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Discrete state-space models are used in ecology to describe the dynamics of wild animal populations,
with parameters, such as the probability of survival, being of ecological interest. For a particular
parametrization of a model it is not always clear which parameters can be estimated. This inability to
estimate all parameters is known as parameter redundancy or a model is described as nonidentifiable.
In this paper we develop methods that can be used to detect parameter redundancy in discrete state-
space models. An exhaustive summary is a combination of parameters that fully specify a model. To
use general methods for detecting parameter redundancy a suitable exhaustive summary is required.
This paper proposes two methods for the derivation of an exhaustive summary for discrete state-space
models using discrete analogues of methods for continuous state-space models. We also demonstrate
that combining multiple data sets, through the use of an integrated population model, may result in a
model in which all parameters are estimable, even though models fitted to the separate data sets may
be parameter redundant.

Keywords: Capture-recapture; Identifiability; Joint likelihood; Mark-recovery models;
Population dynamics.

� Additional supporting information including source code to reproduce the results
may be found in the online version of this article at the publisher’s web-site

1 Introduction

Sometimes it is not possible to estimate all parameters in a particular parametrization of a model. An
obvious example of parameter redundancy occurs when two parameters are confounded, so that they
only ever appear as a product. In this case it would only be possible to estimate the product of these
two parameters, rather than estimate the parameters individually. Such a model, with a particular
parametrization, is termed parameter redundant or the parameters are described as nonidentifiable.
While an example where two parameters only ever appear as a product is obviously parameter redun-
dant, in more complex models it will not necessarily be clear whether a particular parametrization of
a model is parameter redundant. It is essential to know whether or not a specific parametrization of
a model is parameter redundant. This is because a parameter redundant parametrization of a model
will have a flat ridge in the likelihood surface (Catchpole and Morgan, 1997), so will not have a unique
maximum-likelihood estimate. Also the standard errors will not exist for all parameters, as the Fisher
Information matrix will be singular (Rothenberg, 1971).

Discrete state-space models are often used to model time series of counts. In ecology, however, they
have also been used as a general framework for large classes of models such as capture-recapture
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models and occupancy models (see McCrea and Morgan, 2014, chapter 11). Discrete state-space
models are a special case of a wider class of models known as hidden process models (Newman et al.,
2006). A discrete state-space model comprises two stochastic processes: an underlying state equation
and an observation equation. The state equation represents the underlying dynamics of how the value
of an unobservable state evolves over time. As we cannot necessarily observe all states, the observation
equation dictates which components of the system can be measured. The state equation is a stochastic
version of widely used matrix projection models (Caswell, 2000). Buckland et al. (2004) describe how
the first-order Markovian transition matrix that describes the dynamics of wild animal populations
can be constructed through the partitioning of the individual processes, such as reproduction, survival,
and movement. Much work has been carried out recently on state-space models; see Schaub and Abadi
(2011) for a review. At present no methods exist for investigating the parameter redundancy of discrete
state-space models.

General methods have been developed for detecting parameter redundancy (see, e.g., Cole et al., 2010;
Choquet and Cole, 2012). These methods involve forming a derivative matrix by differentiating a vector
of parameter combinations with respect to the parameters of the model, and then calculating the rank
of the resulting matrix. The vector of parameter combinations needs to provide a unique representation
of the model. Although such vectors exist for continuous state-space models (see, e.g., Chis et al., 2011),
these are not applicable for discrete state-space models because the model forms are different.

State-space models may be parameter redundant because not all states are observed or may be
parameter redundant due to the structure of the underlying state equation. However there may still
be interest in estimating all the parameters. A possible solution to parameter redundancy could be to
combine two or more different types of data, and then describe them with an integrated population
model. While the component models may be parameter redundant the combined model may not
be parameter redundant (see, e.g., Besbeas et al., 2002). Integrated population models are generally
constructed as a product of component likelihoods resulting in a more complex model.

In this paper we demonstrate how to investigate parameter redundancy in discrete state-space models
and integrated population models. In Section 1.1 we introduce the theory of parameter redundancy
and methods for detecting parameter redundancy. In Section 1.2 we introduce state-space models.
Sections 2 and 3 extend existing parameter redundancy methods to state-space models and integrated
population models, respectively. Throughout we use simple examples to illustrate the methods; we
provide more complex examples in Section 4 and the Supporting Information. Computer code for all
examples can also be found in the Supporting Information. The paper concludes with a discussion in
Section 5.

1.1 Detecting parameter redundancy

A model, M(θ), with parameters given by the vector θ, of length p, is defined as parameter redundant
if it can be rewritten in terms of a smaller vector of parameters β, of length q with q < p and β = f (θ),
for some function f (Catchpole and Morgan, 1997). A model, M(θ), is said to be nonidentifiable if
two different values of the parameters, θ1 and θ2, result in an identical expression of the model, that
is, M(θ1) = M(θ2), but θ1 �= θ2 (see, e.g., Cole et al., 2010). A parameter redundant model will be
nonidentifiable (Catchpole and Morgan, 1997).

Models are described by exhaustive summaries, which are particular parameter combinations that
fully specify models. A vector of parameters, κ(θ), is an exhaustive summary if knowledge of κ(θ)

uniquely determines the model (Cole et al., 2010). That is, the vector κ(θ) is an exhaustive summary
for model M(θ), if κ(θ1) = κ(θ2) ⇔ M(θ1) = M(θ2) for all θ1 and θ2 in a given parameter space. An
exhaustive summary can be used to infer results about parameter redundancy. For example, if the
log-likelihood can be written as l = ∑N

i=1 li, an exhaustive summary is κ = [l1, . . . , lN ]. However for
any example there will be many different options for exhaustive summaries, which we demonstrate in
Example 1a.
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Table 1 Example ring-recovery data on lapwings.

Year of ringing Number marked Year of recovery

1963 1964 1965

1963 1147 13 4 1
1964 1285 16 4
1965 1106 11

Example 1a

Mark-recovery data, where animals are marked and dead individuals are subsequently reported, are
one type of data that can be combined with census data, in integrated population models (Besbeas
et al., 2002). Suppose that Fi newborn animals are marked in year i and then Ni j of those animals are
recovered dead in year j. For this example we assume that all Ni j (for j ≥ i) and Fi are nonzero. Cole
et al. (2012) considers relaxing these assumptions.

An example of mark-recovery data arises from ring-recovery experiments on birds, where animals
are ringed and some of those ringed are recovered dead later (see, e.g., Freeman and Morgan, 1990,
1992). An example of ring-recovery data is given in Table 1, which is data collected on Lapwing,
Vanellus vanellus, where birds are ringed in their first year of life. Further years of data are given in
Catchpole et al. (1999).

We assume that the probability an animal survives a year is φ1 in the first year of life and φa in
subsequent years. As animals may die without the marks being recovered, the probability of recovery
also needs to be considered, which is λ1 in the first year of life and λa in subsequent years. Each year of
marking corresponds to a multinomial distribution with probability of marking in year i and recovery
in year j defined by

Pi j =
{

(1 − φ1)λ1 if i = j
φ1φ

j−i−1
a (1 − φa)λa otherwise.

An example where there is interest in this particular model is provided in Robinson (2010). The
log-likelihood for 3 years of marking and 3 years of recovery is

l =
3∑

i=1

⎧⎨
⎩

3∑
j=i

Ni j log(Pi j ) +
⎛
⎝Fi −

3∑
j=i

Ni j

⎞
⎠ log

⎛
⎝1 −

3∑
j=i

Pi j

⎞
⎠

⎫⎬
⎭ ,

where 1 − ∑3
j=i Pi j is the probability of being marked but not recovered. Equation (1) shows three

exhaustive summaries for this model.

κ1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N11 log{(1 − φ1)λ1}
N12 log{φ1(1 − φa)λa}

N13 log{φ1φa(1 − φa)λa}(
F1 − ∑3

1 N1 j

)
log

(
1 − ∑3

1 P1 j

)
N22 log{(1 − φ1)λ1}

N23 log{φ1(1 − φa)λa}(
F2 − ∑3

2 N2 j

)
log

(
1 − ∑3

2 P2 j

)
N33 log{(1 − φ1)λ1}

(F3 − N33) log(1 − P3 j )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, κ2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1 − φ1)λ1
φ1(1 − φa)λa

φ1φa(1 − φa)λa
1 − ∑3

1 P1 j
(1 − φ1)λ1

φ1(1 − φa)λa
1 − ∑3

2 P2 j
(1 − φ1)λ1

1 − P3 j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, κ3 =
⎡
⎣ (1 − φ1)λ1

φ1(1 − φa)λa
φ1φa(1 − φa)λa

⎤
⎦ . (1)
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The first exhaustive summary, κ1, is formed from the log-likelihood terms. Given that none of the
Ni j are equal to zero, multiplying by a constant is a one-to-one transformation, as is applying the
exponential function, which results in exhaustive summary κ2. Catchpole and Morgan (1997) show
that the more complex terms corresponding to being marked but not recovered are not needed because
the components are given by other exhaustive summary terms. It is also not necessary to include
repeated terms in an exhaustive summary, which results in exhaustive summary κ3. There are obviously
many other one-to-one transformations we could apply to create alternative exhaustive summaries.

Any exhaustive summary of the model will contain the same information on the parameter redun-
dancy of that model. In this example let (1 − φ1)λ1 = β1 and φ1λa = β2. We can rewrite all three
exhaustive summaries for this model in terms of β1, β2 and φa, giving Eq. (2) .

κ1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N11 log(β1)

N12 log{β2(1 − φa)}
N13 log{β2φa(1 − φa)}(

F1 − ∑3
1 N1 j

)
log

(
1 − ∑3

1 P1 j

)
N22 log(β1)

N23 log{β2(1 − φa)}(
F2 − ∑3

2 N2 j

)
log

(
1 − ∑3

2 P2 j

)
N33 log(β1)

(F3 − N33) log(1 − P3 j )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, κ2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1
β2(1 − φa)

β2φ2(1 − φa)

1 − ∑3
1 P1 j

β1
β2(1 − φa)

1 − ∑3
2 P2 j

β1
1 − P3 j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, κ3 =
⎡
⎣ β1

β2(1 − φa)

β2φa(1 − φa)

⎤
⎦ . (2)

As we can reparameterize the model in terms of a smaller number of parameters, the original model
is parameter redundant. Parameter redundancy in mark-recovery models is discussed in Cole et al.
(2012). �

It is not always obvious whether or not a model can be reparameterized in terms of fewer param-
eters. In these cases there are several methods for investigating whether or not a model is parameter
redundant, which include numerical methods (e.g., Viallefont et al., 1998), symbolic differentiation
methods (e.g., Cole et al., 2010), and hybrids of numeric and symbolic methods (Choquet and Cole,
2012).

For the symbolic method a derivative matrix is formed by differentiating an exhaustive summary,
κ(θ), with respect to the parameters, θ. The number of estimable parameters in a model is then equal to
the rank, r, of the derivative matrix, D = ∂κ/∂θ. If the rank is less than the number of parameters the
model is parameter redundant, otherwise the model is termed full rank, and it is, in theory, possible to
estimate all the parameters (Catchpole and Morgan, 1997; Cole et al., 2010). The symbolic algebra of
this method can be executed in a symbolic algebra package such as Maple (see, e.g., Catchpole et al.,
2002). We provide Maple code for all the examples of this paper in the Supporting Information. This
method is demonstrated in the continuation of Example 1a.

Example 1a continued

Using the exhaustive summary κ3 of Eq. (1), which has parameters θ = [φ1, φa, λ1, λa], we form the
derivative matrix,

D =
[
∂κ3 j

∂θi

]
=

⎡
⎢⎣

−λ1 (1 − φa)λa φa(1 − φa)λa
0 −φ1λa φ1λa − 2φ1φaλa

1 − φ1 0 0
0 φ1(1 − φa) φ1φa(1 − φa)

⎤
⎥⎦ . (3)

The rank of this derivative matrix is 3, but there are four parameters so this parametrization of the
model is parameter redundant. �

If a particular parametrization of a model is parameter redundant then it is said to have deficiency
d = p − r. By examining the null space of D′, where D′ is the transpose of D, it is possible to find
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parameters that can be estimated. This involves solving α′D = 0. There are d solutions to α′D = 0,
labeled α j , for j = 1, . . . , d , with individual entries αi j . If αi j = 0 for all j then it will still be possible
to estimate θi even though not all parameters can be estimated. In order to find other parameter com-
binations that can be estimated, we solve the system of linear first-order partial differential equations
(PDEs)

∑p
i=1 αi j∂ f /∂θi = 0, j = 1, . . . , d for arbitrary function f (Catchpole et al., 1998; Chappell

and Gunn, 1998; Evans and Chappell, 2000; Cole et al., 2010).

Example 1a continued

The null space of the derivative matrix given by Eq. (3) is

α =
[
−φ1

λa
, 0,− λ1φa

(1 − φ1)λa
, 1

]
.

The zero in the second position indicates that only the parameter φa can be estimated in the original
parametrization. Solving the PDEs,

− ∂ f
∂φ1

φ1

λa
− ∂ f

∂λ1

λ1φa

(1 − φ1)λa
+ ∂ f

∂λa
= 0,

gives estimable parameter combinations φ1λa and (1 − φ1)λ1. �
We show in the Maple code for Example 1a that all the exhaustive summaries of Eq. (2) result

in derivative matrices that all have rank 3 and the same null space, resulting in identical estimable
parameter combinations. This is true of all exhaustive summaries for a model. Although all three
exhaustive summaries give the same results, in this case we would recommend using the third exhaustive
summary, κ3, as it results in the simplest derivative matrix. Generally the best exhaustive summary to
use is one that results in the simplest derivative matrix; this is often also the exhaustive summary with
the smallest dimension.

There are alternative methods of investigating parameter redundancy, which are summarized in
Gimenez et al. (2004). However numeric methods, such as examining the rank of the Hessian matrix
(Viallefont et al., 1998), can lead to incorrect results (see, e.g., Cole and Morgan, 2010a). While
the symbolic method is preferred, because it gives correct results, in more complex problems Maple
may run out of memory trying to calculate the rank of the derivative matrix. Examples of models
where symbolic computations would be too difficult include Hunter and Caswell (2009), Jiang et al.
(2007), and Forcina (2008). In these three papers numerical methods are used to detect parameter
redundancy. However, it is still possible to apply the symbolic approach to these more complicated
models by using a framework provided in Cole et al. (2010). This involves creating new structurally
simpler exhaustive summaries by reparameterizing the model in such a way that the resulting derivative
matrix is structurally simpler. The Reparametrization theorem states that if s is a reparametrization
of a model parameterized in terms of θ such that rank(∂s/∂θ) = ns, where ns is the length of s,
then rank(D) = rank{∂κ(θ)/∂θ} = rank{∂κ(s)/∂s}. The s can be chosen so that the derivative matrix,
∂κ(s)/∂s, is structurally simpler than the derivative for the original parametrization, ∂κ(θ)/∂θ, and
therefore the rank can be calculated. The vector s is either a new exhaustive summary, or a new
exhaustive summary can be created from s. This extended symbolic method is used in Cole (2012)
for models of Hunter and Caswell (2009) and in Cole and Morgan (2010a) for the models of Jiang
et al. (2007). In Cole and Morgan (2010b) further theory is developed specifically for models with
covariates, with one illustrative example covering the models of Forcina (2008).

An alternative method is the hybrid symbolic-numeric method (Choquet and Cole, 2012). In this
method D is calculated symbolically but the rank is evaluated numerically at five randomly chosen
points in the parameter space. In a parameter redundant model it is then possible to determine if any
of the original parameters can still be estimated, but it is not possible to find other estimable parameter
combinations.

C© 2016 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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Example 1a continued

It is shown in the Maple code for Example 1a that the hybrid symbolic-numeric method also results
in rank 3, and that φa can be estimated. However the hybrid method cannot be used to show that the
estimable parameter combinations are φ1λa and (1 − φ1)λ1. �

1.2 The state-space model

A continuous linear state-space model is defined by the equations,

y(t, θ) = C(θ)x(t, θ) and
∂

∂t
x(t, θ) = A(θ)x(t, θ) + B(θ)u,

where y is the output function, x is the state-variable function, θ is a vector of unknown parameters,
u is the input function, and t is the time recorded on a continuous scale. The matrices A, B, C are the
compartmental, input, and the output matrices, respectively. Several exhaustive summaries already
exist for continuous linear state-space models, which result in different general methods for detecting
nonidentifiability including the Laplace transform approach (Bellman and Aström, 1970) and the
Taylor series approach (Pohjanpalo, 1978). These different methods are compared in Chis et al.
(2011). However, these exhaustive summaries are not suitable for discrete linear state-space models, as
the model formation is different. Discrete state-space models do not involve differential equations, but
instead use a recursion such as Eq. (4) .

In ecology, observations are typically recorded on a discrete scale, such as counts of population
sizes. A discrete linear state-space model is defined by the respective observation and state equations,

yt = Atxt + ηt and xt = Ctxt−1 + εt−1, t = 1, 2, 3, . . . , (4)

where At is an n × n transition matrix, Ct is an m × n measurement matrix, x0 is a vector of initial
values, and η and ε are error processes with zero means. The model has n states, with m states or
combination of states observed, where m ≤ n. It is assumed that the initial observation is at time t = 1
and the final observation is at t = T . For ecological applications, observations are typically taken on
a yearly time scale, and the matrix At will contain the demographic parameters of interest, such as
survival probabilities and fecundity. Typically the measurement matrix is a fixed matrix that does not
contain any parameters and does not depend on time, so that Ct = C. A linear Gaussian state-space
model assumes that the error processes ηt and εt and the initial state x0 have multivariate normal
distributions, with all three variables being independent between times and each other. Assuming a
linear Gaussian state-space model allows parameters to be estimated using the Kalman filter (see, e.g.,
Harvey, 1989), but this assumption is not necessary to check whether or not a model is parameter
redundant.

Example 1b

An example of a simple discrete state-space model used in ecology is given in Besbeas et al. (2002).
They create a discrete linear state-space model for abundance data on the number of lapwings, V.
vanellus, with the respective observation and state equations:

yt = [
0 1

]
xt + ηt with xt =

[
0 ρφ1
φa φa

]
xt−1 +

[
ε1,t
εa,t

]
.

Here, xt = [N1,t, Na,t ]
′, where N1,t and Na,t are, respectively, the number of first year lapwings and adult

lapwings seen in year t, yt is the observed numbers of lapwings at time t, ρ is a parameter representing
productivity, and φ1 and φa are the probabilities of survival for first year and adult lapwings, respectively.
The error term η1,t is assumed to follow a normal distribution with mean zero and variance σ 2, and
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the error terms ε1,t and εa,t are also assumed initially to have mean zero. This assumption is used in
Besbeas et al. (2002) to allow the use of the Kalman filter in estimating parameters. For simplicity in
the example here, we assume that the variance in the error terms is known. In Supporting Information
Appendix A this assumption is relaxed.

This parametrization of the model is obviously parameter redundant due to the confounding of the
parameters ρ and φ1 and would remain parameter redundant even if numbers of first year lapwings
were observed. However we use this model to illustrate the methods in this paper because it is simple
enough that derivative matrices and PDEs can be displayed. In Section 4 we give examples of more
complex models, where parameter redundancy results are not obvious, and the methods of this paper
are needed in order to investigate parameter redundancy. �

An extension to the state-space model allows nonlinear functions with

yt = h(xt, θ) + ηt with xt = g(xt−1, θ) + εt−1, t = 1, 2, 3, . . . , (5)

where ηt and εt are error processes, x0 is a vector of initial values, and h(·) and g(·) are known functions.

2 Discrete state-space model exhaustive summaries

To examine the parameter redundancy of a discrete state-space model, we need a suitable exhaustive
summary. Several exhaustive summaries exist for examining the identifiability of compartment models,
which are continuous state-space models (see, e.g., Chis et al., 2011). These exhaustive summaries
include the Laplace transform approach (Bellman and Aström, 1970) and the Taylor series approach
(Pohjanpalo, 1978).

The Laplace transform approach, which is described in Supporting Information Appendix A,
involves taking the Laplace transform of y(t). The discrete analogue of a Laplace transform is the z-
transform; we show how this can be used to derive an exhaustive summary in Supporting Information
Appendix A. The z-transform exhaustive summary is given in Theorem 2.1 a. Like its continuous
analogue, this approach is only applicable for linear discrete state-space models without time-dependent
parameters.

The Taylor series approach involves a Taylor series expansion of yt . A similar idea can be utilized
for discrete state-space models, which involves a direct expansion of yt starting at y0. This results in the
expansion exhaustive summary given in Theorem 2.1 b. The proof for this method is given in Supporting
Information Appendix A. The expansion exhaustive summary, like its continuous analogue, can be
used for linear and nonlinear discrete state-space models.

Theorem 2.1. Exhaustive Summaries for discrete state-space models

a. For discrete linear state-space models with nontime-dependent transition matrix, A, and measure-
ment matrix, C, the z-transform exhaustive summary is formed from the nonconstant coefficients
of the powers of z in the numerator and denominator of the transfer function,

Q(z) = C(zI − A)−1Ax0,

where I is the identity matrix with dimensions identical to A.
b. The expansion exhaustive summary for any discrete linear state-space models is,

κ =

⎡
⎢⎢⎣

C1A1x0
C2A2A1x0

C3A3A2A1x0
...

⎤
⎥⎥⎦ .
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and for nonlinear state-space models is,

κ =

⎡
⎢⎢⎣

h{g(x0)}
h[g{g(x0)}]

h(g[g{g(x0)}])
...

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

h{g(x0)}
h{g2(x0)}
h{g3(x0)}

...

⎤
⎥⎥⎥⎦ .

Example 1b continued

In Example 1b,

C = [
0 1

]
, A =

[
0 ρφ1
φa φa

]
, and x0 =

[
x0,1
x0,2

]
.

The transfer function is,

Q(z) = C(zI − A)−1Ax0 = −zφa(x0,1 + x0,2) − ρφ1φax0,2

−s2 + zφa + ρφ1φa
.

The z-transform exhaustive summary is then the nonzero coefficients of z in the numerator and
denominator. This results in the exhaustive summary,

κ =

⎡
⎢⎣

−ρφ1φax0,2
−φa(x0,1 + x0,2)

ρφ1φa
φa

⎤
⎥⎦ . (6)

Differentiating the exhaustive summary with respect to the parameters, θ = [φ1, φa, ρ], gives the deriva-
tive matrix,

D =
⎡
⎣ −ρφax0,2 0 ρφa 0

−ρφ1x0,2 −x0,1 − x0,2 ρφ1 1
−φ1φax0,2 0 φ1φa 0

⎤
⎦ ,

which has rank 2. Therefore this model is parameter redundant with deficiency 1. The null space of D′
is α′ = [−φ1/ρ, 0, 1]. The position of the zero indicates that the second parameter φa can be estimated.
Solving the PDEs −∂ f /∂φ1 × φ1/ρ + ∂ f /∂ρ = 0 gives φ1ρ as the other estimable parameter.

The expansion exhaustive summary for this example consists of the terms,

κ =

⎡
⎢⎢⎣

C1A1x0
C2A2A1x0

C3A3A2A1x0
...

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

x0,1φa + x0,2φa
x0,2φ1φaρ + x0,1φ

2
a + x0,2φ

2
a

x0,1φ1φ
2
aρ + 2x0,2φ1φ

2
aρ + x0,1φ

3
a + x0,2φ

3
a

...

⎤
⎥⎥⎥⎦ .

However to use this expansion exhaustive summary in Maple we need to fix the number of terms. �
To use the expansion exhaustive summary there are three possible options:

Option I: If there are T years of data, the exhaustive summary is κ′ = [(C1A1x0)
′, (C2A2A1x0)

′,
. . . , (CT AT · · · A2A1x0)

′] for a discrete linear state-space model or κ′ = [h{g(x0)}′,
h{g2(x0)}′, . . . ,h{gT (x0)}′] for a discrete non-inear state-space model.

Option II: Theorem 2.2 provides a limit to the number of exhaustive summary terms required.
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Option III: The Extension theorem of Catchpole and Morgan (1997) and Cole et al. (2010) can
be used.

Option I is straightforward. However note that in Example 1b each successive exhaustive summary
term is more complex than the previous. It will always be the case due to the nature of this exhaustive
summary. Therefore Option I is not suitable for large studies, when exhaustive summary terms become
too complex. In such cases Options II or III should be used instead.

Option II is based on a result for continuous state-space models. The Taylor series expansion
method creates an exhaustive summary that is infinite. For a linear system of compartment models
with n compartments, only the first (2n − 1) terms are required (Thowsen, 1978; Magaria et al., 2001).
Theorem 2.2 provides a similar result.

Theorem 2.2. If A and C are constant and there are n states, then a simpler exhaustive summary
requires only the terms κ = [E (y1)

′, E (y2)
′, . . . , E (y2n)

′]′.

The proof of Theorem 2.2 is given in Supporting Information Appendix A.
To use Option III we consider the exhaustive summary κK , for the first K years, which is a function

of parameters θK . Suppose the derivative matrix DK = ∂κK/∂θK is full rank. The exhaustive summary
can be extended to κK+1 with extra terms κex and parameters θK+1 = [θK , θex]. If Dex = ∂κex/∂θex
is full rank, then by the Extension theorem the model will be full rank for T ≥ K (Catchpole and
Morgan, 1997; Cole et al., 2010). If a model is parameter redundant, with rank q < p, the model
can be reparameterized in terms of a vector of parameters, β, of length q. The vector β can be the
estimable parameter combinations found by solving the PDEs described in Section 1.1. Once the model
has been reparameterized, the Extension theorem can be applied with derivative matrices formed by
differentiating the exhaustive summary with respect to β rather than θ. The Reparametrization theorem
of Cole et al. (2010) can be used to give the result that the model specified in terms of θ has the same
rank as the model reparameterized in terms of β.

Example 1b continued

As n = 2, the exhaustive summary using Option II is,

κ1 = [
x0,1φa + x0,2φa, x0,2φ1φaρ + x0,1φ

2
a + x0,2φ

2
a , x0,1φ1φ

2
aρ + 2x0,2φ1φ

2
aρ + x0,1φ

3
a+

+ x0,2φ
3
a , x0,2φ

2
1φ

2
aρ

2 + 2x0,1φ1φ
3
aρ + 3x0,2φ1φ

3
aρ + x0,1φ

4
a + x0,2φ

4
a

]′
. (7)

The derivative matrix, formed with respect to the parameters θ = [φ1, φa, ρ], is,

D = ∂κ1

∂θ
=

⎡
⎣ 0 x0,2φaρ x0,1φ

2
aρ + 2x0,2φ

2
aρ d1,4

x0,1 + x0,2 x0,2φ1ρ + 2x0,1φa + 2x0,2φa d2,3 d2,4
0 x0,2φ1φa x0,1φ1φ

2
a + 2x0,2φ1φ

2
a d3,4

⎤
⎦ , (8)

where d1,4 = 2x0,2φ1φ
2
aρ

2+2x0,1φ
3
aρ + 3x0,2φ

3
aρ, d2,3 = 2x0,1φ1φaρ + 4x0,1φ1φaρ + 3x0,1φ

2
a+3x0,2φ

2
a ,

d2,4 = 2x0,2φ
2
1φaρ

2+6x0,1φ1φ
2
aρ + 9x0,2φ1φ

2
aρ + 4x0,1φ

3
a + 4x0,2φ

3
a , and d3,4 = 2x0,2φ

2
1φ

2
aρ + 2x0,1φ1

φ3
a + 3x0,2φ1φ

3
a . The rank of this derivative matrix is 2. As there are three parameters in this model, the

model is parameter redundant with deficiency 1. The null space is identical to using the z-transform
exhaustive summary, resulting in the same conclusion that the estimable parameter combinations are
φa and φaρ. Alternatively we show how Option III can be used in the Maple code. �

If there are time-dependent At and/or Ct , then the z-transform exhaustive summary and Theorem
2.2 do not apply. However the expansion exhaustive summary can be used with Option I or Option
III, the latter of which we demonstrate in the example below.
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Example 2

Consider Example 1b extended to include time-dependent first year survival, so that the transition

matrix is At =
[

0 ρφ1,t
φa φa

]
. The expansion exhaustive summary for T = 3 is κ3(θ) = [φax0,1 + φax0,2,

x0,2φ1,1φaρ + x0,1φ
2
a + x0,2φ

2
a , x0,1φ1,2φ

2
aρ + x0,2φ1,2φ

2
aρ + x0,2φ1,1φ

2
aρ + x0,1φ

3
a + x0,2φ

3
a ]′. Differenti-

ating this exhaustive summary with respect to the parameters, θ3 = [ρ, φa, φ1,1, φ1,2] results in the
derivative matrix,

∂κ3

∂θ3
=

⎡
⎢⎢⎣

0 φ1,1φax0,2 φ2
a

(
φ1,1x0,2 +φ1,2x0,1 + φ2

aφ1,2x0,2

)
x0,1 + x0,2 ρφ1,1x0,2 + 2φa(x0,1 + x0,2) 2ρφa{φ1,1x0,2 + φ1,2(x0,1 + x0,2)} + 3φ2

a (x0,1 + x0,2)

0 ρφax0,2 ρφ2
ax0,2

0 0 ρφ2
a (x0,1 + x0.2)

⎤
⎥⎥⎦ ,

which has rank 3. By solving the appropriate set of PDEs in the Maple code, we show that
the estimable parameter combinations are φa, φ1,1ρ, and φ1,2ρ. To use Option III, as this model
is parameter redundant, we reparameterize in terms of the estimable parameter combinations to
give parameters β3 = [φa, ν1, ν2] with νt = φ1,tρ, so that κ3(β) = [φax0,1 + φax0,2, x0,2ν1φa + x0,1φ

2
a +

x0,2φ
2
a , x0,1ν2φ

2
a + x0,2ν2φ

2
a + x0,2ν1φ

2
a + x0,1φ

3
a + x0,2φ

3
a ]′. The derivative matrix,

∂κ3

∂β3
=

⎡
⎣x0,1 + x0,2 2x0,1φa + x0,2ν1 + 2x0,2φa 2x0,1ν2φa + 3x0,1φ

2
a + 2x0,2μ1φa+2x0,2ν2φa+3x0,2φ

2
a

0 x0,2φa x0,2φ
2
a

0 0 x0,1φ
2
a + x0,2φ

2
a

⎤
⎦ ,

has full rank 3. Increasing T to 4 adds only one extra parameter, ν3 = φ1,3ρ, so that βex = [ν3] and adds
one extra exhaustive summary term κex = x0,2ν1ν3φ

2
a + x0,2ν1φ

3
a + x0,1ν2φ

3
a + x0,2ν2φ

3
a + x0,1ν3φ

3
a +

x0,2ν3φ
3
a + x0,1φ

4
a + x0,2φ

4
a . The extra part of the derivative matrix,

Dex = ∂κex

∂βex
= [

x0,2ν1φ
2
a + x0,1φ

3
a + x0,2φ

3
a

]
,

obviously has full rank 1. Therefore by the Extension theorem the model parameterized in terms
of β will always have full rank T for any T ≥ 3. Then by the Reparametrization theorem the
model parameterized in terms of θ will also have rank T , but as there are T + 1 parameters the
model is parameter redundant with deficiency 1. The estimable parameter combinations are then
φa, φ1,1ρ, φ1,2ρ, . . . , φ1,T ρ. �

We demonstrate how the expansion exhaustive summary can be used in nonlinear models in Exam-
ple 3.

Example 3

A model for density dependence has the form xt = xt−1 exp{a + b log(xt−1)} with yt = xt , where yt is
the population abundance and a and b are constant parameters. If we want to estimate x0, the vector
of parameters is θ = [x0, a, b] (see, e.g., Dennis et al., 2006). The exhaustive summary for T = 3 is

κ2 =
⎡
⎣ κ21

κ22
κ23

⎤
⎦ =

⎡
⎣ x0 exp{a + b log(x0)}

x0 exp{a + b log(x0)} exp{a + b log(c1[exp{a + b log(c1)}])}
κ22 exp{a + b log(κ22)}

⎤
⎦ .

The derivative matrix D = ∂κ/∂θ has full rank 3. Increasing T by 1 adds no extra parameters; in such
cases the Extension theorem tells us that the model will always be full rank, without the need to check
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the rank of another matrix (Remark 7, Catchpole and Morgan, 1997). Therefore we conclude this
model is not parameter redundant for any T ≥ 3. �

Supporting Information Appendix A also provides an explanation of how parameters in the error
terms can be incorporated into the exhaustive summary.

3 Integrated models

If state-space models are parameter redundant there may still be interest in estimating all of the
parameters because of their biological importance. To estimate such parameters one method is to
combine two or more different data sets. If the data sets are independent, a joint likelihood can be
formed as the product of the individual model likelihoods (see, e.g., Lebreton et al., 1995; Besbeas
et al., 2002; McCrea et al., 2013).

An integrated model can be used to describe two or more independent data sets. Each data set
can be modeled separately, however some of the models may have parameters in common. If using
maximum likelihood to estimate the parameters, and independence of the data sets is assumed, the
joint log-likelihood is l = ∑N

i=1 li, where there are N data sets each with log-likelihood li. Although
structurally simplistic, in terms of addition of two or more log-likelihood functions, the integrated
population model has advanced the modeling of ecological data (see, e.g., chapter 9, Newman et al.,
2006 or chapters 11 and 12 of McCrea and Morgan, 2014). We demonstrate that aside from the natural
advantages of integrated population models, such as improved precision of parameter estimates and
reduced correlation between parameters, integrated population models have the additional advantage
of making it possible to estimate some parameters that were not estimable from modeling the data sets
individually. It is essential that the tools are made available to be able to understand and identify the
parameter redundancy of integrated population models.

In this section we consider two different methods for determining whether or not an integrated model
is parameter redundant. The first method is the obvious extension of combining the two exhaustive
summaries for each model; this is described in Section 3.1. The second method is an extension of
results from Cole et al. (2010) and is of particular use in more complex models; this is described in
Section 3.2. The methods are illustrated using the example below.

Example 1c

In Besbeas et al. (2002), the state-space model is combined with a mark-recovery model. In this example
we consider combining both Examples 1a and 1b, as well as the example in Besbeas et al. (2002) where
in the ring-recovery model the reporting probability is not dependent on age so that λ1 = λa. �

3.1 Method A: combined exhaustive summary

Suppose there are N different data sets being described by an integrated model. The exhaustive sum-
maries for these different data sets are κ1, κ2, . . . , κN , with parameters, θ1, θ2, . . . , θN . The exhaustive
summary for the integrated model is κ = [κ′

1, κ
′
2, . . . , κ

′
N ]′ and its parameters are θ = [θ1, θ2, . . . , θN ],

with any duplicate parameters removed. The standard derivative matrix method can then be used as
explained in Section 1.1.

Example 1c continued

This example has N = 2 data sets and we use the z-transform exhaustive summary, Eq. (6) for the
state-space part, combined with the third exhaustive summary from Eq. (1) for the mark-recovery
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part. This results in a combined exhaustive summary of

κ =

⎡
⎢⎢⎢⎢⎢⎣

−ρφ1φax0,2
−φa(x0,1 + x0,2)

ρφ1φa
φa(1 − φ1)λ1
φ1(1 − φa)λa

φ1φa(1 − φa)λa

⎤
⎥⎥⎥⎥⎥⎦

.

The parameters are θ = [φ1, φa, ρ, λ1, λa]. The derivative matrix,

D = ∂κ

∂θ
=

⎡
⎢⎢⎢⎣

−φaρx0,2 0 ρφa 0 −λ1 (1 − φa)λa φa(1 − φa)λa
−ρφ1x0,2 −x0,1 − x0,2 ρφ1 1 0 −φ1λa φ1λa − 2φ1φaλa
−φ1φax0,2 0 φ1φa 0 0 0 0

0 0 0 0 1 − φ1 0 0
0 0 0 0 0 φ1(1 − φa) φ1φa(1 − φa)

⎤
⎥⎥⎥⎦ ,

has rank 4, but there are five parameters so this model is parameter redundant. In the Maple code the
estimable parameter combinations are shown to be φa, φ1ρ, (1 − φ1)λ1, and φ1λa.

The same model with λ1 = λa is also considered in the Maple code . The derivative matrix also has
rank 4, but this time there are four parameters, so it is possible to estimate all the parameters in this
model. �

3.2 Method B: reparametrization

Suppose there are two different data sets within the integrated model. The exhaustive summaries for
these different data sets are κB,1 and κB,2, with parameters θ1 and θ2 of length p1 and p2, respectively.
Method B involves using the following theorem.

Theorem 3.1. If the rank of D1,1(θ1) = [∂κB,1(θ1)/∂θ1] is q1 < p1, then reparameterize κB,1 in terms
of its estimable parameters combinations, which we denote sB,1. If the rank of D1,1(θ1) is p1, then set
sB,1 = θ. Next rewrite κB,2 in terms of sB,1. This gives κB,2(θ2) = κ2(sB,1, θ2,ex), where θ2,ex is a vector
of length p2,ex consisting of any additional parameters. Let the rank of D2,2 = [∂κB,2(sB,1, θ2,ex)/∂θ2,ex]
equal rex. Then the integrated model has rank q1 + rex.

The proof of Theorem 3.1 is given in the Supporting Information Appendix A.
The advantage of this method is that the model rank can be found by calculating the rank of two

smaller and simpler derivative matrices, compared with the combined exhaustive summary method that
requires calculating the rank of one larger more complex derivative matrix. This method is therefore
useful for more complex models.

Remark 1. Suppose that ∂κB,1/∂θ1 and ∂κB,2/∂θ2 are individually full rank with ranks q1 = p1 and p2
and the integrated model has p2 − p2,ex parameters common to both exhaustive summaries, so that there
are p1 + p2,ex parameters in the integrated model. A natural consequence of Theorem 3.1 is the already
obvious fact that the integrated model will also be full rank with rank p1 + p2,ex.

Remark 2. Suppose that θ1 and θ2 have no parameters in common and the rank of ∂κB,2/∂θ2 is q2, then
the rank of the combined model is q1 + q2.

Remark 3. If θ2,ex consists of only one parameter, then D2,2 will trivially have full rank 1. Therefore
the integrated model will have rank q1 + 1.

Remark 4. The estimable parameter combinations, sB,1, can be replaced by any reparametrization with
rank(∂sB,1/∂θ1) = q1 and Theorem 3.1 will still apply.
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The proofs of Remarks 1–4 are given in Supporting Information Appendix A.

Example 1c continues

Consider the integrated model again but where the recovery probability is not age-dependent, such
that λ1 = λa. We start with the state-space model and use the z-transform exhaustive summary so that

κB,1 =

⎡
⎢⎣

−ρφ1φax0,2
−φa(x0,1 + x0,2)

ρφ1φa
φa

⎤
⎥⎦ .

The parameters for the first part are θ = [φ1, φa, ρ]. The derivative matrix ∂κB,1/∂θ1 has rank 2 and
estimable parameter combinations φa and φ1ρ. The reparametrization is then the estimable parameter
combinations with sB,1 = [s1,1, s1,2]′ = [φa, φ1ρ]′. The second part consists of the ring-recovery model
with λ1 = λa. The exhaustive summary κB,2 is rewritten in terms of sB,1,

κB,2 =
⎡
⎣ (1 − φ1)λ1

φ1(1 − φa)λa
φ1φa(1 − φa)λa

⎤
⎦ becomes κB,2(sB,1, θ2,ex) =

⎡
⎣ λ(ρ − s1,2)/ρ

λs1,2(1 − s1,1)/ρ

λs1,2s1,1(1 − s1,1)/ρ

⎤
⎦ ,

with θ2,ex = [λ, ρ]. The derivative matrix,

D2,2 = ∂κ2(sB,1, θ2,ex)

∂θ2,ex
=

⎡
⎢⎢⎣

ρ − s1,2

ρ

s1,2(1 − s1,1)

ρ

s1,1s1,2(1 − s1,1)

ρ

λs1,2

ρ2
−λs1,2(1 − s1,1)

ρ2
−λs1,1s1,2(1 − s1,1)

ρ2

⎤
⎥⎥⎦ ,

has rank 2. By Theorem 3.1 the rank of the integrated model is q1 + rex = 2 + 2 = 4, which is an
alternative method of showing this model is not parameter redundant. Method B for the model with
λ1 �= λa is demonstrated in the Maple code. �

4 Further examples

This section provides further examples of applications of the methods for state-space models. Example
4 is a more complex linear state-space model. Example 5 combines a more complex state-space model
integrated with three other data sets.

Examples 6–8 are given in Supporting Information Appendix B and provide examples of integrated
models not involving a state-space model component. Examples 6 and 7 illustrate the use of Remarks
1 and 3, respectively. Example 8 illustrates how method B can be used for a more complicated model
structure. Full details for each example are available in the Supporting Information Maple code.

4.1 Example 4

Multistate analyses are a natural generalization of single-state ecological models (see Lebreton et al.,
2009 and Chapter 5 of McCrea and Morgan, 2014). This is a multisite example based on models of
McCrea et al. (2010). We suppose abundance data are collected at two different sites. Individuals are
assumed to fall into one of three categories: newborn, immature, and breeder. The variables x1(t) and
x2(t) denote the number of newborn animals in sites 1 and 2, respectively; x3(t) and x4(t) denote
the number of immature animals in sites 1 and 2, respectively; x5(t) and x6(t) denote the number of
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breeding animals in sites 1 and 2, respectively. Unlike the age-class states used in earlier examples,
there is no specific age at which individuals recruit to a breeding state. Instead immature individuals
move to a breeding state with probability πk, for site k, in any given year. It is assumed that individuals
will not move between the sites until they become breeding individuals, and the probability of moving
from site k to l is ψk,l . The transition matrix is,

A =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 ρ1φ1,1 0
0 0 0 0 0 ρ1φ1,2

φ1,1 0 φ1,1(1 − π1) 0 0 0
0 φ1,2 0 φ1,2(1 − π2) 0 0
0 0 φ1,1π1 0 φ2,1(1 − ψ1,2) φ2,2ψ2,1
0 0 0 φ1,2π2 φ2,1ψ1,2 φ2,2(1 − ψ2,1)

⎤
⎥⎥⎥⎥⎥⎦

,

where φ1,k is the survival probability of immature animals at site k, φ2,k is the survival probability
of breeders at site k, and ρk is the fecundity of a breeding animal. Assuming that only breeders are

observed at both sites, the observation matrix is C =
[

0 0 0 0 1 0
0 0 0 0 0 1

]
. The initial values of the state

equation are assumed to be known values x0 = [x0,1, x0,2, x0,3, x0,4, x0,5, x0,6]′.
There are n = 6 states, so that using Theorem 2.2 (Option II) results in an exhaustive summary with

2n = 12 terms. Due to the complexity of the later terms we use Option III instead and consider the
first five exhaustive summary terms. However, even with five exhaustive summary terms Maple cannot
calculate the rank directly. Instead we use the reparametrization

s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1
s2
s3
s4
s5
s6
s7
s8
s9
s10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1,1π1x0,3 + φ2,1(1 − ψ1,2)x0,5 + φ2,2ψ2,1x0,6
φ1,2φ2x0,4 + φ2,1ψ1,2x0,5 + φ2,2(1 − ψ2,1)x0,6

φ1,1π1{φ1,1x0,1 + φ1,1(1 − φ1)x0,3}
φ1,2π2{φ1,2x0,2 + φ1,2(1 − φ2)x0,4}

φ2,1(1 − ψ1,2)

φ2,2ψ2,1
φ2,1ψ1,2

φ2,2(1 − ψ2,1)

φ1,1π1[ρ1φ
2
1,1x0,5 + φ1,1(1 − π1){φ1,1x0,1 + φ1,1(1 − π1)x0,3}]

φ1,2π2[ρ2φ
2
1,2x0,6 + φ1,2(1 − π2){φ1,2x0,2 + φ1,2(1 − π2)x0,4}]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The exhaustive summary written in terms of s, κ(s) = [s1, s2, s1s5 + s2s6 + s3, s1s7s2s8 + s4, . . .]
′, is

differentiated with respect to s, to form the derivative matrix Ds = [∂κ(s)/∂s], which has full rank 10.
By the Reparametrization theorem the original parametrization also has rank 10. As this model has 10
parameters, this example is not parameter redundant. Although in practice it is possible to fit models
to census data alone, we also note that there can be problems with boundary estimation (see Table 1
of McCrea et al., 2010). �

4.2 Example 5

Reynolds et al. (2009) combine four different data sets collected on a colony of common guillemots
on the Isle of May, to create an integrated population model over T years. There is interest in whether
survey effort could be reduced in collecting data, including stopping collection of one set of data
(Lahoz-Monfort et al., 2014). Here we discuss one aspect of reducing effort, demonstrating which
parameters can be estimated with different combinations of the four data sets.

The first data set consists of productivity data, where the eggs laid by pairs of birds are monitored
and the number of eggs that resulted in fledged chicks is recorded. A binomial model is fitted
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to these data so an exhaustive summary is κ1 = [n1ρ1, n2ρ2, . . . , nT ρT ]′, where nt is the number
of eggs laid in year t and ρt denotes the productivity rate in year t. The vector of parameters is
θ1 = ρ = [ρ1, ρ2, . . . , ρT ]. It is obvious that all parameters in this model can be estimated.

The second data set is adult capture-recapture data, where adult birds are marked and live
recaptures are recorded. An exhaustive summary for the model fitted to this data set is κ2 =
[φ1 p2, . . . , φT−1 pT , φ1(1 − p2), . . . , φT−2(1 − pT−1)]

′ (Hubbard et al., 2014), where φt is the survival
probability for year t and pt is the capture probability for year t. The vector of parameters is θ2 = [	a, p],
where 	a = [φa,1, . . . , φa,T−1] and p = [pa,2, . . . , pa,T ]. This model is known to be parameter redun-
dant, with estimable parameter combinations φa,1, . . . , φa,T−2, pa,2, . . . , pa,T−1, and φa,T−1 pa,T (see,
e.g., Cole et al., 2010).

The third data set consists of chick capture-recapture-recovery data. In this study birds are marked
as young and then birds are either resighted alive or recovered dead at subsequent sampling occasions.
An exhaustive summary for the capture-recapture-recovery model fitted to this data set is κ3, which
consists of the terms ψi,tτi,tφi−1,tqi,t for i = 0, . . . , T − 1 and t = i, . . . , T − 1, ψi, jτi, jφi−1, j (1 − qi, j) for
i = 0, . . . , T − 2, and j = i, . . . , T − 2 and φi−1, j (1 − λ j ) for i = 0, . . . , T − 1 and j = i, . . . , T − 1
(Hubbard et al., 2014). The parameter λt is the recovery probability for year t. The parameter ψi, j = ψ

if i = 4 and 1 otherwise, where ψ is the probability that a bird does not permanently emigrate. The
parameter τi, j = τ if i > 4 and 1 otherwise, where τ is the probability of tag loss. The resighting
probability, qi, j is different from the recapture probability for the adult data set as the methods used
are different. We let q = [q2,2, ..., q2,T−1, q3,3, ..., q3,T−1, q4, qa], where q4,t = q4 for all t and qi,t = qa
for all i > 4 and all t. The vector of parameters is θ3 = [	i,	

�
a, q,
], where 	�

a = [φa,5, . . . , φa,T−1]
and 	i = [φ0,1, . . . , φ0,T−1, φ1, φ2, φ3] with φi,t = φi for i > 0. We show in the Maple code that this
model has full rank 5T − 10.

The final data set consists of abundance data modeled by a state-space model with the ex-
pected number of juveniles at time t equal to E (Jt ) = ρtφ0,tφ1φ2φ3E (xt )/2 and the expected
number of adults at time t equal to E (xt ) = ψφa,t−1Jt−5 + φa,t−1E (xt−1). Only the adults are
observed so the expectation of the observation process is E (yt ) = E (xt ). For T = 7, the exhaus-
tive summary is κ4 = [x0,5φa,5 + 1

2 x0,1ρ1ψφ0,1φ1φ2φ3φa,5, (x0,5φa,5 + 1 1
2 x0,1ρ1φ0,1ψφ1φ2φ3φa,5)φa,6 +

1
2 x0,2ρ2ψφ0,2φ1φ2φ3, σ

2
N ]. The rank of the derivative matrix for the state-space model will always be

limited by the number of exhaustive summary terms (see Cole et al., 2012 for details of this method);
in this case the rank is 3. In general the rank of this model is then T − 4 and only σN can be estimated.
We let ρ� = [ρ1, . . . , ρT−5] denote the productivity parameters used in the state-space model so the
vector of parameters is θ4 = [ψ, ρ�,	�

i ,	
�
a, σN ], where 	�

i = [φ0,1, . . . , φ0,T−5, φ1, φ2, φ3].
It is assumed that we can estimate all the parameters, θ = [	i,	a, q,
, τ, ψ, paρ], when all the

models are combined. We confirm that is the case below. We might also like to consider whether
we actually needed all four data sets to estimate the parameters that are of biological interest. So in
Table 2 we show the parameter redundancy results for different combinations of the four data sets,
including each data set alone and all four data sets combined.

To find the parameter redundancy results of Table 2 we use method B. Some of the combinations have
no parameters in common, such as the productivity data combined with the adult capture-recapture
data, in which case Remark 2 is applied to obtain the results. If two models that are already full rank
are combined, such as the productivity data and the chick capture-recapture-recovery data set, we
apply Remark 1 to obtain that the combined model is also full rank. The other combinations use
Theorem 3.1 directly with full details for each combination given in the Maple code of the Supporting
Information.

For the adult capture-recapture data and chick mark-recapture-recovery data combined, we start
with the chick mark-recapture-recovery data exhaustive summary, κB,1 = κ3 and note that it is full
rank q1 = 5T − 10 , so sB,1 = θ3. Then we examine the adult capture-recapture data set, so that
κB,2 = κ2. The extra parameters are θ2,ex = [p, φa,1, . . . , φa,4]. For T = 7, the derivative matrix D2,2
= [∂κB,1/∂θ2,ex] is of full rank 10. As adding an extra year adds only one extra parameter, by a trivial

C© 2016 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



1086 D. J. Cole and R. S. McCrea: Parameter redundancy in discrete state-space and integrated models

Table 2 Parameter redundancy results for Example 6.

Prod. Adult CR Chick CRR State space

r = T r = 2T − 3 r = 5T − 5 r = T − 4
d = 0 d = 1 d = 0 d = 2T − 6
(ρ) (φa,1, . . . , φa,T−2, (	i,	

�
a, q,
, (σN)a

pa,2, . . . , pa,T−1, τ, ψ)
φa,T−1 pa,T )

r = 3T − 3 r = 6T − 5 r = 2T − 4
d = 1 d = 0 d = T − 1

Prod. (φa,1, . . . , φa,T−2, (ρ,	i,	
�
a, q, (ρ, σN)a

pa,2, . . . , pa,T−1, 
, τ, ψ)
φa,T−1 pa,T , ρ)

r = 6T − 2, r = 3T − 7
Adult CR d = 0 d = T

(	i,	a, q,
, (φa,1, . . . , φa,T−2, φa,T−1 pa,T ,

τ, ψ, pa) pa,2, . . . , pa,T−1, σN)a

r = 6T − 9
Chick CRR d = 0

(	i,	
�
a, q,
, τ, ψ, ρ�, σN)

Prod. and r = 7T − 2 r = 4T − 7
adult CR d = 0 d = 5

(ρ,	i,	a, q, (φa,1, . . . , φa,T−2, φ1φ2φ3ψφ0,1

, τ, ψ, pa) pa,2, . . . , pa,T−1, φa,T−1 pa,T , ρ,

φ0,2

φ0,1
, . . . ,

φ0,T−6

φ0,1
, σN )a

Prod. and r = 6T − 4
chick CRR d = 0

(	i,	
�
a, q,
, τ, ψ, ρ, σN)

Adult CR and r = 7T − 6
chick CRR d = 0

(	i,	a, q,
, τ, ψ, pa, ρ
�, σN)

Prod. and r = 7T − 1
adult CR and d = 0
chick CRR (	i,	a, q,
, τ, ψ, pa, ρ, σN)

The model rank r and deficiency d are given for each combination of the four data sets with the estimable parameters in brackets.
d > 0 indicates a model is parameter redundant. d = 0 indicates that it is theatrically possible to estimate all the parameters.
“Prod.” denotes the productivity data set, “adult CR” denotes the adult capture-recapture data set, “chick CRR” denotes the
chick capture-recapture-recovery data set, and “state space” is the abundance data set.
a The other estimable parameter combination(s) are exhaustive summary terms.
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application of the Extension theorem D2,2 will always have full rank rex = T + 3. By Theorem 3.1, the
rank for this combined model is q1 + rex = 6T − 6.

When all four data sets are combined in one integrated model, this parametrization of resulting
model is full rank, by Remark 1 as the productivity data set is full rank and the adult capture-recapture
data, chick mark-recapture-recovery data, and census data combined is full rank.

5 Discussion

Discrete state-space models have become very popular for ecological applications and it is essential that
users are conscious of parameter redundancy, and in particular whether or not a given parametrization
of their model is parameter redundant. If a particular parametrization of a model is parameter
redundant, it will have multiple maximum-likelihood estimates. To obtain accurate estimates of the
biological parameters of interest some form of constraints or reparametrization of the model is
needed. Alternatively several data sets with different models could be combined to create an integrated
population model.

State-space models can also be fitted using Bayesian methodology and the issue of identifiability
remains important. Nonidentifiability can result in poor mixing and slow convergence of the MCMC
sample (see, e.g., page 187 of Carlin and Louis, 1996). Consider a model with a particular parametriza-
tion that is parameter redundant under the classical formation. If uninformative priors are used, then
the posterior will be nonidentifiable in a Bayesian analysis. Using informative priors can result in an
identifiable posterior, although this is not always the case. Nonidentifiability in a Bayesian analysis
can be investigated by including prior information in the exhaustive summary. Alternatively Garrett
and Zeger (2000) investigate weak identifiability by comparing marginal posteriors and priors. Weak
identifiability is defined by Gelfand and Sahu (1999) as occurring when the data provide little infor-
mation about a parameter, so that the prior and marginal posterior of a parameter are close under
some suitable metric. To investigate weak identifiability, Garrett and Zeger (2000) display the marginal
posterior and prior on the same plot and examine the percentage overlap. If the overlap is more than
35% a model is weakly identifiable. Gimenez et al. (2009) found this ad hoc guideline to be effective
for capture-recapture models.

We have shown how it is possible to detect parameter redundancy in state-space models. In order
to diagnose parameter redundancy, it is necessary to derive exhaustive summaries and here two
approaches have been developed: the z-transform exhaustive summary and the expansion exhaustive
summary. The z-transform approach has the advantage of giving a simpler exhaustive summary,
however it is only applicable for linear discrete state-space models without time-dependent parameters.
The alternative is to use the expansion exhaustive summary. This method is suitable for both linear
and nonlinear models and models with time-dependent parameters. The disadvantage of this method
is that each successive term is more complicated than the previous. The reparametrization method or
hybrid symbolic-numeric method can be used if exhaustive summary terms become too complicated.

We have also shown how parameter redundancy can be investigated in integrated models. Method
A is a straightforward extension of the standard derivative method. For more complex models, Maple
may run out of memory calculating the rank of the derivative matrix, in which case method B can be
used, as it only requires the calculation of ranks of simpler and smaller derivative matrices.

Mark-recovery models, capture-recapture models, and occupancy models are commonly used in
ecology and can be written in terms of state-space models (see, e.g., Gimenez et al., 2007; Royle, 2008;
Chapter 11 of McCrea and Morgan, 2014). We show in Supporting Information Appendix C that
the state-space exhaustive summary for mark-recovery models is the same as the exhaustive summary
used in Cole et al. (2012), derived from the nonstate-space derivation of the model. In Supporting
Information Appendix C we also show that the state-space exhaustive summaries for capture-recapture
models are not as simple as the exhaustive summaries provided in Hubbard et al. (2014). In general
we recommend using the simplest exhaustive summary available. Hubbard et al. (2014) and Cole et al.
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(2012) also provide general results for a wide class of mark-recovery models and capture-recapture
models, which can be used without using symbolic methods.

State-space models are a special case of latent-state models; other examples include hidden Markov
models and hidden process models (see, e.g., Langrock et al., 2013). The extension of the methods of
this paper to these more general model classes is an active piece of current research.
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