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� Density gradient is not enough to describe mechanical properties of gradient foams.
� A theoretical model is developed to describe stress–strain curves.
� The nominal stress is a linear function of the current relative density.
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A B S T R A C T

Size irregularity gradient and cell wall gradient, combined as the density gradient in previous studies, affect the
macroscopic mechanical properties of the gradient metal foam. More and more complex mesostructures are
designed and applied in metal foams, and the density gradient becomes insufficient to describe the difference in
mesostructures. To explore the effect of mesostructures carefully, this study focuses on the effect of the size ir-
regularity gradient on the macroscopic compressive properties of metal foams. A series of metal foam models were
developed using the 3D Voronoi technique. These models have the same average relative densities, the same
average diameters and different size irregularity gradients. Simulation results indicated that the macroscopic
mechanical properties of cell wall gradient metal foams are significantly different from those of size irregularity
gradient metal foams, though these models have the same relative density gradient. To explore the effect of size
irregularity gradient, a theoretical model was developed to characterize the compression process from the first
cell-collapse to full condensation. Theoretical results showed a linear relationship between the nominal stress and
the current relative density. These findings can provide efficient guidance for the design and applications of
gradient metal foams.
1. Introduction

Foams, particularly gradient metal foams, are important functional
materials that offer advantages such as low weight and high specific
strength and energy absorption efficiency [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].
They are widely used in applications requiring superior energy absorp-
tion and structural protection [11, 12, 13, 14, 15, 16, 17, 18, 19, 20].
Their unique energy absorption properties are strongly dependent on the
cell structure; therefore, several studies have focused on this aspect. The
relationship between the density gradient and macroscopic mechanical
properties of metal foam has been studied via experimental and theo-
retical approaches [12, 13, 15, 21, 22, 23, 24]. In these studies, the size
form 22 November 2022; Accept
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irregularity gradient and cell wall gradient have been modeled as the
density gradient. Consequently, their influence on the macroscopic me-
chanical properties of metal foams has not been adequately distin-
guished. However, the mesostructural morphology, which is generally
characterized by mesostructural irregularity [25, 26, 27, 28, 29], has
been found to affect the mechanical properties and deformation of foams
[11, 25, 26, 29, 30, 31, 32]. Therefore, it is important to examine the
effects of the size irregularity gradient of metal foams on their macro-
scopic mechanical properties.

With the development of manufacturing techniques [8, 12, 13, 16, 33,
34, 35, 36], several kinds of gradient foams have been produced [11, 12,
13, 16, 22, 33, 37]. Several experiments [12, 16, 22, 33, 37] and
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simulations [11, 15, 18, 22, 38] have been performed to investigate the
quasi-static [12, 16] and dynamic responses [18, 31, 37, 38, 39] of
gradient foams. The stress–strain curves of metal foams generally have an
elastic region, a plastic region with cell collapse and a dense region.
During the plastic region, uniform foams show a flat plateau [29, 40, 41,
42], while gradient foams exhibit an obvious strain-hardening phenom-
enon in the plastic region [11, 16, 33]. Moreover, the gradient structures
have been compressed in a layer-by-layer sequence [11, 12, 16, 33].
Duan et al. [11] experimentally observed that the deformation region of
size irregularity gradient foam was significantly smaller than that of cell
wall gradient foam with identical relative density gradient. Both discrete
[22, 24, 31] and continuous [16, 43] size irregularity gradient foams
have been constructed using the Voronoi technique to examine macro-
scopic properties such as the effective elastic modulus, reaction force,
densification strain, and energy absorption. Based on the assumption that
gradient structures can be replaced by uniform structures with the same
relative density using a layer-by-layer method [16, 18], a few theoretical
models have been proposed to characterize the compressive response of
gradient foams based on relative density gradient [16, 43, 44]. Duan
et al. [16] constructed an elastic, plastic-hardening, and locking (E-PH-L)
model to describe the elastic, strain-hardening, and densification char-
acteristics of gradient foams. They assumed that the stress of the local
structure of gradient foams could be replaced by the collapse stress of
uniform foam with the same relative density and thickness. This
replacement could be inaccurate for size irregularity gradient foams
because the local deformation of structures of gradient foam differs from
that of uniform foam, and the deformation of the local structures of
gradient foams could be too large for the attainment of the densification
stage rather than the plateau stage. Therefore, it is essential to establish
an accurate constitutive model with the size irregularity gradient based
on the deformation mechanism and matrix properties to characterize the
macro compressive mechanical properties of size irregularity gradient
metal foams (SIGMFs).

Mesostructural irregularity has been defined to characterize the
complex mesostructures of foams [25, 26, 27, 28, 29]. Tang et al. [25]
defined two irregularities for each cell, namely shape irregularity Ra and
size irregularity Ri. These are expressed as follows:

Ra ¼
ffiffiffiffiffiffiffiffiffiffiffi
A=4π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3V=4π3

p � 1; Ri ¼ d� d0
d0

(1)

where A;V ; and d are the surface area, volume and equivalent diameter,
respectively, of the cell; and d0 is the mean equivalent diameter of the
foam model. It can be determined using Eq. (2) with the total volume V0

and number of cells N.

d0 ¼
ffiffiffiffiffiffiffiffi
6V0

πN
3

r
(2)

The shape irregularity and size irregularity characterize the shape and
size features, respectively, of a cell. The statistical parameters of irregu-
larity of all cells can be used to describe the complex mesostructure of
foams. The effects of the shape irregularity gradient of metal foams on
their compressive properties have been examined in previous studies [22,
24, 31]. Therefore, in this study, we focused on the effect of the size ir-
regularity gradient of metal foams on their macroscopic compressive
properties.

In this study, a series of finite element models of metal foam was
developed using the 3D Voronoi technique. These models have equal
average relative densities and average equivalent diameters. However,
these possess different size irregularity gradients. The effects of the size
irregularity gradient of the metal foams on the quasi-static compressive
responses were examined. In addition, the deformation mechanism was
analyzed. And then, a theoretical model was developed to characterize
the compression process of the SIGMF from the first cell-collapse to the
full condensation. We verified the model using numerical simulation
2

results and previous experimental results. The findings of this study can
provide an effective guidance for design and applications of gradient
metal foams.

2. Finite element model of SIGMF

2.1. Construction of SIGMF

The size irregularity Ri of a cell varies linearly with its equivalent
diameter d according to Eq. (1). Therefore, controlling the specified
minimum distance function dðx; y; zÞ between any two seeds could be
effective method to determine the spatial distribution of size irregularity.

To construct models with a size irregularity gradient in a specified
direction (such as the x-direction), the minimum distance function
dðx; y; zÞ between any two seeds should be a linear function of the x-
coordinate (the modified voroþþ [45] program is employed), as follows:

dðx; y; zÞ¼ a � x =w0 þ b (3)

wherew0 is the length of the 3D Voronoi model in the x-direction and x 2
½0;w0� is the seed position of a cell in the gradient direction. Furthermore,
a � 0; b � 0. The parameter a affects the gradient degree of meso-
structures. The gradient distribution of size irregularity of foam models
becomesmore obvious with increase of either a or b. According to Eq. (3),
the maximum, minimum, and mean values can be determined as follows.

dðx; y; zÞjmax ¼ aþ b; dðx; y; zÞjmin ¼ b; dðx; y; zÞjmean ¼ a
�
2þ b (4)

For a cubic 3D Voronoi model with length w0, mean equivalent
diameter d0, and number of cells N, Eq. (5) should be satisfied.

dðx; y; zÞjmean ¼ d0;V0 ¼w3
0 (5)

To eliminate the boundary effect of foams, the number of cells should
be at least seven in each direction [1]. Therefore,

w0 � 7 � dðx; y; zÞjmax (6)

The quantitative relationships of a and b with d0;w0;N could be
derived by combining Eqs. (2), (4), (5), and (6).

Considering that the actual distance between two seeds would be
larger than or equal to the corresponding value of the minimum function
dðx; y; zÞ, the actual number of cells N1 of the constructed 3D Voronoi
model may be smaller than the preset value N. The rationality of the
constructed models can be verified by examining the difference between
N1 and N. If the difference is excessive, the constructed gradient foam is
irrational, and the values of modeling parameters should be modified.
The number of cells N should be 1500 for the cubic 3D Voronoi model
with length w0 ¼ 30 mm, making sure that the mean equivalent diam-
eter of SIGMF equals to that of the aluminum foam specimen: 3.25 mm
[40].

A series of 3D Voronoi models with different size irregularity gradi-
ents and equal average relative density and average equivalent diameter
was constructed (Figure 1) with specific modeling parameters (Table 1).
The Y ¼ 0 cross-sectional structures are shown in Figure 2. The 3D
Voronoi models possess the more gradient of the cells’ size with increase
of either a or b. When b is excessively small, there is no apparent gradient
feature in the low x regions. This may be mainly because the actual seed
distance would differ marginally from the value of Eq. (3). To evaluate
the repeatability of the SIGMF construction method, three size irregu-
larity gradient 3D Voronoi models were constructed with the same
modeling parameters: a ¼ 3 mm; b ¼ 0 mm; w0 ¼ 30 mm; N ¼ 1500.
The spatial distributions of the size irregularity of these gradient models
nearly coincide with each other as shown in Figure 3. These results
indicated that the proposed method for constructing the gradient 3D
Voronoi model has good repeatability.

To investigate whether the density gradient is sufficient for describing
the macroscopic properties of gradient foams, a cell wall gradient 3D



Figure 1. Gradient 3D Voronoi models with different modeling parameters: for A1–A4 foams, the parameter a increases from 0 to 4 mm while the parameter b be
constant zero; for C1–C3 foams, the parameter b increases from 0.7 mm to 1.3 mm while the parameter a be constant 3 mm; for B1 foam, parameters a and b equal to
0 and 2.15 mm, respectively.

Table 1. Modeling parameters and gradient parameter of size irregularity
gradient 3D Voronoi models.

Model a (mm) b (mm) N w0 (mm) Gradient
parameter k

A1 0 0 1500 30 �0.026

A2 2 0 1500 30 0.257

A3 3 0 1500 30 0.633

A4 4 0 1500 30 1.150

B1 0 2.15 1500 30 -0.024

C1 3 0.7 1500 30 1.04

C2 3 1.0 1500 30 1.138

C3 3 1.3 1500 30 1.167
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Voronoi model named B1Twas constructed based on the B1model with a
specific thickness gradient function. Its probability of shape irregularity
is equal to that of the C3 model (shown in Figure 4). In addition, its
density gradient is the same as that of the C3 model. Whether the density
gradient is sufficient to characterize the macroscopic mechanical prop-
erties of the two types of gradient foams can be verified by comparing the
compressive responses of the B1T model with those of the C3 model.
Figure 2. Y ¼ 0 cross-sectional structure
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2.2. Features of SIGMF

2.2.1. Spatial distribution of size irregularity
The position of each cell can be represented by the seed position.

Thereby, the spatial distribution of the size irregularity can be described.
For example, the spatial distribution of the size irregularity of the C3
model is shown as black scatters in Figure 5(a). These scatter data of size
irregularity constitute a linear function of the cell's position (as shown by
the black line in Figure 5(a)) and can be fitted as follows:

RiðxÞ¼ k � x=w0 þ h0 (7)

where k and h0 are the fitting parameters. The gradient parameter k is
defined as the slope of the fitting linear function (as shown in Eq. (7)) of
the spatial distribution of size irregularity. As shown in Figure 5(a),
though the relationship between the size irregularity and x is non–linear
in the low x=w0 regions, its trend is linear in the whole research range.

The following steps of a simplified method was proposed to analyze
the spatial distribution of size irregularity: (1) divide the model into a
sufficient number of slices along the gradient direction, (2) calculate the
mean size irregularity of each slice, and (3) analyze the relationship
between the mean values of the size irregularity and positions. For
s of the gradient 3D Voronoi models.



Figure 3. Repeatability of the proposed method for constructing the gradient
3D Voronoi model.
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example, the C3 model can be divided into 30 slices with a length of 1
mm, and the relationship between the mean value of the size irregularity
(the red scatters) and position is illustrated by the red dotted line in
Figure 5(a). The red dotted line nearly coincides with the black line,
which indicates that the simplified method is effective for examining the
spatial distribution of the size irregularity of the 3D Voronoi model.

The spatial distributions of size irregularity in the gradient direction
of the 3D Voronoi models with different modeling parameters are shown
in Figure 5(b) and (c). The model data of each SIGMF could be well fitted
by a linear function (Eq. (7)) in x=w0 2 ½0:05;0:92�. The data near the
boundary should be removed because the cells near the boundary were
cut and incomplete. The gradient parameter k of each model is obtained
and listed in Table 1, and it significantly varies with either the modeling
parameter a or b. It should be noted that the defined gradient parameter
k 6¼ a=w0. The spatial distribution of size irregularity in non-gradient
directions (y- or z-direction) was an approximately flat and straight
line (as shown in Figure 5(d)). This indicates a uniform distribution of
size irregularity in the non-gradient directions.
Figure 4. Probability of shape irregularity for the C3 and B1 models.
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2.2.2. Spatial distribution of relative density
The SIGMFs have a nonlinear spatial distribution of relative density,

as shown in Figure 6(a). The relationship of the relative density ρf with
the cell diameter d and thickness t is determined to as follows based on
Gibson and Ashby [1]:

ρf ¼ h1 � td (8)

where h1 is a constant. Combining Eqs. (1), (7), and (8), for the SIGMFs,
the relative density can be expressed using k as follows:

ρf ðxÞ¼ h1 � t
k � x=w0 � d0 þ h2

(9)

where h1 and h2 are the fitting constants. This analytical function well
characterizes the spatial distribution of relative density of the SIGMF,
e.g., the data of the C3 model with an average relative density ρf ¼ 14%
shown in Figure 6(b). The solid red line presents the theoretical values of
Eq. (9) and the fitting values of h1 and h2 were 3.02, 1.82, respectively.
The data near the boundaries are smaller than those predicted by theo-
retical function because the cells near boundaries were cut and incom-
plete, and the data could be fitted well by linear functions shown by the
blue dotted lines in Figure 6(b).
2.3. Uniaxial compression finite element model

The size irregularity gradient 3D Voronoi foams were meshed using
the finite-element meshing tool after appropriate pruning. A set of rec-
ommended dimensionless modeling and computing parameters [46] was
used to ensure better simulation efficiency and accuracy. The 3D Voronoi
model was meshed using shell elements with a size of 0.13 mm (as shown
in Figure 7(a)). The total number of elements was approximately
1600000. ABAQUS/Explicit dynamic analysis was employed to simulate
quasi-static uniaxial compression tests. The finite element model is
illustrated in Figure 7(b). A pair of rigid bodies was added at the top and
bottom of the 3D Voronoi foam. One was fixed, and the other was
compressed with a constant velocity v ¼ 15 mm=s (strain rate _ε ¼
0:5 =s). The foams had an equal average relative density of 14%. The
mechanical properties of the matrix material (aluminum) [40] are
employed to perform the response of a metal foam. The values of the
density, elastic modulus, Poisson's ratio, yield stress, and tangent
modulus are 2700 kg/m3, 70 GPa, 0.33, 80 MPa, and 30 MPa, respec-
tively [40]. Ductile damage and shear damage are used to describe the
damage and failure properties of the matrix metal material (aluminum).

The rationality of the finite element model has been verified by
performing uniaxial compression, uniaxial tension, and biaxial tension
experiments on aluminum foams with random cells [40, 47, 48]. The
following criteria should be satisfied to ensure the rationality of
quasi-static simulation: the ratio d1 of artificial strain energy to internal
energy should be at most 10%, and the ratio d2 of kinetic energy to in-
ternal energy should be less than 5%. These were satisfied for the size
irregularity gradient 3D Voronoi foams (see Figure 8(a) and (b)).
Therefore, the simulation results for the size irregularity gradient 3D
Voronoi foams are reasonable.

3. Results

3.1. Comparisons of compressive properties of SIGMF and cell wall
gradient metal foam

The nominal stress and strain are defined as follows:

σ¼ Fp þ Ff
2S0

; ε ¼ Δl
w0

(10)



Figure 5. Linear fittings of the spatial distributions of the size irregularity for (a) C3 model in x direction, (b) A1~A4 models with a ranging from 0 to 4 mm and b
being constant zero, (c) models with increase of b from 0 to 1.3 mm and a being constant 3 mm; (d) spatial distribution of C3 model in different directions.
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where p and f represent the loading rigid body and fixed rigid body,
respectively. S0 ¼ w2

0 is the area of a cubic 3D Voronoi with a length of
w0, and Δl is the displacement of the loading rigid body along the
compressive direction.

Nominal stress–strain curves of the C3 and B1T models with average
relative densities ranging from 8% to 30% are shown in Figure 9(a) and
(b). Significant differences are observed. These become more significant
as the average relative density increases. The SIGMF has both a larger
first peak stress and longer strain-hardening region than the cell wall
gradient foam with an equal relative density gradient. In general, if the
nominal strain is marginal, the stress of the SIGMF can be smaller than
that of the cell wall gradient foam. However, the stress of the SIGMF is
significantly higher if the nominal strain is sufficiently high.

The energy absorptions of these two gradient foams are shown in
Figure 9(c) and (d). The SIGMF absorbs less energy than the cell wall
gradient foam when ε < 0:9. Consequently, it would overestimate the
energy absorption capacity of the SIGMF when it is considered to be
identical to the cell wall gradient foam.

Deformations of the C3 and B1T models with an equal average rela-
tive density of 14% are compared in Figure 10. These two gradient foams
5

were compressed layer-by-layer from the large cells to the small cells
before densification. However, the deformation region of the SIGMF was
smaller than that of the cell wall gradient foam. This is consistent with
the experimental observation of Duan et al. [11].

Therefore, the density gradient is insufficient to characterize the
mechanical properties of gradient foams because of the significant dif-
ferences in the stress–strain curve, energy absorption, and deformations.
Considering that the spatial distribution of relative density can be
expressed by the gradient parameter of size irregularity (as shown in Eq.
(9)), the gradient parameter of size irregularity (rather than relative
density) could be more effective for characterizing the macro-
compressive properties of SIGMFs.

3.2. Effects of size gradient parameter on stress–strain curves and energy
absorptions

The stress–strain curves of the SIGMFs are shown in Figure 11. The
stress–strain curve can be divided into five stages: elastic, stress decline,
strain hardening, plateau, and densification. The SIGMF had a large
strain variation range from the beginning of condensation to its



Figure 6. Spatial distributions of the relative density: (a) spatial distributions of the relative density for foams with different values of the gradient parameter k; (b)
fitting of the spatial distribution of the relative density for C3 model by the theoretical equation.

Figure 7. Uniaxial compression finite element model: (a) meshed elements; (b) finite element model.

Figure 8. Energy ratios of simulations for gradient 3D Voronoi models under quasi-static compression loading: (a) the ratio of artificial strain energy to internal
energy for models; (b) the ratio of kinetic energy to internal energy for models.

X. Zhang et al. Heliyon 8 (2022) e12531
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Figure 9. Comparisons of compressive properties between the C3 and B1T models: (a) stress–strain curve, strain ranging from 0 to 0.3; (b) stress–strain curve, strain
ranging from 0 to 1; (c) internal energy ranging from 0 to 100 J; (d) internal energy ranging from 0 to 400 J.

Figure 10. Compression deformations of the C3 and B1T models in the front viewport.

X. Zhang et al. Heliyon 8 (2022) e12531
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completion. This was consistent with the experimental results of gradient
foams [12, 16, 33]. The strain-hardening range plays a crucial role in the
macroscopic compressive properties of SIGMFs.

The strain-hardening range becomes longer as the gradient parameter
k increases, and the stress plateau range shortens or even disappears as
shown in Figure 11. Meanwhile, the slope of the stress–strain curve in the
elastic range is independent of k (as shown in Figure 11(a)). This may be
because all cells of gradient foams deform slightly under compression in
the elastic range. Such slight differences in localized deformation would
not result in an apparent difference in the macroscopic mechanical
response. If the gradient foams have the same relative density and the
same mean diameters of cells, though they possess different k, they still
have similar stress–strain curves in the elastic region. This result agrees
with the experimental results of Duan et al. [16].

The internal energy–strain diagrams of the SIGMFs are shown in
Figure 12(a). The gradient parameter significantly affected the internal
energy. When the strain was marginal (ε < 0:2), the larger the gradient
parameter k of the foam, the lower was the internal energy absorbed by
the foam. However, when the strain was large (ε > 0:6), the foam with a
larger k absorbed more internal energy. Therefore, superior energy ab-
sorption of gradient foams is realized under large deformations.

Miltz and Gruenbaum [49] proposed a parameter called energy ab-
sorption efficiency η (see Eq. (11)) to evaluate the energy absorption of
foams, which is expressed as follows:

η¼ 1
σm

Zεm
0

σdε (11)

where εm and σm are the strain and stress, respectively, at any instant.
The optimal energy absorption occurs when the efficiency attains its
maximum value.

The efficiency–strain curves of the SIGMFs are shown in Figure 12(b).
The dotted lines represent the instant at which the efficiency attains the
maximum value. Themaximum value of η decreases as k increases. This is
because the gradient foam with larger k exhibits a more obvious strain
hardening behavior as shown in Figure 11(b), and the energy absorption
efficiency would decrease with strain hardening behavior of metal foams
during compression.

For metal foams, the densification strain εD could be commonly
defined as the corresponding strain when the energy efficiency attains its
maximum value. The densification strain for each stress–strain curve of
gradient foams was marked using a solid red star and shown in
Figure 11. Compressive stress–strain curves of metal foams with different values o
0 to 1.
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Figure 11(b). These densification strain increases generally with the in-
crease of k, as shown in Figure 13. And the model A1 and A4 exhibits
unnormal values, which may be because when the stress–strain curves of
gradient foams exhibit obvious stress fluctuations at large nominal strain,
the defined densification strain of a gradient foam may be far away from
the real densification point.
3.3. Deformation analysis of SIGMF

The compressive deformation of the C3 model is shown in Figure 10.
Two typical deformation modes appeared gradually as the displacement
increases: (I) in the beginning, structures were compressed layer-by-layer
from the larger cells to the smaller ones; and (II) in the densification
range, the remaining structures were deformedmore andmore uniformly
(similar to uniform Voronoi foams).

To measure the localized deformation of SIGMFs, the localized strain
of any i-th slice can be defined as follows:

εi ¼ 1� xj
i � xj

i�1

x0
i � x0

i�1
(12)

where i is the number of slices (see Figure 14(a)), i ¼ 1 is the slice with
the smallest irregularity, j is the specific instant, and j ¼ 0 is the initial

instant. xji�1; x
j
i are the coordinates of the left and right boundaries,

respectively, of the i-th slice in the x-direction at the instant j. The
localized strain can be used to quantitatively analyze the deformation
mechanisms.

The localized strain of each slice for the C3 model is shown in
Figure 14(b). The localized strain first began at larger cells and was
transmitted layer-by-layer to smaller cells in the strain-hardening range
as the number of slices decreased from 15 to 1 (see Figure 14(b)). The
localized strain of each slice increased abruptly and then, remained flat.
This implies that local structures deformed intensively, and then these
structures could be assumed to be completely in translational motion
when the localized strain reached a critical value. The critical value of
each slice was nearly equal (approximately 0.9, see Figure 14(b)), and it
was larger than the densification strain of most uniform foams. There-
fore, it is inaccurate to replace the stress of the local structures of the
SIGMF with the plateau stress of the uniform foam.

To evaluate the localized deformation of each slice, t inti ; tplai were
defined as the earliest instant at which the localized strain of the i-th slice
begins to increase abruptly and maintains plate lines, respectively (e.g.,
f gradient parameter: (a) strain ranging from 0 to 0.04; (b) strain ranging from



Figure 12. Effects of gradient parameter on (a) internal energy and (b) energy efficiency.
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big blue dots for the eighth slice shown in Figure 14(b)). The deformation
region was larger than one slice and smaller than two slices because

t intiþ2 > tplai > t intiþ1. Three time-increments were defined below: Δtp�i ¼
tplai � t inti ;Δtp�p ¼ tplaiþ1 � tplai ;Δt i�i ¼ tintiþ1 � t inti , and they were compared
to the characterized time incrementΔtcha ¼ w0=15=v ¼ 0:133 s as shown
in Figure 14(c). Three observations could be obtained: (1) Δtp�i > Δtcha,
therefore the deformation region should be divided into three parts (the
large plastic deformation region named A, represented by the pink block
A in Figure 14(b) and red dot block in Figure 14(d); the small plastic
deformation region named B, represented by the pink dot block B in
Figure 14(b) and blue dot block in Figure 14(d); and the nearly unde-
formed region, represented by the part excluding regions A and B in
Figure 14(d)). (2) Region A dominates the structure's deformation in the
strain-hardening region. Therefore, it is rational to assume that the
deformation occurred only in a small finite domain near the analytical
rigid body. Furthermore, the relationship between the nominal strain ε
Figure 13. Effects of gradient parameter on the densification strain of size ir-
regularity gradient metal foams.
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and position x of cells in the strain-hardening range can be simplified as
follows.

ε¼1� x=w0 (13)

(3) The width lB0 of region B does not vary because both Δtp�p and Δ
t i�i are nearly constant during compression (see Figure 14(c)).

4. Constitutive model of the stress–strain curve of SIGMF

4.1. Establishment of theoretical model

A typical five-stage characterization is observed for the stress–strain
curve of SIGMF (see Figure 11), so all of these characterizations should be
described by constitutive model. Among these five stages, the strain-
hardening range plays a crucial role in the macroscopic compressive
properties of SIGMFs. Therefore, we construct a theoretical model with
only the parameters of the size irregularity gradient to characterize the
macroscopic responses of the SIGMF in the strain-hardening range. The
theoretical model was established based on the energy conservation law
and the layer-by-layer deformation model.

Given the condition that the kinetic energy of foam structures can be
omitted under quasi-static compression, the external work W should be
equal to the internal energy E based on the energy conservation law. The
power of the external work P can be expressed as follows.

P¼ dE
dt

(14)

The power when the foam is compressed with a constant velocity v
can be determined as

dP¼ dðF � vÞ¼ dF � v (15)

Here, F is the external force in the compression direction. According to
Newton's third law, it should be equal to the reaction force of rigid bodies
in the compression direction under quasi-static compression.

The stress contours of the C3 model are shown in Figure 14(d). At any
time t0 during deformation mode (I), the deformation of foams can be
divided into three parts (named A, B, and C; see Figure 14(b) and (d)).
Comparing the deformations at the instant t ¼ t0 with those at t ¼ t0 þ
Δt, the following five assumptions could be rational to describe the
deformation of structures during a time increment Δt: (1) The structures
in region A would not deform further and could be assumed could be



Figure 14. Deformation analysis of the C3 model: (a) divided the foam into slices in x direction; (b) localized strain of each slice under compression; (c) three time-
increments of localized strain for each slice; (d) deformation process of the C3 model under compression with increase of time, red dot line region named A represents
the large plastic deformation region, blue dot line region named B represents the small plastic deformation region.
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assumed to be completely in translational motion. (2) The structures on
the right side of region B at t ¼ t0 within a distance δ1 ¼ v � Δt deformed
from nearly zero to a large strain (similar to the case of region A). (3)
Both the deformation degree of matrix structures in region B and the
width of region B would not vary. However, the structures of region B
transformed as the position of the region B shifted. (4) The deformation
energy of the structures in region C could be omitted. (5) Region A
dominated the deformation in the strain-hardening region.

The increment of deformation energy can be determined based on the
assumption (4), as following:

ΔE¼ðωA1 �VsA1 þωB1 �VsB1Þ � ðωA0 �VsA0 þωB0 �VsB0Þ (16)

where the subscripts 0 and 1 represent the instants t ¼ t0 and t ¼ t0 þ Δt,
respectively; ω is the equivalent mean energy density of the matrix ma-
terial in the deformed region; VsA;VsB are the volumes of the metal matrix
material in regions A and B, respectively.
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The localized strains in the plate straight line were approximately
equal for each slice (see Figure 14(b)). Thus, ωA1 ¼ ωA0. Considering
assumption (3), ωB1 ¼ ωB0. Combining assumptions (1) and (2), we
obtain

ΔE¼ωA0 � ρfB0 � v �Δt � S0 þωB0 �
�
ρfB1 � ρfB0

� �VB0 (17)

where ρfB0; ρfB1 are the relative density of deformation region B at t ¼ t0
and t ¼ t0 þ Δt, respectively; area S0 ¼ w2

0; and VB0 ¼ lB0 � S0 is the foam
volume of deformation region B. lB0 is the width of region B in the
compressive direction at t ¼ t0. It does not vary according to assumption
(3). When Δt → 0,

dE¼ωA0 � ρfB0 � v � S0 �dt þ ωB0 �
dρfB
dx

� v � lB0 � S0 � dt (18)

The nominal stress can then be defined as
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dσ¼ dF
S0

(19)
Combining Eqs. (14), (15), (18), and (19) yields the relationship be-
tween the nominal stress and relative density.

dσ¼ωA �dρfB þωB � lB0 �d
�
dρfB
dx

�
(20)

According to assumption (5), the localized strain in Figure 14(b), the
stress contour in Figure 14(d), and the spatial distribution of relative
density in Figure 6(a), the second part of Eq. (20) can be omitted if it is
significantly smaller than the first part. Therefore, Eq. (20) can be
simplified as

dσ¼ωA �dρfB (21)

Eq. (21) indicates that the nominal stress is a linear function, rather
than a complex exponential function [16], of the current relative density.
Figure 15. Verification of the theoretical model by simulation and previous experim
and relative density of the C3 model; (b) comparison of theoretical predictions with
relative density of published experimental results by Duan et al. (2020); (d) comp
et al. (2020).
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This conclusion is verified by the simulation results of the C3 model in
the strain-hardening range (ε 2 ½0:015;0:77�) shown in Figure 15(a), and
the experimental results shown in Figure 15(c). Here,ωA is the equivalent
mean energy density of the matrix material in a large-deformation
region.

Substituting Eqs. (9) and (13) into Eq. (21), the relationship between
the nominal strain and nominal stress in the strain-hardening region can
be expressed as follows:

σ¼ωA � h1t
k � ð1� εÞ � d0 þ h2

þ σ1 (22)

where ωA is the equivalent mean energy density; k is the gradient
parameter of size irregularity; d0 is the mean equivalent diameter; t is the
thickness of cells; h1; h2; σ1 are fitting constants.

The stress–strain relationship was linear in both elastic and stress-
decline stages. The function Eq. (23) proposed by Zheng et al. [50] can
ental results in strain-hardening range: (a) relationship between nominal stress
simulation results of the C3 model; (c) relationship between nominal stress and
arison of theoretical predictions with published experimental results by Duan



Figure 16. Characterizations of the stress–strain curve for (a) C3 model; (b) A3 model.
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be employed to effectively describe the plateau and densification ranges
of gradient foams:

σ¼ σ0 þ c � ε

ð1� εÞ2 (23)

where σ0 and c are the fitting parameters that depend on the relative
density. Therefore, the segmented function Eq. (24) can be employed to
describe all the five stages of the stress–strain curve.

σ¼

8>>>>>>>><
>>>>>>>>:

c1ε ðε � ε1Þ
c2 þ c3ε ðε1 < ε � ε2Þ

ωA � c4 � t
k � ð1� εÞ � d0 þ c5

þ c6 ðε2 < ε < ε3Þ

c7 þ c8
ε

ð1� εÞ2 ðε � ε3Þ

(24)

Here ciði¼ 1; 2; :::;8Þ is the fitting parameters; c1 is the elastic
modulus in the elastic region; c4; c5 are the fitting parameters of relative
density; c7 is the plateau stress; d0 is the mean equivalent diameter; t is
the thickness of gradient foams; ε1 is the strain at the instant the first peak
stress appears; ε2 is the strain at the instant the first valley appears; ε3 is
the strain at the beginning of the plateau stage.
4.2. Verification of theoretical model

The theoretical model in Eq. (22) is in good agreement with the
simulation results in the strain-hardening region, as shown in
Figure 15(b). The nominal stress exhibits linear function (Eq. (21)) of the
relative density in strain-hardening region, including the stress–strain
curve at the beginning of the strain-hardening region where the theo-
retical Eq. (9) could not well describe the spatial distribution of relative
density. When the linear function well characterizes the spatial distri-
bution of relative density near the boundary (as blue dot lines shown in
Figure 6(b)), combining Eq. (21), the stress could be well predicted as
Table 2. Fitting parameters of Eq. (24) for size irregularity gradient foams.

Model c1 (MPa) c2 (MPa) c3 (MPa) ωA (MPa)

C3 2502.40 2.32 �61.96 68.64

A3 2884.80 3.21 �119.98 73.82
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shown by the blue line in Figure 15(b). Therefore, the theoretical model
is in good agreement with the simulation results.

This theoretical model shows well agreement with experimental re-
sults of the gradient foam named “M1-PG” (reported in Duan et al. [16]),
as shown in Figure 15(d). The spatial distribution of the relative density
of “M1-PG” foam can be determined using Eq. (8) proposed by Gibson
and Ashby [1]with the foam's modeling parameters (C ¼ 2:32; t ¼
0:4 mm; Smax ¼ 10 mm; Smin ¼ 5 mm; M ¼ 1) [16]. The relationship
between the nominal stress and relative density can be well fitted by a
linear function, as shown in Figure 15(c). This demonstrates that the
proposed theoretical model in Eq. (21) is accurate. The predictions of the
experimental stress–strain curve in the strain-hardening (nominal strain
ranging from 0.04 to 0.72) by our theoretical model and E-PH-L model
were shown in Figure 15(b). The coefficient of determinations of our
theoretical model and the E-PH-L model are 0.97 and 0.95, respectively.
These results indicated that our theoretical model better characterized
the stress–strain curve in the strain-hardening than the E-PH-Lmodel (see
Figure 15(d). Meanwhile, the constitutive model proposed in Eq. (24) can
accurately predict the simulation results for both C3 model with a large k
(see Figure 16(a)) and A3 model with a small k (see Figure 16(b)). The
fitting parameters are listed in Table 2. Thus, the proposed constitutive
model can effectively characterize the macro quasi-static compressive
mechanical properties of SIGMFs.

5. Conclusions

A series of metal foam models was developed using the 3D Voronoi
technique. These have the same average relative densities, the same
average equivalent diameters and different size irregularity gradients.
The compression process of cell wall gradient metal foams and size ir-
regularity gradient metal foams were studied carefully, respectively. The
simulation results showed that there is obvious difference in macroscopic
mechanical properties though these metal foams models have the same
relative density gradient. The density gradient is insufficient to describe
the macroscopic properties of gradient foams when the mesostructures
become complex. The size irregularity gradient should be introduced to
c4 c5 (mm) c6 (MPa) c7 (MPa) c8 (MPa)

3.02 1.82 �3.84 8.62 0.03

1.92 1.05 �3.67 4.75 0.06
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characterize the macroscopic compressive properties of the SIGMFs. The
structures of SIGMF were compressed layer-by-layer from the larger cells
to smaller ones in the strain-hardening range. And a theoretical model
was developed to characterize the compression process from the first cell-
collapse to the condensation, showing a linear relationship between the
nominal stress and the current relative density. These findings can be a
useful tool to guideline the design and applications of gradient metal
foams.
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