiyanni et al., 2008; Pettus et al.,
2013; Wan et al., 2015).

γ-aminobutyric acid, initially identified as an inhibitory
neurotransmitter, plays an important role in the regulation of
islet cell function and glucose homeostasis (Xu et al., 2006;
Soltani et al., 2011; Purwana et al., 2014). We reported that
oral administration of GABA prevented and partially reversed
T1D in rodent models (Soltani et al., 2011). The preventive and
therapeutic effects of GABA in T1D mice were associated with
beta cell mass expansion (Soltani et al., 2011; Wan et al., 2015).

Here, we tested the potential additive therapeutic effects of
GLP-1-based drug sitagliptin and GABA in a model of multiple
low-dose STZ-induced diabetes (MDSD) in C57BL/6J mice. Our
aim was the development of a novel and entirely oral therapeutic
strategy for T1D. We report that the combined administration of
these two agents has an additive therapeutic effect, as compared
to the respective monotherapies.

MATERIALS AND METHODS

Animal Handling
Male C57BL/6J mice (4-week-old, approximately 17–18 g)
purchased from Jackson Laboratories (Bar Harbor, ME, United
States) were housed in a specific pathogen-free animal vivarium

Abbreviations: DPP-4, dipeptidyl peptidase-4; ELISA, enzyme-linked
immunosorbent assay; GABA, γ-aminobutyric acid; GIP, gastric inhibitory
polypeptide; GLP-1, glucagon-like peptide-1; IHC, immunohistochemistry;
IPGTT, intraperitoneal glucose tolerance test; IPITT, intraperitoneal insulin
tolerance test; MDSD, multiple low-dose streptozotocin-induced beta cell injury
mouse model; NPY, neuropeptide Y; PDX-1, pancreatic and duodenal homeobox
1; RIA, radioimmunoassay; STZ, streptozotocin; T1D, type 1 diabetes; T2D, type 2
diabetes; Tunel, terminal deoxynucleotidyl transferase dUTP nick end labeling.

at St. Michael’s Hospital, and maintained on a 12-h light-dark
cycle, with free access to standard rodent chow and water. For
low-dose STZ induced diabetic mouse model, 20 mice were
randomly assigned into four groups after 1-week of adaptive
housing: non-treatment diabetic control group (Water), GABA
treatment group (GABA), sitagliptin treatment group (Sita), and
GABA plus sitagliptin group (GABA+Sita) (Figure 1A). For
high-dose STZ induced diabetic mouse model, 20 mice were
also randomly assigned into four groups: non-treatment diabetic
control group (HD-STZ+Water), GABA treatment group
(HD-STZ+GABA), sitagliptin treatment group (HD-STZ+Sita),
and GABA plus sitagliptin group (HD-STZ+GABA+Sita)
(Supplementary Figure S1A). GABA (Sigma–Aldrich, St. Louis,
MO, United States, 6 mg/mL in drinking water), or sitagliptin
(Merck Inc., Montreal, ON, Canada, 0.4 mg/L in drinking water),
or GABA and sitagliptin were orally administrated at the age of
6 weeks and maintained during the treatment course of 6 weeks.
At the age of 7 weeks, all mice received STZ (Sigma–Aldrich,
40 mg/kg for 4 consecutive days or 125 mg/kg for 2 consecutive
days) via injection, as we have previously described (Soltani et al.,
2011). Body weights and blood glucose levels were measured
twice a week; metabolic cages were used before the termination
of the experiments (Soltani et al., 2011). Blood samples were
collected before treatment and sacrifice. During blood sample
collection, diprotin A (Sigma–Aldrich) and aprotinin (Bioshop,
Burlington, ON, Canada) were added to inhibit the degradation
of GLP-1 and glucagon (Farngren et al., 2014). All animal
experiments were conducted in accordance with the guidelines
put forth by the Canadian Council on Animal Care and were
approved by the University of Toronto Animal Care Committee.

Blood Glucose Level Determinations,
Intraperitoneal Glucose Tolerance Test
(IPGTT), and Intraperitoneal Insulin
Tolerance Test (IPITT)
Non-fasting blood glucose levels were measured with mouse
tail blood using a One Touch Basic glucometer (LifeScan Inc.,
Burnaby, BC, Canada) or glucose assay kit (Abcam, Cambridge,
United Kingdom). Glucose tolerance and insulin sensitivity were
evaluated by IPGTT and IPITT at 5–6 weeks old (as baseline) and
at 11–12 weeks old (after drug intervention). Mice were fasted for
15 h for IPGTT and 6 h for IPITT, as we described previously
(Ip et al., 2015).

Pancreatic Tissue Preparation,
Immunohistochemistry (IHC), and Islet
Beta Cell and Alpha Cell Mass Analyses
Pancreases were paraffin embedded and prepared for histological
analysis (Wang and Brubaker, 2002). Briefly, freshly isolated
pancreas was cut into 8–10 segments followed by formaldehyde
fixation. All pancreatic pieces were embedded in paraffin
after being dehydrated in ethanol and cleaned with xylene.
Insulin and glucagon dual staining were performed on
tissue sections (5 µm) by using guinea pig anti-insulin and
rabbit anti-glucagon antibodies (1:1000; DAKO, Burlington,
ON, Canada); then detected with fluorescent (Cy3- and
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FIGURE 1 | Combined use of GABA and sitagliptin in STZ-induced T1D mouse model generates additive effects on improving glucose tolerance. (A) A chart shows
the mouse experiment design. (B) Longitudinal blood glucose levels in the four groups of mice defined as Water (diabetic control), GABA (GABA treatment), Sita
(sitagliptin treatment), and GABA+Sita (GABA plus sitagliptin treatment). (C) Longitudinal blood glucose levels in the four groups of mice defined as HD-STZ+Water
(diabetic control), HD-STZ+GABA (GABA treatment), HD-STZ+Sita (sitagliptin treatment), and HD-STZ+GABA+Sita (GABA plus sitagliptin treatment). (D) IPGTT
performed at 5-weeks-old (defined as baseline) as well as at 11-weeks-old. (E) Area under curve (AUC) for (D). (F) IPITT performed at 5-weeks-old (defined as
baseline) as well as at 11-weeks-old. (G) Area under curve (AUC) for (F). For (D–G), n = 20 for the baseline and n = 5 for each of the four groups of mice. Data are
mean ± SD. ∗P < 0.05, ∗∗P < 0.01. φP < 0.05, φφP < 0.01, φφφP < 0.001 vs. diabetic control group; &P < 0.05, &&&P < 0.001 vs. GABA treated group;
$P < 0.05, $$P < 0.01 vs. sitagliptin treated group.
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FITC- conjugated IgG) or biotinylated secondary antibodies
(1:200; Abcam, Cambridge, United Kingdom). For IHC
staining, samples were incubated with avidin-biotin-peroxidase
complex (Vector Laboratories, Burlington, ON, Canada)
before staining with DAB (Vector Laboratories) or Fuchsin
red (DAKO) and subsequent hematoxylin counterstaining.
Entire pancreatic images were scanned and viewed with
NanoZoomer (Hamamatsu, Hamamatsu-shi, Shizuoka-ken,
Japan) and analyzed by using the ImageScope program (Aperio
Technologies, Vista, CA, United States) (Purwana et al.,
2014). Total alpha and beta cell mass were determined by
the product of cross-sectional alpha and beta cell area over
total tissue area and the weight of pancreatic tissue before
fixation.

Measurement of Beta Cell Replication
and Apoptosis
Proliferative beta cells were detected in the pancreatic sections
by double immunofluorescence staining with guinea pig
anti-insulin (1:1000; DAKO), rabbit anti-Ki67 (1:200; Thermo
Fisher, Burlington, ON, Canada) antibodies, and relevant
secondary antibodies (1:1000; Abcam). Regenerative beta cells
were detected by double immunofluorescence staining with
guinea pig anti-insulin (1:1000; DAKO), rabbit anti-PDX-1
(1:400; Cell Signaling Technology, Danvers, MA, United States)
antibodies, and relevant secondary antibodies (1:200; Jackson
ImmunoResearch Laboratories, West Grove, PA, United States).
Apoptotic beta cells were also identified in pancreatic sections
with insulin and terminal deoxynucleotidyl transferase dUTP
nick end labeling (Tunel) labeling (TMR red, Roche, Mississauga,
ON, Canada) (Wang and Brubaker, 2002; Robertson et al.,
2008). Results are expressed as the percentage of Ki67+,
PDX-1+, or Tunel+ beta cells. All immunofluorescent images
were captured by an Olympus upright BX50 fluorescence
microscope (Olympus, Richmond Hill, ON, Canada) at ×40
magnification.

Plasma Insulin, Glucagon, and Active
GLP-1 Measurement
Plasma insulin, glucagon, and active GLP-1 concentrations
were measured using an ultra-sensitive mouse insulin ELISA
kit (Crystal Chemical Inc., Wakefield, MA, United States), a
glucagon RIA kit (Millipore, Etobicoke, ON, Canada), and a high
sensitivity GLP-1 active chemiluminescent ELISA Kit (Millipore),
according to the manufacturer’s instructions (Chiang et al.,
2014).

Statistical Analysis
All data were expressed as mean ± SD for four independent
experimental groups. Statistical analysis was performed using
SPSS for Mac Ver. 20.0 (SPSS, Inc., Chicago, IL, United States).
All graphs were made using the Prism program (GraphPad, San
Diego, CA, United States). The significance (P < 0.05) among
different groups was evaluated using one-way ANOVA followed
by the Tukey test.

RESULTS

Combined Use of GABA and Sitagliptin
in MDSD Generates Additive Effect
on Glucose Disposal
To assess the potential additive effect of combined use of GABA
and sitagliptin in preventing hyperglycemia, we administrated
GABA, sitagliptin, or GABA plus sitagliptin orally 1 week before
STZ injection (Figure 1A). Two weeks after STZ injection,
the control diabetic mice developed serious hyperglycemia
(16.8 ± 3.1 mM) (Figure 1B). Mice in the three treatment
groups, however, showed significantly lower ambient blood
glucose levels (<11 mM). At 2 weeks after STZ injection
and thereafter, mice from the GABA+sitagliptin group showed
lower blood glucose levels when compared with those that
received a monotherapy. Whereas the non-treated control mice
developed severe hyperglycemia (30.5 ± 0.9 mM) after a
6-weeks period, mice receiving GABA or sitagliptin monotherapy
showed significantly lower glycemic levels (15.3 ± 0.5 mM
and 13.0 ± 0.6 mM). Moreover, blood glucose level in
the GABA+sitagliptin group was at an even lower range
(10.6 ± 0.3 mM, P < 0.001 between GABA+Sita group and
GABA group; P < 0.01 between GABA+Sita group and Sita
group) (Figure 1B).

To further demonstrate that the combined therapy
has a superior effect on lowering glucose levels, we also
examined high-dose STZ injection, and this revealed
larger and more significant differences between the
combined therapy group and monotherapy groups
(Figure 1C). After 6-weeks treatment, the glucose levels
of HD-STZ+Water, HD-STZ+GABA, HD-STZ+Sita, and
HD-STZ+GABA+Sita groups are 51.0 ± 8.3, 31.6 ± 3.4,
37.9 ± 3.4, and 21.0 ± 7.7 mM, respectively (P < 0.05
between HD-STZ+GABA+Sita group and HD-STZ+GABA
group; P < 0.05 between HD-STZ+GABA+Sita group and
HD-STZ+Sita group).

To test whether this combined therapy leads to a better
glucose and insulin challenge response, IPGTT and IPITT were
performed before (indicated as baseline in Figures 1D–G) and
5 weeks after the drug treatment. As shown in Figures 1D,E,
GABA or sitagliptin monotherapy partially improved glucose
tolerance while the combined therapy improved the tolerance
even further. Figures 1F,G shows that insulin sensitivity is
increased by either GABA or sitagliptin monotherapy, while
combined therapy tended to increase this even further, albeit
without statistical significance.

We then determined circulating insulin and glucagon
levels in each of the four groups of mice before and after
drug treatment. Both GABA and sitagliptin monotherapies
increased plasma insulin levels and decrease plasma glucagon
levels (Table 1). An additive effect on the elevation of
plasma insulin levels but not on the repression of plasma
glucagon levels was observed with the combined therapy.
As anticipated, plasma GLP-1 levels in mice that received
sitagliptin or GABA plus sitagliptin were significantly elevated
(Table 1).
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TABLE 1 | Combined use of GABA and sitagliptin elevates plasma insulin and GLP-1 levels, while decreases plasma glucagon levels.

Baseline Water GABA Sita GABA+Sita F-values P-values

Insulin (ng/ml) 0.67 ± 0.08 0.30 ± 0.02 0.52 ± 0.14∗ 0.44 ± 0.10∗# 0.77 ± 0.22∗∗ 8.43 <0.001

Glucagon (pg/ml) 175.0 ± 21.9 383.8 ± 37.5 212.7 ± 14.5∗∗ 227.8 ± 14.8∗∗# 199.9 ± 17.1∗∗ 54.89 <0.0001

GLP-1 (pmol/L) 5.26 ± 1.31 2.13 ± 0.43 2.94 ± 0.76 5.10 ± 0.45∗∗## 6.93 ± 0.29∗∗∗ 19.28 <0.001

Data are Mean ± SD. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001 vs. diabetic control group (Water group); #P < 0.05, ##P < 0.01 vs. GABA+sitagliptin treated group.

Combined Use of GABA and Sitagliptin
Improves Metabolic Status in the T1D
Mouse Model
Expected therapeutic effects on T1D include the reduction of
water consumption and urine volume, as well as an improvement
in body weight gain. Although we did not find any effects of
GABA, sitagliptin, or combined therapy on body weight changes
or food intake (Figures 2A,B), we observed a repression of water
consumption in mice that received GABA or sitagliptin treatment

(Figure 2D). Importantly, combined therapy decreased water
consumption even further (Figure 2D). Figure 2C shows that
the daily urine volume was lower in mice of the GABA group,
the sitagliptin group, and the GABA+sitagliptin group when
compared with the non-treatment diabetic controls.

In this MDSD model, body weight differences among the
four groups of mice were very marginal. Nevertheless, we have
also tested the therapeutic effect of GABA, sitagliptin, and
GABA+sitagliptin in mice that received a large-dose of STZ
(Supplementary Figure S1A). As shown in Supplementary

FIGURE 2 | Combined use of GABA and sitagliptin improves metabolic status in STZ-induced T1D mice (A) Body weight measurement. (B) 24-h food intake.
(D) 24-h water consumption. (C) 24-h urine volume. For (B–D), the data were obtained by putting each individual mouse into a metabolic cage. n = 5 for each of the
experimental groups. Data are mean ± SD. ∗P < 0.05, ∗∗P < 0.01.
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FIGURE 3 | Combined use of GABA and sitagliptin generates additive effects on increasing beta cell mass. (A) Representative immunofluorescence images of
pancreatic islets, showing insulin staining (red) and glucagon staining (green) in the four groups of mice. (B,C) Pancreatic beta cell mass (B) and alpha cell mass
(C) in the four groups of mice. n = 5 per defined group. Data are mean ± SD. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

Figure S1B, each of the three treatments increased the body
weight of the mice with time.

Combined Use of GABA and Sitagliptin
Generates Additive Effects on Increasing
Beta Cell Mass
To initiate the exploration on mechanisms underlying the
additive improvement with the combined therapy, we
determined beta cell and alpha cell mass in the four groups
of mice. As shown in Figure 3A, STZ injection destroyed nearly
all beta cells, while the residual islets contained mostly alpha
cells. GABA or sitagliptin monotherapy partially mitigated such
changes, while the combined therapy altered the changes the
most. Figures 3B,C shows that either one of the monotherapies
increased beta cell mass and decreased alpha cell mass.
Importantly, combined therapy increased beta cell mass by nearly
twofold when compared with either of the mono-therapeutic
approaches, and generated a trend in further reducing alpha cell
mass.

Combined Use of GABA and Sitagliptin
Generates an Additive Effect on
Increasing Beta Cell Proliferation and
Reducing Beta Cell Apoptosis
As GABA or GLP-1 can promote mouse beta cell survival
and replication (Wang and Brubaker, 2002; Soltani et al.,
2011), we assessed whether combined therapy could
generate an additive effect in this MDSD model. We used
a Ki67/insulin dual immunofluorescence staining approach
to determine the beta cell replication rates. In the MDSD
mice that received no drug treatment, the rate of beta
cell proliferation was 0.40 ± 0.03%, consistent with our
previous report under the similar experimental conditions
(Soltani et al., 2011). In contrast, the rates of beta cell
proliferation in mice that received GABA or sitagliptin
treatment were ∼1.12 and 0.94%, respectively (Figures 4A,C).
Moreover, mice that received the combined therapy
showed further increase in the rate of beta cell proliferation
(∼1.45%).
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FIGURE 4 | Combined use of GABA and sitagliptin generates an additive effect on increasing beta cell proliferation and regeneration. (A) Representative
immunofluorescence images of pancreatic islets, showing Ki67+ (green) and insulin+ (red) cells in the four groups of mice. (B) Representative immunostaining
images of pancreatic islets, showing PDX-1+ (red) and insulin+ (green) cells. (C,D) Calculation of percent of Ki67+ cells (C) and PDX-1+ cells (D) in the four groups
of mice. (E) Islet number for different size per section area in four groups of mice. n = 5 for each group of mice. Data are mean ± SD. ∗P < 0.05, ∗∗P < 0.01,
∗∗∗P < 0.001, ∗∗∗∗P < 0.0001; φP < 0.05, φφφP < 0.001 vs. diabetic control group; &&P < 0.01 vs. GABA treated group; $P < 0.05 vs. sitagliptin treated group.

To further elucidate the underlying mechanism of beta
cell replication under our treatment conditions, we performed
dual staining for insulin and PDX-1, one of the key beta
cell developmental markers. Consistent with the Ki67 results,
the PDX-1+insulin+ cell counts are significantly increased
in GABA (22.14 ± 1.97%) and sitagliptin (20.32 ± 5.45%)
treated groups compared with non-treated diabetic mice
(12.84 ± 2.17%); while combined therapy increased this even
more (29.83 ± 3.49%) (Figures 4B,D). In addition, we also
demonstrated that the small-size islet numbers (beta cell
count less than 50) are significantly higher in the combined
therapy group (Figure 4E), which might partially explain
the pro-regenerative effects of combined use of GABA and
sitagliptin.

The Tunel and insulin double immunostaining method
was then utilized to determine beta cell apoptosis. As
shown in Figures 5A,B, GABA or sitagliptin monotherapy
decreased the Tunel positive beta cells, while GABA+sitagliptin
treatment generated an additive effect on reducing beta cell

apoptosis. As previously reported by our group and others
(Prud’homme and Chang, 1999; Maksimovic-Ivanic et al.,
2002; Soltani et al., 2007, 2011), beta cell apoptosis is a
slower process in an MDSD model compared with high-dose
STZ-induced diabetes. Notably, beta cell death in MDSD is
largely dependent on inflammation (insulitis), and apoptosis
is still apparent weeks after STZ administration, as shown
by our current results. Thus, our Tunel staining results in
MDSD suggest that combined GABA and sitagliptin treatment
exerts superior and long-term protection against beta cell
death.

DISCUSSION

As there is no single therapy that restores recommended glycemic
control in the majority of T1D subjects, we investigated a
combined therapy with a current drug (sitagliptin) and a
potential future drug (GABA) to accomplish this goal. We found
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FIGURE 5 | Combined use of GABA and sitagliptin generates an additive effect on reducing beta cell apoptosis. (A) Representative immunostaining images of
pancreatic islets, showing Tunel+ (red) and insulin+ (green) cells. (B) Calculation of percent of Tunel+ cells in the four groups of mice. n = 5 for each group of mice.
Data are mean ± SD. ∗P < 0.05, ∗∗P < 0.01.

that such combined therapy resulted in superior therapeutic
outcomes in MDSD, including the prevention of hyperglycemia,
the improvement of glucose tolerance, and the reduction of
water consumption. Importantly, combined therapy augmented
beta cell proliferation and regeneration, and concurrently
improved protection against beta cell apoptosis. Combined
therapy only marginally altered body weight in MDSD, but
weight was ameliorated in mice with high-dose STZ-induced
diabetes.

Glucagon-like peptide-1 improves glucose homeostasis via
a number of defined mechanisms including its incretin effect
on pancreatic beta cells, shared with another incretin hormone
GIP (Chiang et al., 2012; Tian and Jin, 2016). In pancreatic
islets, GLP-1 also inhibits glucagon secretion, promotes beta cell
proliferation and protects beta cell from apoptosis (Brubaker and
Drucker, 2004; Yusta et al., 2006; Drucker, 2007, 2013; Wang
et al., 2007; Shao et al., 2013). Interestingly, we found that the
GLP-1 levels in non-treated MDSD diabetic mice are lower at
12-weeks old compared to the baseline (6-weeks old), which is
consistent with several other animal studies. In db/db mice, it
was found that the plasma active GLP-1 levels were decreased
compared to normal mice, while DPP-4 inhibitor vildagliptin
could reverse this change (Wu et al., 2015). The plasma GLP-1
level in our STZ-induced diabetic mice was ∼2 pmmol/L, which
was further supported by previous reports using STZ-induced
diabetic mice or NOD mice (Kim et al., 2008, 2009). However,
the reason for the GLP-1 decline in our current study, and
the previous work of others, is not known and requires further
investigation.

Dipeptidyl peptidase-4 inhibitors, such as sitagliptin, prevent
the degradation of GLP-1 and GIP and hence increase
endogenous incretin hormone levels (Kieffer et al., 1995;
Tian and Jin, 2016). Although GLP-1 analogs and DPP-
4 inhibitors have been broadly utilized in T2D treatment,
they had minimal beneficial impacts in treating T1D (Rother
et al., 2009; Pettus et al., 2013). We chose the DPP-4
inhibitor sitagliptin for this combined therapy study, as it

can be orally administrated with GABA (Dobrian et al.,
2011). Clinically, oral administration of drugs is advantageous,
especially for chronic diseases with long-term treatment. As
anticipated, sitagliptin administration indeed increased plasma
GLP-1 levels in our mouse model. Nevertheless, as DPP-4
can degrade a number of other peptide hormones including
GIP and NPY, further investigations are needed to assess
whether other DPP-4 substrates participate in the additive
metabolic beneficial effect observed in our combined therapy
experiments.

In addition to the increase of beta cell mass with either of
the monotherapies or the combined therapy presented in this
study, we found that GABA, sitagliptin, or GABA plus sitagliptin
reduced alpha cell mass as well as plasma glucagon levels. The
reduction of alpha cell mass by GABA treatment in the T1D
mouse model is in agreement with our previous study (Soltani
et al., 2011), while the reduction of alpha cell mass by sitagliptin
or its derivatives was reported previously in both T1D and
T2D mouse models (Mu et al., 2006; Takeda et al., 2012). It is
important to point out that very recent studies have indicated
that GABA induces alpha cell to beta cell transdifferentiation,
starting with the conversion of pancreatic duct cells into alpha
cells (Ben-Othman et al., 2017; Li et al., 2017). When normal mice
at different ages (2.5–10 months) received GABA treatment for
2–3 months, their insulin+ as well as glucagon+ cell numbers
were increased. Thus, during long-term GABA administration,
a transient increase in alpha cell mass was observed. In the
current study, we assessed both alpha cell mass and plasma
glucagon levels 6 weeks after GABA or GABA plus sitagliptin
treatment; and did not observe the potential transient increase
of alpha cells. However, our treatment period was shorter than
in studies showing transdifferentiation and related changes in the
alpha cell population, which might explain this difference in our
results.

Previous studies have shown that GLP-1, through binding
to its receptor GLP-1R (De Leon et al., 2003), promotes beta
cell replication and prevent beta cell apoptosis via the activation
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of P13K/Akt and CREB-IRS2 signaling pathways (Wang and
Brubaker, 2002; Wang et al., 2004; Whalley et al., 2011). These
two pathways were also shown to mediate the function of
GABA in maintaining beta cell mass (Soltani et al., 2011;
Purwana et al., 2014). We show here that GABA and sitagliptin
combined therapy further increased beta cell mass, associated
with increased Ki67+ or PDX-1+ beta cell number and reduced
Tunel+ beta cell number. Extensive further in vitro and in vivo
examinations are needed to address whether such additive
effects are simply due to the additive stimulation of these
two signaling cascades, or due to some yet to be identified
underlying mechanisms. Nevertheless, cross-talk between GABA
and GLP-1 signaling cascades have been suggested at different
levels. In rat hippocampal CA3 pyramidal neurons, both native
GLP-1 and its agonist exendin-4 were shown to enhance
GABAA receptor-mediated synaptic and tonic currents (Korol
et al., 2015). In rat islets, GLP-1 treatment leads to increased
GABA production (Wang et al., 2007). Furthermore, GABA
treatment was shown to increase GLP-1 production in a
mouse gut endocrine L cell line model (Gameiro et al.,
2005).

CONCLUSION

Our observations suggest that combined use of GABA and
sitagliptin in T1D treatment is feasible, leading to a delay in
the onset of STZ-induced T1D and additive therapeutic effects
on metabolic profiles. As sitagliptin and other DPP-4 inhibitors
can be orally administrated, new drugs have been developed
by combining a given DPP-4 inhibitor with metformin or
pioglitazone, known as Janumet and Oseni, respectively (Jin and
Weng, 2016). GABA can also be orally administered, and this is
an important clinical advantage. Further pre-clinical and clinical
trials are warranted to test the efficacy and toxicity of combined
use of GABA and sitagliptin in T1D mouse models and T1D
human subjects.
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