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Abstract: Acute lymphoblastic leukemia (ALL) is the most successful paradigm of how risk-adapted
therapy and detailed understanding of the genetic alterations driving leukemogenesis and therapeutic
response may dramatically improve treatment outcomes, with cure rates now exceeding 90% in
children. However, ALL still represents a leading cause of cancer-related death in the young, and
the outcome for older adolescents and young adults with ALL remains poor. In the past decade,
next generation sequencing has enabled critical advances in our understanding of leukemogenesis.
These include the identification of risk-associated ALL subtypes (e.g., those with rearrangements
of MEF2D, DUX4, NUTM1, ZNF384 and BCL11B; the PAX5 P80R and IKZF1 N159Y mutations;
and genomic phenocopies such as Ph-like ALL) and the genomic basis of disease evolution. These
advances have been complemented by the development of novel therapeutic approaches, including
those that are of mutation-specific, such as tyrosine kinase inhibitors, and those that are mutation-
agnostic, including antibody and cellular immunotherapies, and protein degradation strategies such
as proteolysis-targeting chimeras. Herein, we review the genetic taxonomy of ALL with a focus on
clinical implications and the implementation of genomic diagnostic approaches.

Keywords: B-ALL; DUX4; IKZF1; PAX5; Ph-like; ZNF384; NUTM1; T-ALL; NOTCH1; BCL11B;
transcriptome; genome

1. Introduction

Acute lymphoblastic leukemia (ALL) is the most frequent childhood tumor and de-
spite cure rates now exceeding 90% in children, outcomes for older children and adults
remain poor with cure rates below 40% in those over the age of 40 [1–3], despite pediatric-
inspired chemotherapy regimens [4]. This discrepancy is in part attributable to the different
prevalence of genetic alterations across age. ALL may be of B- (B-ALL) or T-lymphoid
(T-ALL) lineage, and comprises over thirty distinct subtypes characterized by germline and
somatic genetic alterations that converge on distinct gene expression profiles [5–12]. These
subtypes are defined by disease-initiating recurrent chromosomal gains and losses (hyper-
and hypodiploidy, and complex intrachromosomal amplification of chromosome 21); chro-
mosomal rearrangements that deregulate oncogenes or encode chimeric fusion oncopro-
teins, importantly often including cryptic rearrangements not identifiable by conventional
cytogenetic approaches, such as DUX4 and EPOR rearrangements; subtypes defined by
single point mutations (e.g., PAX5 P80R or IKZF1 N159Y); subtypes defined by enhancer
hijacking (e.g., BCL11B-rearrangements in T-ALL and lineage ambiguous leukemia) [5];
and subtypes that “phenocopy” established subtypes, with similar gene expression pro-
file but different founding alterations (e.g., BCR-ABL1-like ALL and ETV6-RUNX1-like
ALL) [7,13–15]. Secondary somatic DNA copy number alterations and sequence muta-
tions are also important in leukemogenesis and treatment response, and their nature and
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prevalence vary according to the ALL subtype [6]. Multiple genes are associated with pre-
disposition to ALL, including polymorphic variants in ARID5B, BAK1, CDKN2A, CDKN2B,
CEBPE, ELK3, ERG, GATA3, IGF2BP1, IKZF1, IKZF3, LHPP, MYC, PTPRJ, TP63 and the
BMI1-PIP4K2A locus or rare mutations in PAX5, TP53, IKZF1 and ETV6 [16]. Several are
associated with ALL subtype, for example, variants in GATA3 have been associated with
an increased risk of Philadelphia- like (Ph-like) ALL in patients of Hispanic ancestry [17],
variants in TP63 and PTPRJ with ETV6-RUNX1 ALL [18] and in ERG with TCF3-PBX1
ALL and African American ancestry [19,20]. A variant in the deubiquitinase gene USP7
has been instead associated with risk of T-lineage ALL [19].

Accurate identification of the genetic abnormalities that drive ALL is important to
risk stratify disease, and to guide the incorporation of molecular targeted therapeutic
approaches to reduce the risk of relapse. This has been previously relied upon conventional
karyotyping, fluorescence in situ hybridization (FISH) and targeted-molecular analyses.
However, studies from this past decade have highlighted the importance of next generation
sequencing (NGS) approaches to identify cryptic genetic rearrangements, structural DNA
variation and gene expression signatures otherwise not identifiable that demand a revision
of diagnostic approaches. This review describes the current genomic landscape of B- and
T-ALL, highlighting their genetic characterization and diagnostic classification, clinical
features, and therapeutic implications.

2. B-Cell Precursor Acute Lymphoblastic Leukemia
2.1. Previously Established Subtypes with Recurring Chromosomal Abnormalities

Prior the advent of NGS, classification of ALL has been relied on conventional kary-
otyping, FISH and targeted-molecular analyses for the identification of recurring chromo-
somal abnormalities including aneuploidy, chromosomal rearrangements and/or known
gene fusions (Figure 1).

2.1.1. Subtypes with Chromosomal Aneuploidy

Chromosomal aneuploidies [21], such as hyperdiploidy and hypodiploidy, are gen-
erally early initiating events acquired prenatally during fetal hematopoiesis and likely
require secondary cooperating oncogenic insults to promote leukemia development [22].

High hyperdiploidy (modal number of 51–67 chromosomes, with nonrandom gains
most commonly of chromosomes X, 4, 6, 10, 14, 17, 18, and 21) is present in 25–30% of ALL
in children and is associated with young age (3–5 years) at diagnosis and favorable out-
come [23,24]. Mutations of genes encoding mediators of Ras signaling (KRAS, NRAS, FLT3,
PTPN11) and regulators of chromatin state (e.g., the histone 3 lysine 18 and 27 acetylase
and transcriptional coregulator CREBBP, and the H3K36 methylase WHSC1) are frequent
concomitant genetic events in high hyperdiploid ALL [23]. CREBBP mutations are enriched
in the histone acetyl transferase domain and are selected during disease evolution [25]. As
a potential mechanism for the generation of aneuploidy, hyperdiploid ALL blasts show a
delay in early mitosis at prometaphase associated with defects in chromosome alignment,
which lead to chromosome-segregation defects and nonmodal karyotypes [26]. Moreover,
condensin complex activity is impaired, leading to chromosome hypocondensation, loss of
centromere stiffness, and mislocalization of the chromosome passenger complex proteins
Aurora B kinase (AURKB) and BIRC5 (survivin) in early mitosis [26]. Notwithstanding
the favorable outcome of this subtype, condensin impairment suggests novel molecular
targets (condensin-complex members, AURKB, or the spindle assembly checkpoint) for
potential pharmacological intervention.

Hypodiploid ALL includes near haploid (24–31 chromosomes) and low hypodiploid
(32–39 chromosomes) subtypes [27]. Near haploidy is present in ~2% of childhood ALL
and is associated with Ras mutations (particularly NF1) and deletion/mutation of IKZF3.
The gene expression profile and patterns of co-mutation (e.g., CREBBP and the Ras sig-
naling pathway) are similar to high hyperdiploid ALL, suggesting a potential common
origin of these two forms of leukemia. Low hypodiploidy instead is uncommon in chil-
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dren (~1%) but present in >10% of adults, and is characterized by deletion of IKZF2, RB1,
CDKN2A/CDKN2B and near-universal mutations of TP53 mutations, which are inherited
in approximately half of cases and indicate that low hypodiploid ALL is a manifestation of
Li-Fraumeni syndrome [28]. Duplication of the aneuploid genome, resulting in clones with
50 to 78 chromosomes, is common, with duplicated subclones present in the majority of
cases. Predominance of the duplicated clone, known as masked hypodiploidy, may be mis-
diagnosed as high hyperdiploidy [29]. However, these states may usually be distinguished
as the duplicated hypodiploid genome typically exhibits diploid and tetraploid chromo-
somes; in contrast high hyperdiploidy is characterized by a mixture of triploid and some
tetraploid chromosomes (e.g., chromosomes 21, X). Moreover, the pattern of chromosomal
losses in hypodiploid ALL is not random and chromosome 21 is never lost indicating a
central role in leukemic cell fitness [27]. Hypodiploid ALL is associated with unfavorable
outcome, although this is mitigated by minimal residual disease (MRD) risk-stratified
therapy in several studies [30]. Moreover, for patients who achieve MRD-negative status
after induction, allogeneic transplantation has been shown to be not successful in improv-
ing overall survival [31,32]. Although MRD-oriented protocols, older adults and elderly
patients with low hypodiploidy do fairly poor with higher five-year cumulative incidence
of relapse compared to high hypodiploid cases [33], making them candidates for different
treatment approaches (e.g., immunotherapy and targeted therapies). Among those, pre-
clinical studies have shown that hypodiploid ALL cells are sensitive to Phosphoinositide
3-kinase (PI3K) and BCL2 Apoptosis Regulator (BCL2) inhibitors [27,34].

2.1.2. iAMP21

Intrachromosomal amplification of chromosome 21 (iAMP21) accounts for 1% of
childhood ALL and is associated with older children (median age at diagnosis 9 years) and
a low white cell count. Behind the formation of this chromosomal abnormality there is a
characteristic mechanism of breakage–fusion–bridge cycles followed by chromothripsis
and other complex structural rearrangements of chromosome 21 [35]. Two germline
genomic alterations are associated with a markedly elevated risk of iAMP21. These are a
germline Robertsonian translocation rob (15;21) and a germline ring chromosome 21 [36].
The presence of iAMP21 is associated with poor prognosis in most studies, although this
has been improved with intensive treatment [37].

2.1.3. Subtypes with Recurrent Chromosomal Translocations and/or Gene Fusions

The t(12;21)(p13;q22) translocation with the ETV6-RUNX1 (TEL-AML1) fusion is the
most common alteration in childhood B-ALL occurring in 20–25% of cases [38–40]. The
ETV6-RUNX1 fusion is considered to be a leukemia-initiating alteration which arises in
utero, as demonstrated by the identification in umbilical cord blood [39] and by the prenatal
monoclonal origin in identical twins [41]. The typically prolonged latency from birth to
clinically manifest leukemia indicates that ETV6-RUNX1 alone requires cooperating genetic
events to induce leukemia, including deletion of the non-rearranged ETV6 allele, focal
deletion of PAX5 and mutation of WHSC1 [39,42–44].

The t(1;19)(q23;p13) translocation encoding TCF3-PBX1 defines a subtype of 5–6% of
pediatric B-ALL but only 1% of adult cases. This fusion is associated with a pre-B im-
munophenotype and expression of cytoplasmic immunoglobulin heavy chain and with
higher peripheral blood white cell count at diagnosis [6,7,45]. Current intensive treat-
ment has changed the historically high risk of TCF3-PBX1 childhood ALL that was in
part ascribed to central nervous system (CNS) involvement and relapse in favorable and
intermediate risk cases [46,47]. TCF3-PBX1 leukemic cells may be amenable to inhibition
of pre-BCR signaling by dasatinib and ponatinib [48,49]. This approach may lead to com-
pensatory upregulation of ROR1 expression, and thus, concomitant inhibition of ROR1
could enhance the sensitivity of dasatinib [50]. TCF3 and TCF4 are also rearranged to
HLF, and define a rare subtype of ALL (<1%) associated with an extremely poor prog-
nosis [3,7]. TCF3-PBX1 and TCF3-HLF ALL have distinct gene expression profiles and
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mutational landscapes [7,51]. TCF3-HLF ALL is associated with expression of stem cell and
myeloid markers, alterations of PAX5 (deletions) and the Ras signaling pathway [7,51] and
sensitivity to therapies inhibiting BCL2 and the pre-B cell receptor [52,53], immunologic
therapies [54], and to Aurora A kinase inhibitors [55].

Rearrangements of the mixed-lineage leukemia 1 (MLL1) gene (now renamed Lysine
[K]-specific methyl transferase 2A or KMT2A) on chromosome 11q23 to over 80 different
partner genes define a subtype of leukemia with lymphoid and myeloid features and
poor prognosis [12,56]. It occurs predominantly in infants (~80%), with a second peak of
onset in adulthood where the most common partner of rearrangement is AFF1 [57]. It is
typically associated with pro-B (CD10-) immunophenotype, and expression of myeloid
markers. Irrespective of fusion partner or lineage phenotype this subtype shows a dis-
tinct gene expression signature with overexpression of HOX cluster genes and the HOX
cofactor MEIS1 [58,59]. In infant KMT2A-rearranged ALL, the PI3K and Ras pathways are
commonly altered [7,60,61]. KMT2A rearrangement is associated with altered chromatin
patterning including H3K79 methylation, which has stimulated development of novel
therapeutic approaches including inhibition of DOT1L [62], bromodomain, Menin, and the
polycomb repressive complex [57,63,64]. The lineage plasticity characteristic of KMT2A-
rearranged ALL is important in the context of immunotherapy, as this may facilitate loss
of expression of CD19 and escape from CD19 Chimeric antigen receptor T cell (CAR-T)
therapy [65].

The frequency of patients with BCR-ABL1 (Philadelphia chromosome) arising from
the t(9;22)(q34;q11) translocation increases with age with 2–5% in childhood, 6% in adoles-
cents and young adults (AYA), and more than 25% in adults [66,67]. Although historically
considered a high-risk subtype, the incorporation of tyrosine kinase inhibitors (TKIs) into
the standard treatment regimen for BCR-ABL1-positive ALL significantly improved clinical
outcomes [68–70]. Secondary cooperative mutations are IKZF1, PAX5 and CDKN2A/B dele-
tions [42,69,71,72]. IKZF1 alterations (most commonly deletions) have been associated with
unfavorable outcome irrespective of TKI exposure [68,73], especially when co-occurring
with (CDKN2A or CDKN2B, PAX5, or both: IKZF1plus) [68,69].

2.2. Emerging B-ALL Subtypes Defined by Genome Sequencing Studies

NGS approaches, particularly whole transcriptome sequencing (WTS), have enabled
several research groups the identification of a large number of novel genetic alterations.
These include cryptic rearrangements not identifiable by conventional approaches; novel
subtypes that “phenocopy” established subtypes sharing similar gene expression profile
but having different founding alterations; and subtypes defined by a single point mutation.

2.2.1. DUX4, MEF2D, ZNF384 and NUTM1 Gene Fusions

Translocation of DUX4 to the immunoglobulin heavy chain locus (IGH) is a cytogenet-
ically cryptic alteration occurring in 5–10% of B-ALL and resulting in overexpression of
a 3′ truncated DUX4 protein [7,13,74–77]. DUX4 is located within the D4Z4 subtelomeric
repeat element on chromosome 4q/10q and encodes a double homeobox transcription
factor that activates expression of large number of genes in early developing embryos, but
it is thereafter silenced in most somatic cells [78]. Aberrant DUX4 expression is associ-
ated with facioscapulohumeral dystrophy (FSHD) [79], while DUX4 rearrangements have
been also identified in Ewing-like sarcoma [80] and rhabdomyosarcoma [81]. In B-ALL,
truncated DUX4 protein binds to an intragenic region of ERG resulting in transcriptional
deregulation, and commonly, expression of a C-terminal ERG protein fragment, and/or
ERG deletion. This subtype has a very distinctive gene expression profile and immunophe-
notype (CD2 and CD371 positive), common deletions of IKZF1 (40%) and despite this,
excellent outcome [76,77,82,83]. Accurate identification of all cases of DUX4-rearranged
ALL requires direct identification of rearrangement (e.g., by WTS), or alternatively, gene
expression-based clustering or high DUX4 expression. The detection of strong CD371 cell
surface expression by flow cytometry is a promising surrogate marker for this subtype [84].
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Although ERG deletion is common in, and largely restricted to DUX4-rearranged ALL,
these deletions are secondary events, commonly subclonal, and not present in all cases.
Thus, the use of ERG deletion as a surrogate for identification of DUX4-rearranged ALL is
suboptimal and should be avoided.

MEF2D (myocyte enhancer factor 2D) rearrangements occur in ~4% of childhood
and 10% adult B-ALL cases. This subtype shows a distinct immunophenotype with
low/absent expression of CD10, and positivity for CD38 and cytoplasmic µ chain, and
distinct expression profiles [7,85–88]. MEF2D is the 5′ partner in all described fusions,
whereas B-cell CLL/lymphoma (BCL) 9 and heterogeneous nuclear ribonucleoprotein
U-like 1 (HNRNPUL1) are the two most recurrent 3′ partners. The rearrangements result in
enhanced MEF2D transcriptional activity, increased HDAC9 expression and sensitivity to
histone deacetylase inhibitors, such as panobinostat [85]. MEF2D has also been implicated
in a core transcription factor regulatory circuit involving SREBF1 that regulates pre-BCR
and lipid metabolism, that are therapeutic vulnerabilities [89]. Sensitivity to staurosporine
and venetoclax has been also described [90]. MEF2D-rearranged ALL shows high levels
of minimal residual disease and is considered to be an unfavorable subtype because of its
poor event-free survival rates [82,83].

ZNF384-, or less commonly, ZNF362-rearranged acute leukemia is a biologically
and clinically distinct leukemic subtype present in ~6% of childhood, 7.3% of adult,
and 15% of AYA B-ALL, and in 48% of B/myeloid mixed phenotype acute leukemia
(MPAL) [7,13,91–93]. These cases show a characteristic immunophenotype with weak
CD10 and aberrant expression of the myeloid markers, CD13, and/or CD33 [92,94]. Expres-
sion of myeloperoxidase (MPO) is often the only feature distinguishing cases diagnosed as
B-ALL (MPO−) or B/myeloid MPAL (MPO+). Different fusion partners, usually transcrip-
tion factor (e.g., TAF15 and TCF3) or chromatin modifiers (e.g., CREBBP, EP300, SMARCA2,
and ARID1B) have been identified for ZNF384, with EP300 being the most common. In all
rearrangements the zinc-finger domains of the C2H2-type zinc-finger transcription factors
ZNF384/ZNF362 are retained [7,13,91,92,95]. The same cooperating genetic alterations
and transcriptional profile is observed in ZNF384-rearranged B-ALL and MPAL, and both
exhibit lineage plasticity during disease progression (e.g., with shift in immunophenotype
from lymphoid to myeloid from diagnosis to relapse). ZNF384 rearrangements are acquired
in a subset of hematopoietic stem cells and prime leukemia cells for lineage plasticity [92].
A report of ZNF384-rearranged ALL in twins implicated a fetal hematopoietic progenitor
as the cell of origin confirming that these rearrangements are founder alterations [96].
Prognosis varies by fusion partner: the EP300-ZNF384 fusion is associated with favorable
outcome while the TCF3-ZNF384 fusion is frequently associated with late relapses and a
poor prognosis [92,93]. However, overexpression of FLT3, characteristic of this subtype,
makes this leukemia amenable to FLT3 inhibition [97].

NUTM1 (nuclear protein in testis midline carcinoma family 1) rearrangements (<2% of
childhood B-ALL and mostly infant without KMT2A-rearrangements) [7,13,88,98–100] are
characterized by fusion of NUTM1 to different partners, including transcription factors
and epigenetic regulators (e.g., ACIN1, AFF1, ATAD5, BRD9, CHD4, CUX1, IKZF1, RUNX1,
SLC12A6, and ZNF618), that drive aberrant NUTM1 expression [7,13]. In all fusions, the
NUT domain is retained, and this is hypothesized to lead to global changes in chromatin
acetylation [101] and to sensitivity to histone deacetylase inhibitors or bromodomain
inhibitors in case of fusions with BRD9. NUTM1 rearrangements confer an excellent
prognosis to current therapeutic approaches [82,83,98]. Since not all NUTM1 fusions
are detectable by karyotyping either break-apart FISH or, preferably, WTS are the best
approaches for diagnosis. In addition, the finding that both RNA expression of the 3′ exons
and protein expression are highly specific for this subtype may help in diagnosis.
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Figure 1. This schematic algorithm for B-ALL subtyping was modified from the figure originally published in Paietta E. et al.
Molecular Classification Improves Risk Assessment in Adult BCR-ABL1-negative B-ALL. Blood Prepublished Apr 25 2021;
doi:10.1182/blood.2020010144 [83]. This figure describes each B-ALL subtype according to the specific genetic alterations
and gene expression profile. Moreover, for each subtype peak prevalence and prognosis are shown. Subtypes are colored
according to defining genetic alteration: gross chromosomal abnormalities (purple), transcription factor rearrangements
(blue), other transcription factor alterations (blue), and kinase alterations (orange). Abbreviations: AYA, adolescent and
young adult; tSNE, t-distributed stochastic neighbor embedding; TBD: to be defined; -R: rearranged.
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2.2.2. Subtypes That Phenocopy Established Subtypes
Ph-Like ALL

Ph-like or BCR-ABL1-like ALL is characterized by a gene expression signature similar
to that of Ph-positive ALL but lacking the pathognomonic BCR-ABL1 oncoprotein of Ph+
ALL [15,66,102–110]. Its incidence ranges from ~10–15% in children to ~20% in older
adults, with a peak (25–30%) in the AYA ALL population. Similar to patients with Ph+
ALL, patients with Ph-like ALL often exhibit adverse clinical features and poor outcome
and frequently harbor alterations of IKZF1 or other B-lymphoid transcription factor genes.
Over 60 heterogenous genetic alterations in kinases and cytokine receptors drive consti-
tutively active kinase or cytokine receptor signaling, many of which have been shown to
be druggable with a variety of kinase inhibitors. The most commonly mutated pathways
are the ABL and JAK-STAT pathways with multiple rearrangements and lesions that con-
verge on downstream ABL/JAK-STAT signaling. Founder alterations may be grouped into
three broad types: (i) JAK/STAT alterations including: mutations activating cytokine recep-
tors (e.g., CRLF2 and IL7R); enhancer hijacking gene rearrangements deregulating cytokine
receptor expression (e.g., IGH-CRLF2 and P2RY8–CRLF2) [111–114]; gene fusions and/or
mutations activating kinases (e.g., JAK1, JAK2, JAK3, TYK2); and rearrangements hijacking
and truncating cytokine receptor expression (e.g., cryptic EPOR rearrangements) [115];
(ii) fusions involving ABL-class genes (ABL1, ABL2, CSF1R, LYN, PDGFRA, PDGFRB); and
(iii) less common fusions (FLT3, FGFR1, NTRK3, PTK2B) [109] whose number is growing
with increasing sequencing studies of different cohorts. Among these, alterations of CRLF2
are present in approximately half of Ph-like ALL in AYAs and adults. CRLF2 is located
in the pseudoautosomal region of the sex chromosomes (PAR1) at Xp22.3/Yp11.3, and its
alterations include: (1) a cryptic rearrangement that juxtaposes CRLF2 to the IGH locus;
(2) a focal deletion in the pseudoautosomal region of the sex chromosomes resulting in P2Y
receptor family member 8 (P2RY8)-CRLF2 fusion that positions CRLF2 under the control of
the P2RY8 promoter; and less frequently by (3) an activating CRLF2 point mutation, F232C.
PAR1 deletions, as a surrogate for rearrangement of CRLF2, have been incorporated into
the criteria for “IKZF1plus”, a designation based on DNA copy number profiling, commonly
by single nucleotide polymorphism (SNP) or multiplex ligation-dependent probe amplifi-
cation (MLPA) arrays. In some studies, IKZF1plus has been associated with a higher risk of
relapse defined by co-occurrence of the IKZF1 deletion with deletion of CDKN2A, CDKN2B,
PAX5, and/or PAR1 region in the absence of ERG deletion [116]. Notably, however, the
IKZF1plus designation typically does not consider cases with IGH-CRLF2 due to the inability
of these platforms to detect this alteration.

The heterogeneous genomic landscape and often cytogenetically cryptic alterations
identified in Ph-like ALL may make diagnosis of this entity and its driver alterations chal-
lenging, but several tractable diagnostic approaches are available, depending on technical
capability of a laboratory, and the desired clinical/diagnostic endpoint (e.g., identification
of the gene expression profile of Ph-like ALL c.f. identification of the most common driver
kinase alterations). Comprehensive clinical NGS, including WTS, is the best approach to
identify Ph-like ALL patients with targetable kinase alterations, as it enables analysis of
gene expression, fusions, aneuploidy and sequence mutations. Selective/capture-based
sequencing approaches (e.g., Archer FusionPlex, and FoundationOne Heme) also iden-
tify the majority of kinase-deregulating rearrangements in Ph-like ALL. If genomic ap-
proaches are not available, a more targeted screening approach using routine diagnostics,
including flow cytometry (especially for CRLF2, for which positivity on flow cytometry
is strongly correlated with rearrangement) and FISH for the most common kinase tar-
gets of rearrangement, is still effective for swift identification of Ph-like ALL [104]. The
identification of specific genetic lesions is important for guiding targeted therapeutic in-
tervention as a proportion of kinase-activating alterations in Ph-like ALL can, at least
based on in vitro and preclinical models, be targeted by FDA-approved TKIs: JAK-STAT
signaling (JAK inhibition); ABL-class fusions (ABL inhibitor); FLT3 and NTRK3 fusions
(FLT3 and NTRK3 inhibitor) [104]. Several recent studies have described the efficacy of
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ABL1 and NTRK inhibitors in the treatment of Ph-like ALL cases with rearrangement of
these genes [117,118]. Combinatorial use of kinase inhibitors against multiple signaling
has shown synergism in patient-derived xenograft (PDX) models of CRLF2/JAK mutant
(JAK and PI3K/mTOR inhibitors), ABL/PDGFR mutant (dasatinib and PI3K/mTOR in-
hibitor) and EPOR-rearranged (ponatinib and ruxolitinib) [119]. Moreover, recently dual
JAK/GSPT1-degrading proteolysis-targeting chimeras PROTACs have been developed
and showed efficacy in Ph-like B-ALL kinase-driven PDX models which were otherwise un-
responsive to type I JAK inhibitors [120]. Lastly, the use of immunotherapeutic agents, such
as blinatumomab, inotuzumab, and CAR-T cells (including those targeting CRLF2 [121],
represents a promising alternative approach for this subtype which is irrespective of a
specific genetic alteration or response to prior chemotherapies [104]).

ETV6-RUNX1-like ALL

ETV6-RUNX1-like ALL is characterized by a gene expression profile and immunophe-
notype (CD27 positive, CD44 low to negative) similar to ETV6-RUNX1 ALL, but lacking
the ETV6-RUNX1 fusion [122] and favorable prognosis [7,13,75,122,123]. These cases har-
bor alternate gene fusions or copy number alterations in ETS family transcription factors
(ETV6, ERG, FLI1), IKZF1 or TCF3. ETV6-RUNX1-like ALL develops in children harboring
germline ETV6 mutations with subsequent somatic alterations of the second ETV6 allele,
consistent with the notion that biallelic alteration of ETV6 is central in leukemogenesis [124].
It is more common children (~3%) and confers an unfavorable prognosis in children due to
high levels of MRD and worst event-free survival rates [82].

2.2.3. Subtypes Defined by a Single Point Mutation
PAX5 P80R and PAX5alt

The PAX5 P80R subtype (~3% of B-ALL cases) is characterized by the presence of a hot
spot mutation at amino acid 80 in the DNA binding domain of the paired box DNA-binding
transcription factor PAX5 [7,13,125,126]. B-ALL cases with PAX5 P80R show a distinct gene
expression profile with the majority of cases having either hemizygous or homozygous
mutation, caused by deletion of the wild-type PAX5 allele or copy-neutral loss of heterozy-
gosity. In a subset of cases, in addition to PAX5 P80R there is a second frameshift, nonsense
or deleterious missense PAX5 mutation. Thus, biallelic PAX5 alterations—with mutation of
one allele and loss of activity of the second allele—are a hallmark of this subtype [7,125]. In
support of the role of biallelic alteration of PAX5 in the pathogenesis of this subtype, knock-
in mouse models of germline Pax5 mutations have shown that heterozygous Pax5P80R/+

knock-in mice develop transplantable B-ALL, with genetic inactivation of the wildtype
Pax5 allele [7]. In contrast, Pax5G183S/+ knock in mice (modeling the germline PAX5 G183S
mutation observed in familial ALL) show a low penetrance of ALL [127], supporting its
role as a haploinsufficient tumor suppressor. Additional important cooperating lesions
include CDKN2A loss and signaling pathway mutations, most commonly in Ras signaling
genes or in the JAK/STAT pathway [7,125].

PAX5alt comprises about 7% cases with diverse PAX5 alterations, including rearrange-
ments, sequence mutations and focal intragenic amplifications [7]. Over 20 different partner
genes have been identified with PAX5-ETV6 being the most common. Children in this
subtype are more commonly classified as high risk rather than standard risk (according
to National Cancer Institute (NCI) criteria). In addition to PAX5 alterations, recurrent
genetic lesions observed in these cases include copy number losses affecting cell-cycle reg-
ulation genes such as CDKN2A, RB1 and BTG1, B-cell development genes, transcriptional
regulators and/or epigenetic modifiers (for example, KDM6A, KMT2A and ATRX) [7].
Both PAX5 P80R and PAX5alt subtypes are associated with intermediate to favorable
prognosis [7,82,83,126].
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IKZF1 N159Y

IKZF1 encodes the transcription factor IKAROS, which is a member of the family
of zinc finger DNA-binding proteins required for lymphoid lineage ontogeny and home-
ostasis [128,129]. The most common type of IKZF1 alteration is a focal deletion occur-
ring in 15% of ALL cases and in >50% of high risk ALL [42,72,103]. Deletions result in
loss-of-function or in the dominant negative IK6 isoform and are associated with poor
outcome [73,103]. In addition to deletions, missense, frameshift and nonsense muta-
tions have been also described in pediatric high-risk B-ALL patients. Among those the
missense p.Asn159Tyr mutation defines a subtype (<1% of B-ALL) with a distinct gene
expression profile characterized by upregulation of genes with roles in oncogenesis (the
IKZF1-interacting gene YAP1), chromatin remodeling (SALL1), and signaling (ARHGEF28)
that are not deregulated in other subgroups of IKZF1-altered ALL [7,74]. In contrast to
PAX5 P80R ALL, the nonmutated wild-type allele of the mutated transcription factor (here
IKZF1) is retained [72]. As for most other missense mutations observed in IKZF1 zinc
fingers, IKZF1 N159Y induces misregulation of IKZF1 transcriptional activation, in part
through distinctive nuclear mislocalization and enhanced intercellular adhesion [130].

ZEB2 H1038R and IGH-CEBPE

In unsupervised clustering of leukemic cell gene expression, cases with the H1038R
mutation in ZEB2 phenocopy the translocation t(14;14)(q11;q32) [13], which results in IGH-
CEBPE fusion, suggesting a common activated pathway of leukemogenesis and defining
a rare B-ALL subtype (<1%). This is associated with NRAS sequence mutations (>50% of
cases), upregulation of LMO1 and downregulation of SMAD1 and BMP2 [10]. However,
neither the IGH or ZEB2 mutations are unique to this group, nor do they explain all cases
in this distinct gene expression and experimental validation is required to demonstrate
their role as leukemogenic drivers. B-ALL with ZEB2 mutation is associated with poor
event-free survival and high relapse [131].

2.3. Prognostic Implications

The frequent and wide use of genomics to profile the landscape of ALL has allowed a
tailored refinement of risk in association with standard criteria, such as MRD levels [82]
(Figure 1). In childhood B-ALL, ETV6-RUNX1, high-hyperdiploid, and DUX4-rearranged
B-ALL are categorized as favorable due the highest overall survival rates and the low-
est relapse rates, despite elevated early MRD in DUX4-rearranged cases. BCR-ABL1,
BCR-ABL1-like, ETV6-RUNX1-like, KMT2A-rearranged, and MEF2D-rearranged ALL show
high levels of MRD and the worst event-free survival rates and thus are categorized to be
unfavorable subtypes. The remaining subtypes including TCF3-PBX1, PAX5alt, iAMP21,
hypodiploid, ZNF384-rearranged, NUTM1-rearranged, and PAX5 P80R ALL have inter-
mediate risk [81]. These prognostic groups have been mostly confirmed in a historic,
non-MRD risk adapted trial (UKALLXII/ECOG-ACRIN E2993, NCT00002514) in adoles-
cents and adult B-ALL cases [83] according to the following risk assignment: standard
risk genotypes: DUX4-rearranged, ETV6-RUNX1/-like, TCF3-PBX1, PAX5 P80R, high-
hyperdiploid; high-risk genotypes: Ph-like, KMT2A-AFF1, low-hypodiploid/near-haploid,
BCL2/MYC-rearranged; and intermediate-risk genotypes: PAX5alt, ZNF384/-like, and
MEF2D-rearranged.

3. T-Cell Acute Lymphoblastic Leukemia (T-ALL)
3.1. Genomic Overview of T-ALL

T-ALL leukemic cells express a subset of T-cell makers (CD3, cyCD3, CD2, CD5, CD7,
CD8) and arises from immature T-cell progenitors [132,133]. Pediatric T-ALL accounts
for 10–15% of newly diagnosed pediatric ALL and is characterized by higher incidence
in boys, high initial white blood cell counts, mediastinal mass, CNS infiltration, and
slightly worse prognosis compared to B-ALL [134]. The majority of T-ALL cases may
be subclassified into subtypes according to the aberrant expression and dysregulated
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pathways of transcription factors and oncogenes induced by leukemia-initiating alterations
involving basic helix–loop–helix (bHLH) factors (TAL1, TAL2, LYL1), homeobox genes
(TLX1 (HOX11), TLX3 (HOX11L2), NKX2-1, NKX2-5, HOXA), LMO1, LMO2, MYB, BCL11B
and SPI1 (Figure 2) [5,135,136]. These subtypes are defined with expression profiles by
WTS or microarray, however, almost half of these leukemia-initiating alterations in T-ALL
show intergenic breakpoints that can be missed by WTS but rescued by whole genome
sequencing (WGS) [135,136]. Epigenomic analyses have also identified novel leukemia-
initiating alterations in non-coding regions [5,137,138].
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NOTCH1 activating mutations and deletion of CDKN2A/CDKN2B loci (9p21) are
found in over 70% of T-ALL cases and considered as secondary but core events in leuke-
mogenesis [135,136,139]. Concurrent somatic mutations and copy number alterations are
frequently observed in T-ALL leading to dysregulation of several cellular pathways, in-
cluding JAK-STAT signaling (IL7R, JAK1, JAK3, DNM2), Ras signaling (NRAS, KRAS, and
NF1), PI3K-AKT signaling (PTEN, AKT1, PIK3CA PIK3CD), epigenetic regulation (PHF6,
SUZ12, EZH2, KDM6A), transcription factors and regulators (ETV6, GATA3, RUNX1, LEF1,
WT1, BCL11B), and translation regulators (CNOT3, RPL5, RPL10) [135,136,140,141]. Ac-
cumulation of these aberrant expression and dysregulated pathways disrupt the normal
T-cell differentiation, proliferation, and survival, and results in T-ALL with unique gene
expression signatures reflecting the point of differentiation arrest during T-cell develop-
ment [133,140]. In addition to expression profiles, DNA methylation signatures are also
associated with immunophenotypic profiles and normal T-cell development differentiation
stage [142,143].

3.2. T-ALL in Early Stages of Cortical Thymocyte Maturation

T-ALL with CD1a+, CD4+, and CD8+ immunophenotype includes several subgroups,
such as rearrangements of TLX1, TLX3, NKX2-1, reflecting a differentiation arrest in
early stages of cortical thymocyte maturation and confers a relatively favorable progno-
sis [144,145]. These subgroups almost commonly harbor NOTCH1 and CDKN2A alterations.
Dysregulated expression of HOX transcription factor genes is mostly induced by chromo-
somal translocations and inversions that juxtapose these genes to enhancers in the TCR and
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BCL11B regulatory regions [135,146]. Importantly, BCL11B rearrangements (BCL11B-TLX3)
in this subgroup are mechanistically distinct from those identified in BCL11B-rearranged
lineage ambiguous leukemias, in that in the BCL11B-TLX3 leukemia, the BCL11B enhancer
is used for aberrant expression of TLX3 at the cost of the loss of expression of BCL11B,
leading to complete difference in expression profiles [5,146,147]. Instead, TLX3 rearranged
T-ALL (including BCL11B-TLX3) shares gene expression signatures, DNA methylation pro-
files, somatic mutations (BCL11B, WT1, PHF6, DNM2), and downstream targets (JAK-STAT,
epigenetic regulators) with TLX1 rearranged T-ALL [135,136,142,143,145]. Some of over-
lapping genomic features with TLX1/TLX3 rearranged T-ALL, including NUP214-ABL1
(TKIs) and JAK-STAT pathway (ruxolitinib, a JAK-STAT inhibitor), can be targetable and
have been incorporated into ongoing clinical trials [148].

3.3. TAL1-Driven T-ALL with Late Stages of Cortical Thymocyte Maturation

Deregulation of the TAL1 oncogene is a feature of T-ALL that typically exhibits a late
cortical thymocyte immunophenotype (CD4+, CD8+, CD3+) and comprises approximately
40% of T-ALL [135,136]. This T-ALL subtype includes TAL1 and TAL2 rearranged cases and
is further classified into two subgroups by expression profiles whose one expresses PTCRA
(pre-TCR) suggesting LCK activation that correlated with dasatinib sensitivity [136,145,149].
During normal T-cell differentiation, TAL1 expression is transcriptionally silenced along
with T-cell lineage commitment to proceed appropriate TCR rearrangements and differen-
tiation [133]. TAL1 overexpression is induced by several mechanisms: (1) chromosomal
translocations with TCRA/D; (2) sub-microscopic interstitial deletion (STIL-TAL1); (3) dis-
ruption of insulated neighborhoods by losing CTCF binding sites [150]; and (4) somatic
indels in a noncoding intergenic regulatory element upstream of TAL1 to generate aber-
rant MYB binding site (MuTE) [137]. The latter two mechanisms have benefited of NGS
technologies for their identification. Dysregulated TAL1 expression inhibits the function
of E-protein dimers by forming TAL1-E-protein heterodimer [151]. Furthermore, TAL1
forms the central node of the core regulatory circuit to coordinately regulate downstream
target genes with several hematopoietic transcription factors including GATA3, RUNX1,
MYB, and the ETS family genes, which is active in normal hematopoietic stem cell (HSC)
and progenitor cells [152,153], and RUNX1 inhibition is reported to impair the growth of
T-ALL but not normal hematopoietic cells [154]. However, although TAL1 functions as a
master transcription factor related to T-cell differentiation and leukemogenesis of T-ALL,
only 30% of transgenic mice develop T-ALL after a latent period, indicating that additional
abnormalities are required for leukemogenesis [155]. Expression of Lmo2 accelerates the
onset of leukemia in Tal1 transgenic mice, and LMO1/LMO2 are commonly expressed
in human TAL1-driven T-ALL [156,157]. Other cooperative genes and noncoding RNAs
in TAL1-driven T-ALL include ARID5B, ARIEL, and MYC, driving aberrant expression
of TAL1 [158,159]. In addition, PI3K-AKT pathway genes including PTEN are frequently
mutated in this subgroup [135,136], which associates with glucocorticoid resistance and can
be reversed by the inhibition of this pathway [160]. Several cell cycle regulators including
CDK6 and CCND3 are regulated by TAL1 complex [152] and may be potential targets of
therapeutic intervention [161].

3.4. Early T-Cell Precursor (ETP) ALL and Mixed Phenotype Acute Leukemia

ETP-ALL is often referred to as a subtype of T-ALL as it exhibits an immunophenotype
analogous to the earliest stages of T-cell development (cytoplasmic CD3+, CD7+; CD8−,
CD1a−, CD5weak), and with expression of myeloid and/or stem-cell markers [144,162].
However, the genomic alterations and gene expression profile of ETP-ALL are more sim-
ilar to a hematopoietic stem cell than a T cell precursor, suggesting that ETP-ALL could
be included in a subgroup of immature acute leukemias of ambiguous lineage (ALAL),
originating from a hematopoietic progenitor at a maturational stage prior to initiation of
a definitive program of T cell differentiation. Consistent with this, recent studies have
defined a subgroup of BCL11B-deregulated ALAL, that includes one third of ETP-ALL
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and T/myeloid mixed phenotype acute leukemia (T/M MPAL) cases with a very distinct
expression profile [5]. BCL11B-deregulated ALAL is characterized by structural varia-
tions of the region containing BCL11B at 14q32 including translocations and high-copy
amplification generating a distal neo-enhancer, that each leads to aberrant expression of
BCL11B, in the case of the rearrangements by hijacking super-enhancers active in CD34+
hematopoietic stem and progenitor cell (HSPCs) [5,147]. FLT3 activating mutations were
found in 80% of BCL11B-deregulated ALAL, and concurrent expression of BCL11B and
FLT3-ITD on HSPC exhibited synergistic effects on activating T-cell directed differentiation
to express cytoplasmic CD3 while blocking myeloid differentiation [5]. Other genomic
features of ETP-ALL include a subgroup of aberrant expression of PU.1 (SPI1 fusions),
HOXA genes (rearrangements of HOXA genes, KMT2A rearrangements, PICALM-MLLT10,
SET-NUP214) and mutations of multiple cellular pathways (Ras signaling, JAK-STAT
signaling, and epigenetic regulators) and transcription factors related to T-cell develop-
ment [135,136,163]. Especially, T-ALL with SPI1 fusions represents unique expression
profiles with high relapse rate [5,136]. Again, several of these genomic mutations were
shared with T/M MPAL, including biallelic WT1 alterations, mutations of hematopoi-
etic transcription factors (ETV6, RUNX1, CEBPA) and activating mutations of signaling
pathways (JAK-STAT, FLT3, Ras) [92,163], supporting that they are similar entities in the
spectrum of immature leukemias and both might have sensitivity to FLT3 and/or JAK
inhibition [164].

3.5. NOTCH1 Activating Mutations in T-ALL

NOTCH1 encodes a highly conserved ligand-dependent transcription factor. The
NOTCH1 signaling pathway plays an important role in the commitment of T-cell lineage
specification and for further T-cell development [133,165]. In T-ALL, NOTCH1 activating
mutations are found in more than 70% of cases and is considered an oncogene involved in
leukemogenesis [135,136]. Aberrant activation of NOTCH1 pathway in T-ALL is mostly
induced by (1) ligand-independent activation (somatic mutations, indels and large dele-
tions that disrupt the negative regulatory region), or (2) impairment of the proteasomal
degradation of intracellular domain of NOTCH1 (truncation of the PEST domain, NOTCH1
mutations in 3′ untranslated region, and FBXW7 mutations) [166–171]. These two types
of NOTCH1 activating mutations have synergistic effects and more than 20% of T-ALL
cases harbor both types of alterations [166]. However, most NOTCH1 activating mutations
found in human T-ALL are considered as a weak tumor initiator event. Co-existence of
both types of NOTCH1 mutations in hematopoietic progenitors tends to induce a transient
preleukemic CD4+/CD8+ double positive cells and takes 10 to 15 weeks to fully transform
into T-ALL, suggesting that they are alone incompletely leukemogenic [172–174]. In addi-
tion, more than 40% of T-ALL cases harbor subclonal NOTCH1 activating mutations and
their heterogeneity at diagnosis was reported by several studies [135,136,175]. Furthermore,
NOTCH1 activating mutations are considered to be acquired as a late secondary event in
leukemogenesis [139,175,176].

A key target of NOTCH1 is the MYC oncogene that shares several overlapping target
genes with NOTCH1 to promote cell proliferation and dysregulate anabolic pathways in
T-ALL [174,177,178]. NOTCH1 controls T-cell-specific distal enhancer of MYC (“NMe”),
resulting in the NOTCH1-MYC regulatory circuit [174,177,178]. In addition, pre-TCR signal-
ing also correlates with NOTCH signaling, leading to LCK signaling and robust cell growth
at DN3 stage in the T-cell development, which can be targetable by dasatinib [149,179].

Due to the high prevalence and importance of NOTCH1 activating mutations in T-ALL,
targeted therapy on NOTCH1 pathway has been a major interest. This includes γ-secretase
inhibitors (GSIs), ADAM inhibitors, SERCA inhibitors, and monoclonal antibodies [180].
Among them, GSIs, that block the activation process of NOTCH receptors by inhibiting
proteolytic cleavage, have been tested in preclinical and Phase 1 studies [181,182]. However,
the usage of GSIs in T-ALL is still in a developing phase due to gastrointestinal toxicity
and insufficient antitumor responses that mostly induce transient growth arrest rather
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than cell death [183,184]. To overcome these problems, combination with other agents
have been explored including glucocorticoids that showed synergistic effects by reversing
glucocorticoid resistance [185]. Inhibition of mTORC1 signaling and PKCδ signaling are
also promising combination strategies to restore GSIs sensitivity in resistant cells [186,187].

4. Implications for Diagnosis

The revolution in genomic characterization of ALL has created important opportu-
nities and challenges for the clinical implementation of sequencing-based approaches for
diagnosis and management of ALL (Table 1). This is particularly true for B-ALL, where
many of the recently identified subtypes are associated with prognosis (even in the con-
text of MRD-based risk-adapted therapy) [82,83] and where molecular characterization is
needed to identify patients suitable for targeted therapy (an exemplar being Ph-like ALL).
This is currently less compelling for T-ALL where identification of founding lesions driving
T-ALL subtypes are of biological and mechanistic interest but are not typically used to
risk stratify or guide therapy, exceptions possibly being kinase inhibition for JAK-STAT
alterations and ABL1 rearrangements, identification of alterations in Ras, PTEN, NOTCH1
and/or FBXW7 that have been found to be associated with outcome in some studies [188],
and LCK dependence for dasatinib therapy [149]. The challenge is clinical implementa-
tion of appropriately comprehensive diagnostic approaches to identify all key genomic
features. Despite the mutationally sparse genome of ALL, there is striking diversity of the
nature of underlying driver alterations, including sequence mutations, DNA copy number
alterations, and structural variations, many of which may involve the non-coding genome.
Accurate subtyping is also challenged by the inability of conventional cytogenetic and tar-
geted molecular approaches to identify several types of driver (e.g., DUX4-rearrangement)
and the importance of identifying phenocopies (e.g., ETV6-RUNX1-like, and Ph-like ALL).
Thus, moving forward, optimal clinical diagnostics require genomic approaches. The
choice of approach in part rests on how clinical information will be used. If comprehensive
subtyping and identification of all potentially clinically relevant genomic alterations is
desirable, a combination of DNA and RNA-based technologies is required. For example,
the combination of WGS and WTS enables the identification of sequence mutations, DNA
copy number alterations, aneuploidy and structural variants (from WGS) together with
identification of fusion chimeras, mutant allele expression, and gene expression profiling
(from WTS). The use of one or both approaches is becoming increasingly widely used, and
at St Jude Children’s Research Hospital, three platform sequencing (WGS, WTS and exome
sequencing) is clinical standard of care, informs clinical decision making in ALL [148], and
retrieves more actionable clinical information than any single platform alone [189]. WGS
is offered using a paired non-tumor sample to aid identification of somatic variants and
provides the opportunity to return clinically relevant germline findings. Moreover, this
comprehensive approach enables a more streamlined workflow [190–192], provided the
demands of analysis and interpretation can be met.

However, WGS is not yet widely used clinically, and many clinicians and providers
seek alternative approaches to identify clinically relevant alterations. These fall into
three main categories: single platform sequencing, sub-genomic sequencing, and targeted
detection of genomic alterations. In the first category, single platform WTS provides near
comprehensive characterization of clinically relevant alterations in ALL, particularly B-ALL:
gene expression-based profiling to identify subgroups and phenocopies; fusion transcripts;
and interrogation of specific sequence mutations (e.g., JAKs, PAX5 and IKZF1) [7,193].
Moreover, several methods are available that utilize expression and mutant allele fraction
to robustly identify large scale chromosomal copy number changes, thus providing a
surrogate for conventional cytogenetic identification of aneuploidy [7,194]. WTS as a single
platform has limitations—it is challenging to identify all sequence variations although ana-
lytic platforms are improving, it cannot identify focal DNA copy number alterations that
may impact targetable pathways (e.g., SH2B3 deletions in JAK-STAT-driven Ph-like ALL)
and does not identify rearrangements that may deregulate oncogenes without resulting
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in a RNA chimera—for example rearrangements of oncogenes in T-ALL such as TLX3
and those involving TCR, where breakpoints are frequently intergenic [135], the diverse
rearrangements in BCL11B-rearranged ALAL [5], or non-coding sequence mutations that
drive oncogenes such as TAL1 and LMO1/2 [137,138].

Several platforms are available for targeted DNA and/or RNA sequencing, often
using capture-based approaches. These including Foundation Medicine [195] and the
FusionPlex ALL Kit (Invitae, previously ArcherDx). These have the advantage of being
somewhat simpler to access or implement in routine diagnostic laboratories, and the ability
to detect the majority of chimeric fusion events in B-ALL. Similar reservations to WTS apply
regarding the limited ability of these platforms to detect intergenic rearrangements in ALL;
moreover, these platforms either have limited (Foundation) or no (Archer) capability to
detect DNA copy number alterations, particularly those that are single copy, and may have
difficulty resolving complex rearrangements (e.g., truncating rearrangements of EPOR in
Ph-like ALL) [115]. Capture based DNA sequencing for sequence mutations is widely used
in hematological malignancies, but is not well suited to diagnosis of ALL due to the lack
of detection of rearrangements and structural variations. As described above, the MLPA
platform is widely used by several groups to identify focal DNA copy number alterations
and the “IKZF1plus” composite genotype, but this platform is not an adequate surrogate for
sensitive detection of several key subtypes: e.g., ERG deletion in DUX4-rearranged ALL
(only ~50% of cases have clonal ERG deletion), and PAR1 deletion in CRLF2-rearranged
ALL (IGH-CRLF2 is usually not accompanied by PAR1 deletion).

Table 1. Clinical implementation of high-throughput sequencing.

Platform Capability Cost Detectable
Subtypes

Difficult
Subtypes

WTS
(RNAseq)

Fusion chimeras
Gene expression profiling
Mutant allele expression

Alternative splicing analysis
(BCR/TCR rearrangements)

(Sequence mutations)
(Copy number analysis)

Moderate

B-ALL
ETV6-RUNX1; KMT2A;

TCF3-PBX1; BCR-ABL1; DUX4;
MEF2D; ZNF384/362

NUTM1; HLF; BCL2/MYC;
PAX5alt; ZEB2/CEBPE;

-like subtypes

B-ALL
Aneuploidies

T-ALL
HOXA (KMT2A-R,

PICALM-MLLT10, SET-NUP214);
SPI1; NKX2-1; TAL1 (STIL-TAL1)

T-ALL
BCL11B; TLX1/3; LMO1/2;

HOXA (others); TAL1
(others); T-other

WGS

Sequence mutations
Structural variants

Copy number analysis
(BCR/TCR rearrangements)

(GWAS)

High

B-ALL
Aneuploidies; ETV6-RUNX1;

KMT2A; TCF3-PBX1; BCR-ABL1;
DUX4; MEF2D; ZNF384/362;

NUTM1; HLF; BCL2/MYC; PAX5
P80R; IKZF1 N159Y;

ZEB2/CEBPE; Sequence and
structural alterations in Ph-like

ALL

B-ALL
-like subtypes;
Part of PAX5alt

T-ALL
BCL11B; TLX1/3; LMO1/2;

HOXA;
SPI1; NKX2-1; TAL1

T-ALL
T-other

WES
Sequence mutations (coding)
Structural variants (coding)

Copy number analysis
Moderate

B-ALL
(Aneuploidies)

PAX5 P80R
IKZF1 N159Y

Sequence mutations in Ph-like
ALL (e.g., JAK1/2/3, Ras)

Most of other B-ALL and
T-ALL subtypes

Targeted sequencing
(DNA and/or RNA)

Fusion chimeras (targeted)
Gene expression (targeted)

Sequence mutations (targeted)
Structural variants (targeted)

(Copy number analysis)

Low Targeted alterations Non-targeted
alterations

The parenthesis in “Capability” indicates analyses in development. Abbreviations: WTS: whole transcriptome sequencing; BCR: B-cell
receptor; TCR: T-cell receptor; WGS: whole genome sequencing; GWAS: genome wide association study; WES: whole exome sequencing;
-R: rearranged.
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In the absence of sequencing-based approaches, several subtypes and drivers may
be identified by flow cytometry, immunophenotypic and targeted molecular approaches.
Flow cytometry may be used to detect CRLF2 rearrangements, that result in cell surface
expression of CRLF2, as well as markers associated with distinct subtypes (e.g., CD371 in
DUX4-rearranged ALL). FISH may be used to detect rearrangement of the most commonly
rearranged genes in Ph-like ALL for which targeted therapies are currently available (e.g.,
ABL-family kinase genes, CRLF2, NTRK3) with caveats—for example, the focal insertions of
EPOR into IGH and similar enhancer regions are not robustly detected by FISH due to the
small size of the EPOR insertion. Specific subtype-defining rearrangements may be detected
by conventional molecular approaches such as RT-PCR. Thus, these composite approaches
may be suitable to detect many actionable alterations in ALL, but do not provide a pathway
to comprehensive identification of all driver lesions of prognostic significance.

5. Conclusions

Large-scale integrative genome-wide sequencing studies have profoundly trans-
formed the molecular taxonomy of ALL, resulting in the identification of new entities
with prognostic and therapeutic significance. There are over 30 different B/T-ALL sub-
types defined by distinct constellations of somatic and/or germline genetic alterations that
converge on distinct gene expression patterns. The identification of these dysregulated
pathways is crucial for clinical management of ALL patients and most importantly for
guiding therapeutic intervention. The best example is provided by the constitutively active
kinases in Ph-like which are druggable by a variety of single or combinatorial TKIs. Al-
though the enormous clinical and genetic progress of the past decade, much work remains,
as most studies have lacked NGS and have not validated the mechanisms by which fu-
sions/mutations cooperate in leukemogenesis, and not fully defined potential for targeting.
Due to the heterogeneity of genetic lesions, optimal clinical diagnosis of ALL requires
genomic and/or transcriptomic sequencing in order to identify fusions, aneuploidy and
sequence mutations required for disease stratification. The use of such approaches is
becoming increasingly widespread. Recently, new immunotherapeutic agents (e.g., devel-
oped antibodies and CAR-T cells) have been efficacious in a proportion of patients, but
failed in others. Thus, efforts should be focused in the future on defining subtype specific
vulnerabilities to improve treatment strategy and outcome.
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