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Resting state networks (RSNs) extracted from functional magnetic resonance imaging

(fMRI) scans are believed to reflect the intrinsic organization and network structure of brain

regions. Most traditional methods for computing RSNs typically assume these functional

networks are static throughout the duration of a scan lasting 5–15 min. However, they

are known to vary on timescales ranging from seconds to years; in addition, the dynamic

properties of RSNs are affected in a wide variety of neurological disorders. Recently, there

has been a proliferation of methods for characterizing RSN dynamics, yet it remains

a challenge to extract reproducible time-resolved networks. In this paper, we develop

a novel method based on dynamic mode decomposition (DMD) to extract networks

from short windows of noisy, high-dimensional fMRI data, allowing RSNs from single

scans to be resolved robustly at a temporal resolution of seconds. After validating the

method on a synthetic dataset, we analyze data from 120 individuals from the Human

Connectome Project and show that unsupervised clustering of DMD modes discovers

RSNs at both the group (gDMD) and the single subject (sDMD) levels. The gDMD modes

closely resemble canonical RSNs. Compared to established methods, sDMD modes

capture individualized RSN structure that both better resembles the population RSN

and better captures subject-level variation. We further leverage this time-resolved sDMD

analysis to infer occupancy and transitions among RSNs with high reproducibility. This

automated DMD-based method is a powerful tool to characterize spatial and temporal

structures of RSNs in individual subjects.

Keywords: resting state network (RSN), dynamic mode decomposition (DMD), RS-fMRI, human connectome

project (HCP), individualized networks, network dynamics

1. INTRODUCTION

Resting state networks (RSNs) comprise distinct regions of the brain that exhibit synchronous
low-frequency (<0.1 Hz) temporal fluctuations in the absence of explicit tasks (Raichle et al.,
2001; Damoiseaux et al., 2006; Fox and Raichle, 2007). They are most commonly detected
using blood-oxygen level-dependent (BOLD) resting state functional magnetic resonance imaging
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(rs-fMRI), where a series of T2 or T2* weighted images of
the brain are acquired repeatedly over the duration of the
scan (5–15 min) (Lowe et al., 1998; Van Den Heuvel and Pol,
2010). The data-driven extraction of RSNs from these noisy
and high-dimensional datasets is a difficult analytic task, made
possible through the use of well-suited methods. Independent
Component Analysis (ICA) (Beckmann et al., 2005) has become
a standard approach in this field, due to its power at detecting
and disentangling overlapping, but statistically distinct, signals
from noisy, high-dimensional data. The traditional application
of ICA and other RSN analyses have focused on static analysis
of the images, implicitly assuming that the networks are
unaltered throughout the duration of each resting-state scan (Van
Den Heuvel and Pol, 2010). The assumption that brain states are
static for manyminutes has the effect of averaging over the spatial
and temporal variability of networks (Hutchison et al., 2013b).

Although the spatial structure of these RSN patterns is similar
throughout the population, their exact structure and dynamics
in time vary considerably between individuals (Song et al., 2008;
van den Heuvel et al., 2009; Adelstein et al., 2011; Wei et al.,
2011). Further, even within individuals, the modes reconfigure
dynamically on timescales ranging from seconds to years (Honey
et al., 2009; Shehzad et al., 2009; Chang and Glover, 2010; Meindl
et al., 2010; Van Dijk et al., 2010; Bassett et al., 2011). Differences
in an individual’s RSN dynamics are important in part because
they may serve as useful biomarkers for a variety of neurological
dysfunctions, including schizophrenia (Damaraju et al., 2014;
Ma et al., 2014; Rashid et al., 2014, 2016; Miller et al., 2016),
bipolar disorder (Rashid et al., 2014, 2016), autism (Falahpour
et al., 2016; de Lacy et al., 2017), depression (Demirtaş
et al., 2016), post-traumatic stress disorder (Li et al., 2014),
attention deficit/hyperactivity disorder (Ou et al., 2014), andmild
cognitive impairment (Chen et al., 2016). For example, multiple
studies have shown that in schizophrenia, regions of default
mode, auditory, motor, and visual resting state networks show
differences in their correlations, when compared to a control
population (Garrity et al., 2007; Jafri et al., 2008;Woodward et al.,
2011). Patients with schizophrenia also show abnormalities in
dynamic dwell times in large-scale RSNs (Damaraju et al., 2014).

Technological innovations in brain imaging such as
SENSitivity Encoding (SENSE) and simultaneous multi-
slice (SMS) acquisitions now allow for improved temporal
resolution, enabling investigation of the true temporal dynamics
of brain function (Pruessmann et al., 1999; Feinberg and
Setsompop, 2013; Barth et al., 2016). One emerging challenge
with the advent of the fast acquisition of brain dynamics is
the appropriate choice of methods to analyze and interpret
data. It follows that much intense work has gone beyond static
analyses, calculating RSN structure and activation as they vary
in time to investigate a variety of measures of RSN dynamics.
Many of these time-resolved RSN analyses use a windowed
version of a traditional method, such as correlation (Chang and
Glover, 2010; Sakouglu et al., 2010; Handwerker et al., 2012;
Jones et al., 2012; Hutchison et al., 2013b; Allen et al., 2014;
Preti and de Ville, 2017) or ICA (Beckmann and Smith, 2005;
Hutchison et al., 2013a). Windows are then shifted in time and
the measures recalculated, leading to methods for characterizing

dynamic connectivity (Calhoun et al., 2014; Calhoun and
Adali, 2016; Keilholz et al., 2017; Preti and de Ville, 2017).
These most common RSN extraction methods make no explicit
assumptions about the intrinsic temporal structure of the fMRI
data (Kiviniemi et al., 2011; Calhoun and de Lacy, 2017). We
note that there are alternatives to the windowed methods such
as the wavelet coherence transform approach, which performs a
time-frequency decomposition of the resting state signals from a
pair of voxels or regions of interest (Chang and Glover, 2010).
Another non-windowed approach is to fit a hidden Markov
model, which uses Bayesian inference to infer states and their
dynamics with the assumption that the system is in precisely one
state at any given time (Vidaurre et al., 2017).

In this work, we present a new framework based on dynamic
mode decomposition (DMD) for analyzing resting state BOLD
fMRI data. DMD is a spatiotemporal modal decomposition
technique (Brunton et al., 2016; Kutz et al., 2016a) ideally
suited to extract coherent modes from rs-fMRI data. Similar
to ICA, DMD decomposes a signal into constituent coupled
spatiotemporal modes (Rowley et al., 2009; Schmid, 2010; Tu
et al., 2013). Unlike ICA, DMD constrains the modes to be
temporally coherent; specifically, each mode oscillates at a
fixed frequency while exponentially growing or decaying. This
temporal coherence constraint produces more robust estimates
of spatial modes by leveraging the assumption that RSNs
have coherent dynamics within short windows of time, while
automatically allowing for any phase differences between regions
of a network. Thus, in addition to a spatial map of activation,
DMD also estimates the temporal frequencies associated with
each spatial mode.

Here we develop and validate a novel method to extract
reproducible, time-resolved RSNs based on DMD. DMD is
computed within a short sliding window of data, and the
spatial components of the DMD, known as DMD modes,
represent coherent spatial correlations (Figure 1A). We first
consider group-DMD (gDMD), where hierarchical clustering
discovers stereotypical modes present within the full population
(Figure 1B). We also apply DMD independently to single scans
(sDMD), as illustrated in Figure 1C, which allows us to extract
subject-level modes and their corresponding dynamics. To
validate this method, we consider a synthetic dataset consisting of
two dynamic, intermittently active, partially overlapping modes.
gDMD outperforms both traditional and windowed ICA at
extracting these modes from noisy data (Figure 2), and sDMD
extracts the correct temporal dynamics to a temporal resolution
matching the length of the sliding window (Figure 3).

We then analyze rs-fMRI data from 120 individuals in the
Human Connectome Project (HCP) dataset (Glasser et al., 2013;
Smith et al., 2013; Van Essen et al., 2013). The gDMD modes of
the rs-fMRI data are strongly clustered, with clusters and sub-
clusters corresponding directly to canonical RSNs. On a single-
subject level, sDMD extracts and characterizes individualized
RSN modes and their dynamics at a resolution of ∼3 s. To
assess our time-resolved results, we compute the subject-level
default mode networks (DMNs) through DMD and find that the
individualized variations we observe agree with those derived
through group-ICA (gICA) and dual regression. Importantly,
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FIGURE 1 | A schematic of our method using DMD to analyze resting state BOLD fMRI data. (A) Spatiotemporal DMD modes are extracted from short sliding

windows of rs-fMRI data from 120 subjects from the Human Connectome Project. We use 23 s windows and slide in 3 s steps over each 15 min scan. (B)

Group-DMD (gDMD) clusters the full set of modes from all 120 subjects to extract group-averaged RSNs. (C) Subject-level DMD (sDMD) clusters only the subset of

modes from a single subject, which yields both individualized RSNs and their corresponding dynamics.
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FIGURE 2 | In a synthetic dataset with two “cat” modes and two “chicken” modes, windowed DMD performs better than group ICA and windowed ICA to extract the

true underlying modes. (A) The synthetic cat and chicken modes. (B) The simulated timeseries data comprises intermittently pulsing cat/chicken modes plus white

noise. (C) A comparison of the modes extracted from the simulated data using group ICA, sliding window ICA, and sliding window DMD. In (i), traditional group ICA

does not separate the modes, which are neither fully spatially or temporally independent. In (ii), ICA modes computed in sliding windows and averaged over windows

distinguishes each mode, but the results are noisy and contains shadows from the other modes. In (iii), DMD modes computed over sliding windows yield modes that

are significantly closer to the true modes. In (ii) and (iii), the absolute value of each mode was taken before averaging, so that the colormap is different from that of (i).

this agreement is in spite of the fact that our DMD approach
uses only data from a single subject, whereas the gICA approach
regresses against a reference RSN computed from the entire
population. We show that the sDMD modes resemble the gICA
modes more closely and more robustly than subject-level DMNs
computed via single-scan spatial ICA. Our subject-level analysis
lends well to characterizing the RSN dynamics, including how
frequently each RSN is active and the probabilities of transitions
between different RSNs. We show that the sDMD derived
RSN occupancies are reproducible within each individual across
independent scans, and these dynamical properties may be used
to build subject-level network representations of RSN dynamics.
These results lay the groundwork for the application of the
DMD family of methods to fMRI data; DMD is a modular
approach that extends easily to multi-resolution analyses and
control theoretic frameworks, a key advantage over ICA-based
methods that have no directly analogous extensions. We suggest
that DMD is an improved method for robust, reproducible
extraction of functional connectivity modes from short windows
of rs-fMRI data, and these time-resolved modes are ideally suited
to characterize RSN dynamics on the single-subject level.

2. RESULTS

Here we present results using our method combining dynamic
mode decomposition (DMD) and unsupervised clustering to
extract resting state networks (RSNs) from our synthetic dataset
and the Human Connectome Project (HCP) data. We show
results at both the group level (gDMD) and the subject level
(sDMD), as summarized in Figure 1. The sDMD results extract
reproducible, time-resolved RSNs, and their transition dynamics

for individual scans. Details of our approach are described in
the section Methods. Code to assist in downloading the correct
data, run all analyses described in this paper, and generate the
corresponding figures are openly available at https://github.com/
kunert/DMD_RSN.

2.1. Synthetic Data
We first consider a synthetic dataset containing “cat” modes
and “chicken” modes, shown in Figure 2A. Each mode has
two variants, and we conduct a total of four simulations
corresponding to the different combinations of Cat A/B and
Chicken A/B. In each simulation, the chickenmode and cat mode
are each intermittently pulsing in the presence of a high level of
white noise, as depicted in Figure 2B.

We use three methods to extract the underlying modes from
these noisy simulations, with the results shown in Figure 2C.
We first consider Group ICA, which concatenates the four
simulations into a single dataset from which the ICA modes
are computed. In this synthetic case wherein the modes are
neither fully spatially nor temporally independent, this approach
lumps the underlying patterns together and fails to separate
them spatiotemporally.

To resolve modes in time, we instead utilize a windowed
approach: we compute ICA/DMD modes from short sliding
windows of data within each individual scan. Specifically, we
compute modes within 32-frame windows sliding by 4 frames,
producing a total over 293 overlapping windows per each 1,200-
frame scan. We average together subsets of the resultant modes
to calculate the optimal reconstruction of the original underlying
patterns. The ICA/DMD approaches shown here are identical
except for the one line of code in which each technique is used
to extract modes from a window of data. In addition to DMD
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FIGURE 3 | Single-subject DMD (sDMD) characterizes single-trial dynamics in

a synthetic dataset by identifying the time windows during which each mode is

present. (A) The actual (top) and calculated (bottom) dynamics for the cat

mode (blue) and chicken mode (green). The red dotted line on the top panel

indicates the length of the sliding window. (B) The true state dynamics are

governed by a Markov network (left), and sDMD infers an approximation of

these dynamics (right). The inferred transition probabilities are close to the true

weights (over-estimates are in blue, and under-estimates are in red). Note,

however, that these probabilities must be interpreted carefully: the smoothing

of dynamics over the time-scale of the sliding windows means that rapid

cat↔chicken transitions within a single window are extracted as “Both,” so

that these transitions are under-estimated.

mode extraction being considerably faster than ICA [taking
(1.7 ± 0.1) s per scan for windowed DMD and (7.0 ± 1.0) s per
scan for windowed ICA], Figure 2C shows that windowed DMD
modes yields a cleaner result than windowed ICA, the results of
which are noisier and contain shadows from other modes. This
windowed DMD technique forms the basis of both our sDMD
and gDMD approaches.

Rather than correlating modes against a known pattern, the
gDMD/sDMD approaches use unsupervised clustering to group
together similar modes from different windows. This yields the
time dynamics of each mode, since we know the time windows
in which each mode does or does not appear. In this synthetic
data, we can compare these inferred time dynamics against the
ground truth, as in Figure 3A. The inferred dynamics match the
ground truth, though they are smoothed over the time-scale of
the window such that more rapid transitions are not captured.
We can further use these inferred timeseries to estimate the
transitions between states of the simulation, as in Figure 3B. The
true state dynamics are governed by a Markov network which
switches between only the cat mode being active, only the chicken
mode being active, and both modes being active simultaneously.
The window-smoothing effect results in an undercounting of
rapid cat↔chicken transitions, which further highlights that the

resolution of the inferred dynamics is limited by the window size;
otherwise, the inferred transition probabilities are close to the
underlying ground truth.

2.2. rs-fMRI Data: Extracted Group-Level
Modes Resemble Resting State Networks
(RSNs)
The BOLD data we analyze is a collection of 15-min resting-state
scans from 120 unrelated individuals from the HCP. Each scan
has 1,200 frames acquired at a temporal resolution of ∼0.72 s.
The data had been pre-processed with the HCP minimal pre-
processing pipeline Glasser et al. (2013) and is freely available to
download at https://www.humanconnectome.org/. As part of this
pre-processing, the data are mapped to the “grayordinate” space,
where each point maps onto the cortical surface.

As we did for the synthetic data, we apply DMD to short
sliding windows within each individual scan In the results shown
here (Figure 4), we use windows of 32 frames sliding by 4 frames,
producing a total over 293 overlapping windows per each 1,200-
frame scan. In time, this corresponds to ∼23 s windows sliding
in ∼3 s increments. We truncate to the first 8 modes from each
window. Our results presented here are relatively robust to the
number of modes calculated within each window, as described
further in Appendix C (Supplementary Material).

To show that the DMD modes thus computed resemble
known RSNs, we use an unsupervised clustering approach to
automatically identify and label clusters of modes, then compare
them to canonical RSNs. Specifically, we perform agglomerative
clustering to hierarchically cluster our set of DMD modes
based on the average spatial correlation between clusters (Bar-
Joseph et al., 2001; Mullner, 2011) (as implemented in the
cluster.hierarchy package of SciPy 1.0.0; Jones et al.,
2001). In gDMD, we consider as a group all the DMDmodes from
all windows of 120 individuals in the dataset. The hierarchically
clustered correlation matrix is shown in Figure 4A, where the
modes have been reordered so that this matrix is strongly block
diagonal. In other words, groups of modes cluster naturally.
Figure 4B shows the correlation of each DMD mode to each of
a set of reference RSNs (Gordon et al., 2016). Importantly, the
automatically-grouped clusters appear to correspond to distinct
RSNs. For instance, the strongly clustered block in the lower-right
of the correlation matrix shows very strong correlations to the
mouth sensorimotor RSN.

The clustering establishes boundaries that separate modes into
distinct clusters, shown in different colors in Figure 4C. This
procedure uses a threshold that determines the resultant size
and granularity of the clusters. Here we choose a threshold on
the cophenetic distance (i.e., the “distance” threshold option of
the scipy.cluster.hierarchy function fclust; Jones
et al., 2001) of 0.955, a relatively coarse grouping of the modes
into 13 clusters whose averages are shown in Figure 4D. These
cluster averages, extracted at the population level, appear to
correctly resemble known resting state networks. For instance,
cluster 3 (light green) resembles the visual network, cluster 8
(dark orange) resembles the default network, and cluster 10 (dark
purple) resembles the sensorimotor hand network.
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FIGURE 4 | Results from gDMD using modes extracted from scans of 120 individuals, revealing clusters closely resembling known RSNs. (A) The hierarchically

clustered correlation matrix between gDMD modes. (B) Overlap of each mode with RSNs from Gordon et al. (2016). (C) Clusters automatically extracted from the

hierarchical clustering results. A different threshold can be chosen to derive finer or coarser sub-clusters. (D) Averaged modes within each of the 13 clusters, with the

corresponding DMD temporal frequencies. Several of the automatically identified DMD mode clusters visually correspond to canonical RSNs.

Every DMD spatial mode has a corresponding temporal
eigenvalue, which gives information about the oscillation
frequency of that mode in time. Although these eigenvalues
have not been used in the clustering process, they describe
the characteristic oscillation frequency of each cluster. The
mean and standard deviation for each cluster’s oscillation
frequency is shown in Figure 4D. As a validation that RSNs have
low frequencies of oscillation, these frequencies are generally
below or around 0.10 Hz. Further analysis of the frequency
content of extracted gDMD clusters is discussed in Appendix B
(Supplementary Material).

2.3. Subject-Level Modes and Dynamics
One key advantage of our approach using DMD followed by
unsupervised clustering is that it can be performed equally
well on any subset of modes. We are particularly interested in
performing the analysis on single scans, which we refer to as
sDMD. Figure 5 shows the results from hierarchically clustering
modes from a single 15 min scan. Similarly to the group
results, this similarity matrix is strongly block diagonal, and
the blocks correspond to different canonical RSNs (Figure 5A,
bottom, correlates these modes with the parcellation of Gordon
et al., 2016). Note that we use a slightly lower threshold on
the cophenetic distance than in Figure 4 (0.95 instead of 0.955),
yielding a larger number of finer-grained subclusters.

Importantly, in this single-scan analysis, the clusters are easily
interpreted temporally: each cluster shows temporal dynamics

defined by the time windows in which its constituent modes
are found, as shown in Figure 5B. Largely, clusters are active
over periods spanning many consecutive windows and extended
periods of time. Notably, many different clusters are observed
to co-occur in time. This overlap of modes in the same window
poses no problems for the sDMD approach, but it violates the
assumptions made by other time-resolved methods (such as
hiddenMarkovmodels) that require the system is in a single state
at any particular time.

2.4. Subject-Level Modes Capture Spatial
Heterogeneity
Clusters derived by sDMD are able to reliably capture individual
variability of RSNs. To quantify this feature, we compare one
particular resting state network, the default mode network
(DMN), as extracted by three different methods: sDMD, ICA,
and group-ICA with dual regression (gICA). The gICA networks
were computed by the HCP and are available on ConnectomeDB
as part of theHigh-level rfMRI Connectivity Analyses data release.
In short, this approach generates high-quality group ICA modes
using the dataset of 1,200 individuals then uses dual regression to
adapt each groupmode to the heterogenous structure seen within
a particular scan.

Figure 6 compares the DMNs extracted by ICA, sDMD, and
gICA. Specifically, we use spatial-ICA on the entire window
of scan data, as opposed to the sliding-window approach of
sDMD. ICA and sDMD were both run multiple times with
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FIGURE 5 | Results from sDMD using modes extracted from a single scan. (A) The hierarchically clustered correlation matrix between the sDMD modes, and their

overlap with the RSNs of Gordon et al. (2016). (B) Temporal activation of each cluster within the scan. Each row corresponds to a distinct cluster, and columns are

colored in if the corresponding cluster is active within that time window.

varying hyper-parameters, and for each method we choose the
output that most strongly correlates with the canonical DMN
(i.e., the DMN from Gordon et al., 2016). Specifically, ICA was
performed multiple times as the fitting process is inherently
stochastic, and will sometimes fail to extract a quality mode;
thus we performed ICA on each scan ten times, each time
randomly varying the number of modes in the range 8–16,
and kept the mode which most strongly resembled the gICA
DMN. sDMD, on the other hand, is inherently deterministic
and was only performed once to produce a single set of modes;
clustering of these modes was performed over a range of
clustering parameters (the pre-clustering mode mask threshold,
and the cophenetic distance threshold for forming clusters) and
we kept the result most closely resembling the gICA mode.
Importantly, the ICA and sDMDanalyses were computed on data
from single scans, whereas gICA produces personalized DMNs
for each scan based on a population-derived DMN using dual
regression. As shown in the examples from 3 different subjects in
Figure 6A, qualitatively speaking, ICA and sDMD are both able
to extract DMNs that resemble the personalized gICA DMNs.
In particular, note that some of the spatial heterogeneity of
DMNs for individual subjects is recapitulated in the ICA and
sDMD networks.

We show that sDMD reliably outperforms ICA in quantitative
comparisons with gICA on a subject-by-subject basis. Figure 6B
shows that DMNs from both ICA and sDMD correlate
significantly more strongly with gICA results from the same
individual (bottom panel) than with gICA results from the

rest of the population (top panel). Specifically, the distribution
of correlations for ICA has a lower mean and longer tail
of low correlation values than the distribution of correlations
for sDMD. This result indicates that sDMD extracts similar
individualized DMN structures as gICA using data from only a
single subject. Further, the sDMD analysis provides unambiguous
time dynamics of the subject-level modes. The gICA or ICA
modes can be correlated against the scan data to yield a
measure of activation in time, but this is a continuous measure
which requires thresholding and will be significantly nonzero
in the case of any overlapping signal or noise. Our clustering
approach, on the other hand, unambiguously identifies a cluster
as active/inactive within a particular window of time.

2.5. Dynamic Properties of Modes Are
Reproducible
Our proposed gDMD and sDMD analyses produce reproducible
dynamics in addition to reliable spatial structures. This
reproducibility criterion is critical for interpreting dynamic
properties as meaningful reflections of the underlying functional
networks. Useful dynamic properties to compute include how
often each cluster is active, and how often pairs of clusters
are active together (either simultaneously, or with one cluster
transitioning into another). To assess reproducibility, we take
advantage of the HCP resting state dataset, where each of the
120 subjects underwent four (4) different 15 min resting state
scans. Specifically, we repeat the same analysis for each of these
four sets of scans separately and quantify to what extent our
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FIGURE 6 | sDMD is able to capture the individual heterogeneity in spatial DMN structure. (A) Each column shows examples of subject-level DMNs as calculated by:

(i) traditional ICA, (ii) sDMD, and (iii) group-ICA with dual regression (gICA). gICA yields the cleanest modes but requires a high-quality group-level mask, whereas ICA

and sDMD use only data from a single scan. (B) The spatial correlation of ICA/sDMD modes with gICA modes. We compare how strongly each ICA/sDMD mode

correlates with the gICA mode from the same individual, as well as how strongly it correlates with the full population’s gICA modes. Both methods find modes which

correlate more strongly with DMNs from the same individual, indicating that they all capture similar subject-level variations in DMN structure. sDMD outperforms ICA in

this regard, however, and correlates more strongly with the gICA modes. At the same time, sDMD provides more unambiguous temporal information than either

approach.

DMD analysis extracts clusters with similar averaged modes
and dynamic properties. Here we examine dynamic networks
extracted by gDMD, looking at two simple measure of dynamics:
the occupancy of and the transfer matrices between clusters.
Next, we quantify the reproducibility of these dynamics at a
single-subject level by using sDMD on each of the 4 scans for
each subject.

Clusters were paired between the four independent
scans based upon the spatial similarity of their averaged
modes; this matching procedure, as well as visualizations
of all extracted average modes, is detailed in Appendix A
(Supplementary Material). Figure 7A shows the six most highly
correlated clusters. Figure 7B shows the occupancy matrix Oij of
these 6 clusters, where the value in the ith row and jth column
corresponds to how often clusters i and j are simultaneously
active. The diagonal Oii shows how often each cluster i is active,
and the matrix is symmetric. Next, Figure 7C shows a transfer
matrix Tij, which contains the probability that, if cluster i is
active, then cluster j will be active 30 s later. This matrix not
symmetric, and it encodes rich dynamical information that
can be interpreted as a dynamic network model, as shown
schematically in Figure 7D.

We next use these same 6 cluster from the gDMD and repeat
the analysis for individual single scans, analyzing the extent to

which the dynamic properties are unique to each individual.
The occupancy of each cluster was broken up into how many
of its modes are from each individual scan, and Figure 8 shows
the results of the subject-level occupancy correlation between
two different sets of scans of the same individuals. Correlation
coefficients and p-values are calculated for all possible pairs of
the 4 different scans, and Figure 8 reports the median correlation
across all scan comparisons and the corresponding p-value.
For five of the six clusters, occupancy results from different
scans of the same individual are positively correlated, with the
strongest and most significant correlations observed for the most
active clusters. Note that the high p-value of Cluster 4 does
not imply that it is not meaningful, but rather suggest that its
activity may not correlate within an individual across different
scans (as would be the case, for example, if the activity of
that RSN was uniformly probable across the population). Thus,
our approach extracts reproducible, individualized dynamic
properties of resting state networks.

3. DISCUSSION

In this work we present a novel framework based on the dynamic
mode decomposition (DMD) for extracting time-resolved resting
state networks at both the group (gDMD) and single-subject
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FIGURE 7 | Dynamic properties of networks as extracted by gDMD revealed by the occupancy and transitions of clusters. (A) gDMD was performed on four

independent sets of scans of the same population of 120 individuals. The six clusters plotted here are those extracted most reliably from the four datasets. (B) The

occupancy matrix Oij : each entry shows how often cluster i and j are active simultaneously (the diagonal simply shows how often cluster i is active). (C) The transfer

matrix Tij : this shows the probability that if cluster i is active, cluster j will be active 30 s later. (D) The transfer matrix can be interpreted as a network which

characterizes RSN dynamics.

FIGURE 8 | Occupancy of clusters computed by sDMD is correlated across different scans of the same subjects. The six clusters are the same as in those in

Figure 7. Spearman’s rank correlation is computed of occupancies between all pairs of the four scans. The plot at left shows the occupancy of Cluster 1 (O11) for

each subject in two different scans (REST1_LR and REST2_LR). There is a significant correlation; subjects with high activity in one scan are more likely to have high

activity in another. In the table at right, we have correlated all possible pairs of the four scans and report the median correlation (and corresponding p-value). The

correlations have p < 0.05 for all but mode 4.

(sDMD) levels. DMD decomposes high-dimensional time-series
data into a sum of dominant coupled spatiotemporal modes. One
way to think about DMD is that it is similar to a combination
of applying principal component analysis (PCA) in space and
the Fourier transform in time, as it extracts both spatial maps
and their coupled frequency content simultaneously. We use
DMD to extract coherent spatiotemporal modes from short,
sliding windows of data, and underlying patterns are revealed by
unsupervised clustering.We validate this approach on a synthetic
dataset, in which we find that this windowed DMD approach
separates the underlying spatiotemporal modes more cleanly
than windowed ICA, and that it correctly infers the underlying
dynamics down to the time-scale of the sliding window length.

We then demonstrate the application of gDMD and sDMD to rs-
fMRI using data from 120 subjects from the Human Connectome
Project (HCP). The gDMD clusters correspond to the average
modes within a population and closely resemble canonical RSNs.
The sDMD use only data from a single scan, calculating subject-
level RSNs and their temporal dynamics simultaneously. When
sDMD is used to extract subject-level Default Mode Networks
from the data of a single scan, it does so more reliably than ICA,
while also having unambiguous time resolution. Finally, we show
that the extracted temporal dynamics are highly reproducible
within subjects and between trials.

DMD extracts additional information beyond what we have
fully considered within the scope of this work. By construction,
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each DMD has an intrinsic temporal frequency. We have made
note of these frequencies (e.g., as labels within Figure 4) but
have drawn no conclusions from them beyond noting that they
are plausible compared to the known literature (i.e., generally
< 0.1 Hz). However, the preliminary analyses in Appendix
B (Supplementary Material) suggest that networks may have
distinct and reproducible frequency content which could be
characterized by future studies.

Another aspect of the DMD modes which we have not
explored fully here is the phase information in each mode and
how it relates to resting state network organization. The phase
information is particularly interesting given that DMD modes
are allowed to spatially overlap. Future studies should consider
if there is a systematic difference in the phases of overlapping
regions, and whether this is related to the RSN dynamics (e.g., the
network in Figure 7). If the activation of the overlapping region
was phase-lagged behind the rest of the mode, and if this was
followed by the activation of the overlapping RSN, then these
overlaps could potentially be interpretable as mediating regions
the transition between the modes.

Beyond data that has already been pre-processed and mapped
onto “grayordinate” cortical surface space, it may be desirable to
analyze volumetric data directly. In principle, there is no reason
why our DMD approach cannot be applied equally well to voxel
data; nevertheless, the quality of the networks thus extracted
would be unknown and must be thoroughly characterized.
Similarly, care should be taken when applying our approach to
data acquired at different spatial and temporal resolutions. We
have made all of our code openly available in the hope that these
analyses can be performed readily and reproducibly.

This demonstration that DMD is capable of extracting
modes reliably from short windows of data, with similar or
better performance than ICA, lays the groundwork for future
methodological developments. Indeed, a key motivation for the
use of DMD is that a number of powerful extensions to DMD
have been developed that could be readily applied to BOLD fMRI
data. DMD with Control (DMDc [62]) uses a control theoretic
framework, allowing intrinsic dynamics to be estimated from
those driven by external stimuli. DMDc is a natural framework
to analyze task-based fMRI scans, as it distinguishes intrinsically-
driven dynamics (i.e., downstream excitement of modes by
other modes) from externally-driven dynamics (i.e., those driven
by the external task). Rather than the simple correlations
captured by the networks extracted in the current paper, this
future development should allow for the extraction of networks
which capture the causal relationships between RSNs. Another
approach, multi-resolution DMD (mrDMD; Kutz et al., 2016b)
improves the quality of the temporal information extracted
over multiple timescales. These straightforward extensions of
DMD to multi-resolution and control frameworks have no
direct counterpart in ICA, giving DMD a critical advantage
over ICA in future analyses of multi-scale signal extraction
and control. Similarly, Optimized DMD (Askham and Kutz,
2017) is an implementation of the DMD algorithm which
is more computationally expensive than Exact DMD (the
algorithm we use here), but significantly improves the precision
of the extracted frequency information, which would enable

the study of how characteristic frequencies may vary between
networks, as suggested by the preliminary analyses of Appendix
B (Supplementary Material).

It is increasingly clear that RSN dynamics are significantly
altered by neurological disorders, and their impact on the spatial
and temporal structures of RSNs may be diverse and highly
individualized. Rather than searching only for patterns in RSNs
strongly resembling those seen in the general population, it may
be fruitful to explore methods that are agnostic to the average.
We propose that DMD is an approach well suited for data-
driven extraction of individualized structure and dynamics of
networks from single scans, and we believe the development of
the DMD family of methods opens new doors for exploring and
characterizing whole-brain dynamics as captured by fMRI.

4. METHODS

4.1. Human Connectome Project rs-fMRI
Data
We used rs-fMRI data from 120 unrelated individuals in the
Human Connectome Project (HCP) dataset as provided by the
WU-Minn Consortium (Smith et al., 2013; Van Essen et al.,
2013). The HCP acquired four separate resting state scans using a
multiband pulse sequence (multiband factor= 8, FA= 52◦), each
scan having 1,200 time points (14.4 min, TR: 720 ms, TE: 33 ms,
FOV: 208 × 180 mm, Matrix: 104 × 90, with 72 slices; Glasser
et al., 2013. For each scan, an equal number of volumes with
left-right and right-left phase encoding directions were acquired.
To correct the fMRI scans for gradient distortions, the HCP
also acquired two spin echo EPI images with reversed phase
encoding directions, with a unique pair of spin echo EPI images
for each of the resting state acquisitions (Sotiropoulos et al.,
2013). These spin echo EPI images were then used to accurately
spatially normalize the fMRI volumes to the structural scans. For
the remainder of this document, we label and refer to the four
resting-state runs as “REST1_LR,” “REST1_RL,” “REST2_LR,”
and “REST2_RL”.

The resting state scans had already been preprocessed by
the HCP Consortium using the HCP minimal preprocessing
pipeline (Glasser et al., 2013). In addition to gradient distortion
correction, this preprocessing includes fMRI denoising using
FIX (Salimi-Khorshidi et al., 2013), masking, motion correction,
registration and interpolation of the timeseries onto the cortical
surface (the CIFTI “grayordinate” space). Included in this
preprocessing was the application of FreeSurfer to generate mesh
representations of the cortical surface. These FreeSurfer surface
meshes were upsampled to ∼164 k vertices, and subsequently
downsampled to ∼32 k vertices, resulting in an average vertex
spacing of roughly 2 mm at the cortical midthickness level.
The resting state time series were then mapped onto this low-
resolution 32 k vertex mesh. This surface-mapped data consists
of 91,282 “grayordinates” (∼60 k surface points mapping the
cortical surfaces, along with ∼30 k subcortical voxels). In this
manuscript, we restrict our attention to the 2D cortical surface
mesh. Note, however, that DMD could be similarly applied to 3D
voxelized data (see section Discussion).
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All data used in this manuscript are freely available for
download from the HCP. Additionally, scripts for downloading
the correct data, running all analyses described within this paper,
and figure generation are openly available at https://github.com/
kunert/DMD_RSN.

4.2. Synthetic Data Simulations
4.2.1. Synthetic Data Modes
The synthetic data Xij at time tk consists of a sum of the
intermittently pulsing images of cat i and chicken k with noise:

Xij(tk) = ac sin(2π fct+φc) ·Ci+ak sin(2π fkt+φk) ·Kj+N (1)

where Ci ∈ {CA,CB}/Ki ∈ {KA,KB} are the 75 × 50 pixel
cat/chicken images. Amplitudes ac and ak are 1 or 0 depending
on the system state. Each mode has a frequency fc, fk and phase
φc,φk. These results use fc = 0.045 and fk = 0.071 cycles per
timestep (if δt ≈ 0.73 s, as for rs-fMRI data, these are about 0.06
and 0.1 Hz, within the appropriate range for RSNs) and φc = 1.6
rad and φk = 0.7 rad. N is a 75 × 50 matrix of uniform random
noise with amplitude 5.

Each simulation consists of 1,200 timesteps, chosen to match
the length of an HCP scan. The state of the system is governed
by an underlying Markov network, with the possible states being
(ac, ak) ∈ {(1, 0), (0, 1), (1, 1)} (i.e., just the cat, just the chicken,
or both). The transition probabilities at each timestep are shown
in Figure 3B.

Windowed ICA, windowed DMD, and sDMDwere calculated
identically to how they were calculated for the rs-fMRI data,
which is discussed in detail throughout the rest of the Methods.
The only computation unique to the synthetic dataset took place
in the mode reconstruction procedure, which yielded the results
in Figure 2C (ii) and (iii). In principle, we could have applied
the mode clustering procedure of gDMD to both methods,
but this would yield a potentially ambiguous comparison for
two reasons: first, it would not clarify whether the DMD
modes were intrinsically cleaner, or if they were simply better
suited to this particular clustering procedure; second, it would
require an intensive parameter optimization to ensure that both
methods were returning their optimal results. We instead use the
following procedure:

1. Calculate the DMD modes (or ICA modes) from every
window: M = {M1,M2, ...}. To allow for the averaging of
modes, take their absolute value.

2. Correlate every mode in M against a ground-truth mode C
(i.e., C is one of the cat/chicken modes).

3. Re-order M in descending order of the magnitude of the
correlation with C (i.e., M1 is now the mode which most
strongly resembles C,M2 is the second strongest, etc.)

4. Average together the first kmodes, choosing k to maximize the
average mode’s correlation with C.

Clearly, this is a supervised method which requires correlation
against a reference mode, rather than the unsupervised approach
we take when clustering the rs-fMRI results. However, it
provides an upper bound on the quality of the averaged mode
which clustering could return. It is thus representative of the

best possible outcome of using the gDMD approach using
either ICA or DMD to calculate the modes in each window,
thereby establishing that DMD does a better job at extracting
spatiotemporally decoupled modes from the short windows of
noisy data considered here.

4.2.2. Synthetic Data Dynamics
To assess whether the inferred dynamics are reasonable, we
compared them to the known transition probabilities within
the underlying Markov network. The reconstruction of the
dynamic traces used the same analysis pipeline which we
developed for analyzing single-subject rs-fMRI data, as detailed
in sections 4.3, 4.5, and 4.7. In brief, we do the following:

1. Calculate the DMD modes within all sliding windows for a
single subject.

2. Hierarchically cluster the modes, setting the clustering
threshold so as to form two large clusters. In practice, these
are seen to be the Cat and Chicken modes corresponding
to that particular run. Modes within each clusters are
correspondingly labeled as cat modes or chicken modes.

3. For each timepoint, tally how many of its corresponding
windows contain a cat and/or chicken mode. This generates
the dynamic traces as seen in Figure 3.

Note that since we are using overlapping sliding windows, each
timepoint belongs within multiple windows; in Figure 3, the cat
and/or chicken modes are considered to be active at a given
timepoint if any of the corresponding windows contain a cat
and/or chicken mode, which has the effect of smoothing the
dynamics over the time-scale of the sliding window.

The reconstruction of the dynamics thus far is identical to our
method for the fMRI data, but diverges on two key points when
comparing the dynamics against the ground truth: first, the fMRI
transition matrix (as in Figure 7) compares the state at a given
time t against the state a full 30 s (or 40 timesteps) later. The
synthetic data analysis, however, compares the state at a given
time t to the state only one timestep later. This is necessary to
compare against the underlying Markov probabilities. Second,
the synthetic dataset is Markovian, with precisely one active state
at each timestep, where “both” states being active is an explicit
state of the system; the network in Figure 7D, however, does not
have this constraint, and should not be interpreted as a Markov
network.

4.3. Dynamic Mode Decomposition
This section describes the specific DMD algorithm implemented
in this manuscript (Brunton et al., 2016; Kutz et al., 2016a). Each
scan is broken into windows of data, and data from each window
is collected into a data matrix X, where each row represents one
of the n grayordinates and each column Ex is one of the m time
snapshots in that particular window:

X =





| | |
Ex1 Ex2 . . . Exm−1

| | |



 . (2)

Here Exk is a vector in grayordinates space giving the BOLD signal
at time index k. Next, we also define the time-shifted data matrix
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X′, which is defined similarly but with each column advanced
forward by a single timepoint:

X′ =





| | |
Ex2 Ex3 . . . Exm
| | |



 . (3)

The goal of DMD is to describe the matrix A that best maps Exk
onto Exk+1, namely by solving for the eigenvalues and eigenvectors
of A. In other words, we treat dynamics of the system as
approximately linear and seek the A that best solves

X′ = AX. (4)

However, this A matrix is a n × n square matrix; for the HCP
data, n = 91, 282 grayordinants, so A has approximately 1010

elements — this is a tremendously large number of unknowns,
and they are poorly constrained by the limited data in X and
X′. Further, we hypothesize that many of these brain areas have
strong correlations, so their dynamics are relatively low rank and
may be explained by far fewer modes.

The DMD algorithm takes advantage of the singular value
spectrum (SVD) of the data matrix X to obtain the dominant
eigendecomposition of A without actually computing A. We
first take the singular value decomposition (SVD) of the data
matrix X = U6V∗, which decomposes the A into the product
of unitary matrices U,V and diagonal matrix 6. Because the
singular values and singular vectors are ordered by decreasing
energy, this decomposition can be used truncated by taking the
first r columns of U to form a n× r matrix Ur. We may similarly
form a r × r matrix 6r and am× r matrix Vr.

This truncation gives the optimal rank-r reconstruction of the
data matrix, X ≈ Ur6rV

∗
r . The choice of the number of SVD

modes r is equal to the resultant number of DMDmodes r and is
used as a parameter throughout this manuscript.

Taking the SVD allows us to then calculate the pseudoinverse
X† = Vr6

−1
r U∗

r and simply solve for A:

A ≈ X′X† ≈ X′Vr6
−1
r U∗

r . (5)

Given that the number of grayordinates is large, we do not
consider the n× n Amatrix directly, but instead project into the
reduced-dimensional Ur basis:

Ã ≡ U∗
rAUr = U∗

rX
′V6−1. (6)

Additionally, we scale each mode according to how strongly it
is present in the original data, and each modes is scaled by the
singular values 6r as in Brunton et al. (2016):

Â ≡ 6−1/2Ã61/2. (7)

We then compute the eigendecomposition of this scaled, reduced
dimensional Âmatrix:

ÂŴ = Ŵ3, (8)

where3 is the diagonal matrix of eigenvalues λj, and the columns

of Ŵ are the eigenvectors of Â. These eigenvectors can be used to
compute the dynamic modes:

8 ≡ X′V6−1/2Ŵ, (9)

where the j-th column of 8 is the dynamic mode Eφj. From
the dynamic modes and corresponding eigenvalues, we can
approximate the dynamics of the system as:

Exk ≈

r
∑

j=1

bjλ
k
j
Eφj, (10)

where the weights bj can be fit as initial conditions for at k = 0.
We can also write this in terms of a continuous time t by writing
the dynamics in terms of a complex exponential:

Ex(t) ≈

r
∑

j=1

bj exp
(

(γj + i2π fj) · t
)

Eφj. (11)

In the exponent, γj is the real-valued growth/decay constant,
and fj is the real-valued oscillation frequency of the mode in
cycles per second (hertz). These are calculated from the real and
imaginary components of the corresponding DMD eigenvalues:

γj =
real(ln(λj))

1t
, fj =

imag(ln(λj))

2π1t
, (12)

where1t is time betweenmeasurements, in seconds. This change
of units does not carry any additional information over the
complex eigenvalue λj, but γj and fj are readily interpretable as
standard growth/decay constants and oscillation frequencies.

Like the eigenvalues, the dynamic modes Eφj can be complex

valued. In other words, each element of Eφj has both a magnitude
and a phase. In this work, we consider only the magnitude of the
dynamic mode |Eφj|; generally, when we refer to the “dynamic
mode,” or when we do calculations such as spatial correlations,
etc., we are referring to and using |φj|. However, the complex-
valued φj also contains the relative phase between regions, which
is of potential interest for future analyses. For real-valued data
Exk, oscillatory modes appear as conjugate pairs {Eφj, Eφj′} with the
same spatial magnitudes |φj| = |φj′ |; thus the number of unique
spatial patterns extracted from a data matrix will be ≤ r.

4.4. Independent Component Analysis
fMRI data is often processed using Independent Component
Analysis (ICA) (Beckmann et al., 2005). Just as above, if we collect
all data from a scan into a data matrix X, then we can formulate
ICA as an attempt to solve the following:

XT = AST. (13)

The goal of spatial ICA is to decompose the data into non-
orthogonal, statistically independent source signals, which are
the columns of the n × r matrix S. The m × r mixing matrix A

gives the mixture of these signals, at each timepoint, which best
approximates the original data.
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However, because individuals subjects have their own
unique time courses, comparing ICA components estimated
at the subject-level is difficult, and consequentially, how
to make inference about group-level components is not
immediately clear. As an alternative, fMRI analyses often employ
multi-subject ICA methods to estimate (1) population-based
components, or (2) single-subject components informed at the
group level. A variety of multi-subject methods have been
developed, including temporal or spatial concatenation group
ICA approaches (Calhoun et al., 2001; Lukic et al., 2001), higher-
order tensor decomposition methods (Beckmann and Smith,
2005), and dual regression-based approaches (Beckmann et al.,
2009; Filippini et al., 2009).

In this analysis, we use the FastICA algorithm as implemented
in scikit-learn 0.18 (Pedregosa et al., 2011). FastICA attempts
to maximize the statistical independence of the signals by
maximizing the non-Gaussianity of the projected data, as detailed
in Hyvärinen and Oja (2000). In order to directly compare DMD
to ICA, we compare both algorithms at two spatial component
levels: using components informed at the single-subject level
and using components informed at the group level. For
the single-subject-level comparison, we compute single-subject
ICA components using sklearn’s FastICA. For the group-level
comparison, we use the group ICA and dual regression results
generated previously by the HCP using Melodic’s Incremental
Group-PCA algorithm (MIGP) (Smith et al., 2014). MIGP is
an iterative approach that incrementally incorporates time-series
data for single subjects and updates a current running estimate of
the set of spatial eigenvectors that best describes the time series
data for the current set of incorporated subjects. MIGP generates
a very close approximation to group-ICA components generated
by classic temporal concatenation group-ICA approaches, but
without the large computer memory requirements. The HCP
then used dual regression to regress each individual subject’s
time-courses on the MIGP-generated group-ICA components.

In practice, DMD should prove faster than ICA for short
windows of high-dimensional data. Consider a data matrix X
with m variables and n timepoints, where we have m ≫ n
(for example, the rs-fMRI data has m = 59, 412 grayordinates
and windows of length n = 32). We compute r DMD modes
in each window, where m ≫ r (our rs-fMRI analysis uses
r = 8). Exact DMD consists of an SVD [with time-complexity
O(m2n)], two matrix multiplications [with O(mnr + mr2)], and
an eigendecomposition [with O(r3)]. Since m ≫ n, r, the time-
complexity is dominated by the termO(m2n).

By contrast, FastICA has a time-complexity ofO(m(m+1)nx)
Laparra et al. (2011), where x is the number of iterations required
for convergence. In our case, this is approximately O(m2nx). In
other words, the time-complexity of DMD scales similarly to a
single iteration of FastICA, which can lead to considerable speed-
up as FastICA can take many iterations to converge (by default,
the scikit-learn implementation of FastICA will allow up
to 200 iterations).

4.5. Sliding Window Mode Calculations
The rs-fMRI scans analyzed each consist of 1,200 individual
timesteps, which we break up into sliding windows. We use a
simple square window (as opposed to a scheme which weights

timepoints depending upon their position in the window), such
that our calculations are performed on a submatrix of the full
data matrix.

There are three parameters to consider when computing
DMD and/or ICA modes within a sliding window: T, the length
of each window; dT, the number of timesteps by which to slide
the window; and r, the number of modes to compute within
each window. We observed that our results are relatively robust
to these parameters. Within the results shown in the main
manuscript, we have chosen T = 32, dT = 4, and r = 8.
In seconds, this corresponds to roughly 22.4 s windows which
are translated in increments of about 2.8 s. As discussed in
section 4.3, oscillatory DMD modes appear in conjugate pairs,
and thus ≤ r = 8 modes will be extracted within each
window. For example, the gDMD set used in Figure 4 (the modes
calculated from the REST1_LR scans of 120 subjects) consists of
160,756 total modes.

4.6. Mode Visualization
DMD modes are computed on the full 59,412-dimensional
grayordinate space. However, this space is unnecessarily large
for visualization purposes, for which we primarily want to
visualize the macroscopic structure of individual modes. It is
also disadvantageous for the clustering of modes; we want to
cluster modes based upon their overall structural similarity,
and applying some method of spatial smoothing is helpful in
minimizing spurious, noise-driven correlations. For visualization
and clustering purposes, we therefore bin the modes, computing
the average magnitude of grayordinates within a particular patch
of space.

Each grayordinate can be mapped onto a 3D coordinate in
space. From this information, we first classify all grayordinates
as on the left/right cortex and on the lateral/medial side. Each of
these groups of grayordinates are then projected onto the sagittal
plane and divided into 40 bins in each direction. This choice
of bin granularity is arbitrary but was chosen heuristically to
yield good visualization and clustering performance. Bins which
contain no grayordinates are discarded, resulting in a total of
3,856 bins.

Given a 59,412-dimensional DMD mode φj, we may average
over the grayordinates within each bin to yield a 3,856-
dimensional binned mode mj. All modes visualized within this
paper have been binned in this fashion. Furthermore, modes have
been binned before being clustered or correlated against each
other, which was seen to substantially improve the performance
of clustering.

4.7. Hierarchical Clustering
Having performed sliding window DMDmode extraction on the
full set of 120 individuals, we wish to cluster modes based upon
their spatial similarity on both the single-subject and whole-
group level. In both cases we use the same hierarchical clustering
pipeline, described as follows, applied to either the set of modes
extracted from a single scan (the sDMD case) or from the full set
of scans (the gDMD case).

A few pre-processing steps were found to be helpful in
generating clean, robust clusters. First, modes are spatially binned
as described in section 4.6. This reduces the dimensionality
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of modes for clustering purposes, averaging over noise while
preserving larger-scale spatial structure. We then wish to filter
out modes which lack large-scale continuous spatial structure. A
quick heuristic for the spatial continuity of a mode is calculated
and thresholded upon as follows: for each binnedmode, we count
the number of bins with a z-score≥ 2 which also have a neighbor
with z-score ≥ 2. Thresholding on c keeps only those modes
which possess a certain level of spatial continuity (e.g., in Figure 4
we cluster only modes with c ≥ 25).

To group this filtered set of modes into a small set
of interpretable clusters, we use hierarchical clustering as
implemented in SciPy 1.0.0 (Jones et al., 2001). There are
many metrics of spatial similarity which can be used in such
a procedure. Qualitatively, we found the best performance (as
indicated by the formation of tight, discrete clusters which group
modes with similar large-scale spatial structure) by thresholding
modes at a defined z-score, zt , to generate spatial masks [in
Figure 4 we use zt = 2.5; the clustering procedure is fairly
robust to the choice of zt , as demonstrated in Appendix D
(Supplementary Material)]. These masks were then clustered
based upon the average spatial correlation within a group
of modes.

We then form flat clusters that have a cophenetic distance of
no greater than a defined threshold t (i.e., using the “distance”
threshold option of the scipy.cluster.hierarchy
function fclust). Figure 4 shows the clusters which are
formed using t = 0.955, whereas Figure 5 shows finer-grained
subclusters formed using t = 0.950. The choice of t will
affect the size and granularity of the cluster assignment, and
can be varied to obtain smaller subclusters of any particular
cluster [the robustness of clustering to the choice of t is also
explored in Appendix D (Supplementary Material)]. Note
that in Figures 4, 5 we have only visualized clusters containing
a minimum number of modes (≥ 400 in the gDMD case of
Figure 4, and≥ 5 for the sDMD case of Figure 5).

We compare these modes against a set of canonical RSNs,
using the parcellation of Gordon et al. (2016). In Figure 5B

we show the correlation of each mode against each of these
canonical masks, where the ordering of the modes has been
defined by the hierarchical clustering. The clustering succeeds
at grouping modes which resemble similar RSNs, and many
of the clusters appear to correspond to distinct networks: for
instance, the bottom-rightmost cluster (cluster number 13)
strongly corresponds to the “SMmouth” network. When the
average of the modes within each cluster is plotted in Figure 4D,
it indeed has the expected spatial structure.

4.8. Subject-Level DMNs
The subject-level Default Mode Networks (DMNs) shown in
Figure 6 are found by calculating the sDMD clusters for modes
from a particular subject, and taking the average of the cluster
which most resembles the DMN. The optimal choice of zt and t
will vary from scan to scan; we therefore perform the clustering
procedure several times for values of zt ∈ (1.5, 3.0) and t ∈
(0.65, 0.98), saving the output cluster average which has the
highest correlation with the gICA result. Though the choices of zt
and t afford relatively little control over the final spatial structure
of the result, we must be mindful of the fact that we are selecting

the best-performing result out of several different runs. For a
fair comparison, we afford ICA the same opportunity: allowing
the number of modes to vary in the range r ∈ (8, 10, 12, 16),
calculating ICA multiple times, and saving only the result which
correlates most highly with the gICA result. This was seen to be
necessary, as the output of the ICA algorithm is not deterministic
and will sometimes yield a low-quality result (often yielding
correlations of∼ 0.1, as in the long tail of Figure 6B).

Each of these approaches were compared against the group-
ICA and dual regression approach, the results of which are
calculated and provided for download by the HCP (Filippini
et al., 2009). This approach first calculates group-ICA, which
is ICA performed on the temporally-concatenated full dataset
of scans from 1,200 individuals. This calculates high-quality,
population-level averaged gICA modes. The gICA mode
corresponding to the DMN is then regressed against the scans
for a single individual, to calculate an approximate timecourse
of DMN activation within a particular individual’s scans. There
is then a second regression step of the timecourses of all spatial
coordinates against the averaged-DMN timecourse. This yields a
spatial map of coordinates which have similar time dynamics to
the population-level DMNmode, which in effect yields a subject-
level spatial map of the DMN. This results in clean, high-quality
maps as seen in Figure 6, but has the drawback of requiring a
reference mask calculated from the entire set of population data.

Figure 6B plots how strongly each subject-level ICA/sDMD
DMN correlates with both (i) the full set of gICA modes, and
(ii) the gICA mode calculated for the same subject. These are
calculated by thresholding the modes at a z-value of z = 2
and then calculating the correlation coefficients between the
thresholded masks.

4.9. Characterizing Cluster Dynamics
Assigning time dynamics to individual clusters (as in Figure 5B)
follows trivially from the windowing process: each cluster
consists of a collection of modes, each calculated in a
particular window corresponding to a particular time. The
time dynamics of a cluster are simply given by the times
of the windows in which its constituent modes were found.
Notably, this gives a binary measure of mode activation
(a cluster either contains a mode within a particular time
window or it doesn’t). This is distinct from other methods
of assessing the temporal dynamics of modes, such as the
common technique of correlating a spatial mode with each
frame of a scan; such techniques yield a continuous measure
of mode activation, which does not fully disambiguate the
activity of a mode from that of overlapping spatial patterns
or random fluctuations. This disambiguation is accomplished
in our approach through the assignment of modes into
discrete clusters.

The gDMD pipeline was performed independently on the
four sets of scans for all 120 individuals (the sets “REST1_LR,”
“REST1_RL,” “REST2_LR,” and “REST2_RL”). This resulted in
four sets of gDMD modes, which were correlated against each
other to find the modes which were most similar across all
sets. We chose the top six most consistent modes, as described
in Appendix A (Supplementary Material), with the resulting
modes visualized in Figure 7A. Each set of modes has associated
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time dynamics; as examples of how to characterize these
dynamics we calculate both the occupancymatrixOij and transfer
matrix Tij. The occupancy matrix Oij indicates the number of
windows in which both modes i and j are active. The diagonal
elements Oii count the total number of times mode i was active
(with or without the presence of other modes). The transfer
matrix Tij shows the probability that if mode i is present, then
mode j is present 30 s later.

We assess the reproducibility of our approach by comparing
the occupancies of each cluster by each individual between
different scans. This rests upon the assumption that if an
individual shows increased activity in a particular cluster in
one scan, they are then more likely to be more active in
the same cluster within another scan. Note that we do not
expect a perfect correlation near 1.0, but we do anticipate a
significant one; for example, if an individual has a particularly
active DMN in one scan, we may expect that same individual
is more likely to have an active DMN in another scan, but
not that the DMN should be active for the exact same amount
of time. An example of such a comparison is plotted in
Figure 8, where each point represents a different individual,
and we do indeed observe a positive correlation. We correlated
all combinations of the four scans against each other for
all different modes, and report the median correlation and
occupancy within the table of Figure 8. A significant correlation
(in the sense that p < 0.05) is clear for all modes except for
mode 4, indicating that our characterization of the dynamics
indeed encodes underlying dynamic properties specific to
different individuals.
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