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Introduction

The SARS-CoV-2 pandemic is among the greatest medical 
challenges within the last decades.1 Regarding a substan-
tial mortality and an exceptional number of patients requir-
ing critical care and mechanical ventilation, there is need 
for optimized use of available resources as well as rein-
forcement of insufficient equipment and structures.

Among several supportive measures including low 
tidal volume ventilation in those with H-type-COVID-
19-pneumonia as proposed by Gattinoni et al.2,3 prone 
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positioning and inhaled vasodilators, extracorporeal lung 
assist is the most limited resource in the treatment of acute 
respiratory distress syndrome (ARDS). Extracorporeal 
membrane oxygenation (ECMO) is not generally recom-
mended in severe ARDS, since its efficacy seems to be 
restricted to certain subgroups.4 Recent recommendations 
on COVID-19 patients suggests that the “use of ECMO in 
patients with a combination of advanced age, multiple co-
morbidities, or multiple organ failure should be rare”.5 
Extracorporeal CO2 removal (ECCO2R) at lower blood 
flows and (optionally) in combination with continuous 
renal replacement therapy (CRRT) has been introduced in 
patients not eligible for ECMO.6 In this regard, the ADVOS 
(ADVanced Organ Support, ADVITOS GmbH. Munich, 
Germany) system, is an albumin hemodialysis approach 
for elimination of water-soluble and protein-bound toxins, 
CO2 removal and acid-base balance control.7–9 A combina-
tion of multiple organ support (i.e. kidney, liver, lung) and 
of low invasiveness (blood flow 10-times lower than 
ECMO; need for conventional dialysis catheter; absence 
of gas phase), make ADVOS a promising approach for 

patients with multiple organ failure, including those with 
severe COVID-19.

Following the CARE guidelines for the reporting of 
case reports we will now present the clinical course, diag-
nostic findings, and therapeutic intervention.10 We discuss 
the potential use of the ADVOS treatment during the 
COVID-19 pandemic, especially focusing on acid-base 
balance, respiratory parameters and the effects of the 
extracorporeal multiple organ support.

Material and methods

Case report

We report on an 80-year old patient who was transferred 
from a peripheral hospital to our 14-bed university hospital 
ICU. A chronological synopsis of key diagnostics, treat-
ments, and other interventions is depicted in Figure 1. 
Diagnosis of COVID-19 was established through bron-
choalveolar lavage and the patient was subsequently intu-
bated. During the first week of mechanical ventilation, the 

Figure 1. Timeline of findings and interventions for the COVID-19 patient with multiple organ failure.
ARDS: acute respiratory distress syndrome; EVLWI: extravascular lung water index; K+: potassium concentration; ICU: intensive care unit; PaO2: 
arterial pO2; PaCO2: arterial pCO2; SOFA: sequential organ failure assessment; ECMO: extracorporeal membrane oxygenation.
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patient was moderately responsive to prone positioning. 
Nine days after intubation the patient was transferred to 
our ICU due to progressive ARDS and MOF with oliguria, 
septic shock (initial noradrenalin 0.35 µg/kg/h), hepatic 
dysfunction and mixed acidosis with a Sequential Organ 
Failure Assessment (SOFA)-Score of 13 on admission. 
There was interdisciplinary consensus not to initiate 
ECMO due to old-age, prolonged ventilation, and MOF 
(respiratory, renal, circulatory hepatic failure and throm-
bocytopenia) with a SOFA-score >10.

Based on the indication for renal replacement therapy 
(serum creatinine 3.8 mg/dL, potassium 5.9 mmol/L), 
mixed acidosis (pH 7.15, PaCO2 65 mmHg; base excess of 
−6.6 mmol/L) and hepatic failure, the patient was started 
on continuous treatment with the ADVOS device. During 
eight 24 h treatment sessions with regional citrate antico-
agulation (following manufacturer’s protocol), blood flow 
(100–300 mL/min), dialysate flow (160–320 mL/min), and 
dialysate pH (7.6–9.0) were adapted according to the 
actual need of the patient to optimize arterial pCO2 and pH 
(see Table 1). When deemed appropriate, a dialysate solu-
tion with low bicarbonate was employed to increase the 
CO2 removal capacity. Transpulmonary thermodilution 
(PiCCO; Pulsion Medical Systems; Germany) revealed 
markedly elevated extravascular lung water index EVLWI 
(up to 32 mL/kg; normal range ⩽7 mL/kg), but normal val-
ues of the preload marker global end-diastolic volume 
index GEDVI and cardiac index (CI). 24 h after admission, 
the patient developed atrial fibrillation (AF) and digitoxin 
was administered for heart rate control. To reduce pulmo-
nary edema, continuous ultrafiltration was performed with 
the ADVOS device. Despite an AF-related increase in 
GEDVI (827 to 1021 mL/m²) the course of hemodynamic 
parameters suggested effectiveness of ultrafiltration 
(GEDVI declined from 1021 to 833 mL/m², ELWI showed 
no further increase, supplemental Figure 1). Still, PVPI 
remained elevated (mean 4.8 ± 1.1, normal range: 1.0–3.0) 
in accordance with an infectious-associated non-cardiac 
pulmonary edema. Mean CI was 3.1 ± 0.4 mL/min/m² and 
remained constantly greater than 2.2 mL/min/m² (supple-
mental Figure 1).11,12

Effective CO2 removal and correction of acidosis could 
be demonstrated by mean arterial- versus post- dialyzer 
values of pCO2 (69 ± 14 vs. 27 ± 12 mmHg; p < 0.001). 
The mean estimated CO2 elimination rate was 48 ± 23 mL/
min (see Table 1). Furthermore, post-dialyzer venous lac-
tate levels were significantly lower than pre-dialyzer val-
ues (p < 0.001). The acid-base balance was well controlled 
over the entire treatment period despite anuria, liver failure 
and elevated lactate levels. The initial vasopressor require-
ment could be reduced in parallel to pH-normalization dur-
ing the first 24 h-treatment session.

Even short interruptions of ADVOS-treatment for peri-
odic exchange of the ADVOS-device repeatedly resulted 
in reversible deteriorations, in particular of PaCO2 and pH. 

System clotting occurred in one out of eight sessions 
(12.5%) and demanded renewal of the dialysis circuit 
(Table 1).

After 95 h of continuous ADVOS-therapy the patient 
had markedly improved circulatory parameters compared 
to baseline (noradrenalin minimum 0.04 vs. 0.35 µg/kg/h 
at initiation of extracorporeal treatment). While his 
Horovitz-Index slightly increased (PaO2/FiO2 116 vs. 
62 mmHg), he required increased driving pressures (22 vs. 
18 mbar) and the patient remained prone-dependent. 
Several hours later the patient suffered from hemoptysis. 
Hereby, in addition to positive SARS-CoV-2-PCR 
increased quantities of Klebsiella oxytoca were detected in 
the tracheal specimens accompanied by positive blood cul-
tures (two out of three). Further, the patient demonstrated 
sustained positivity for serum- and tracheal-specimen-
Aspergillus-antigen-testing. These infections persisted 
despite appropriate anti-microbial systemic therapy 
(Amphotericin B dosed according to drug level monitor-
ing; Meropenem and Linezolid 1 g or 600 mg i.v. every 
12 h, respectively). The prescribed doses were in accord-
ance with recommendations for continuous renal replace-
ment procedures. No therapeutic drug monitoring was 
performed for antibiotics.

This episode resulted in a marked and prolonged 
increase in the vasopressor dosage and lactate levels, 
whereas the respiratory parameters recovered with PaO2 of 
85 mmHg, PaO2/FiO2 of 106 mmHg and PaCO2 of 
38 mmHg. One hour after this final blood gas analysis the 
patient had a sudden cardiac arrest. In accordance with the 
presumed patient will, we decided against mechanical 
resuscitation. Since autopsy was not performed, we can 
only speculate on the reasons for this trajectory. Yet, a 
marked increase in coagulopathic and inflammatory 
parameters (D-Dimers 31497 µg/L, progressive thrombo-
cytopenia (20 109/L), ferritin up to 15000 µg/L, IL-6 up to 
4457 pg/mL, leucocytosis 16 109/L) along with persistent 
elevations in PCT (4.8 ng/mL), CRP (34 mg/dL) suggest 
that a combined septic event together with COVID-19-
associated hyperinflammation ultimately lead to coagu-
lopathy, shock and associated fulminant organ failure 
(LDH 2967 U/L, GOT 2973 U/L)13–15 For more detailed 
laboratory values see supplemental Table 1.

Discussion

We have presented a case of a patient with COVID-19 and 
multiple organ failure where the feasibility of the ADVOS 
device for CO2 removal and acid-base balance control was 
tested. Considering the association of severe COVID-19 
cases with old age and multi-organ failure, combination of 
low-flow ECCO2R with devices for extracorporeal sup-
port of other organs is intriguing in these patients.

Interestingly, also hepatic dysfunction with elevated 
liver enzymes was a risk factor for in-hospital-death in the 
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Wuhan cohort during the COVID-19 outbreak.16 The con-
cept of extracorporeal multi-organ support is further sup-
ported by the finding that in severe ARDS “mortality is 
finally mainly related to these associated organ failures, 
whereas refractory hypoxemia is uncommon in late 
deaths”.17 This finding has been confirmed in numerous 
studies.18,19 In fact, a recent revision suggests that the 
attributable mortality to ARDS in ARDS patients is 
between 27 and 37%.20 The final outcome of the patient 
supports the finding that a substantial part of ARDS deaths 
does not result from hypoxemia, but from MOF and com-
plications of pre-existing co-morbidities, which provides 
the rationale for using less invasive extracorporeal multi-
organ assist devices in patients not eligible for ECMO. 
Notice about the importance of comorbidities and other 
organ failures,21 as well as concerns about potential harms 
of ECMO therapy22 have been raised by other authors 
regarding COVID-19 management.

As shown by elaborate subgroup analyses of the EOLIA 
trial, the efficacy of ECMO seems to be restricted to certain 
subgroups.4 Several ECMO-registries and EOLIA suggest 
a lack of efficacy in patients with old age and multi-organ-
failure as measured by a SOFA-score >10 and prolonged 
mechanical ventilation (>7 days).23 Also considering avail-
ability, contraindications and side effects of ECMO,24 sev-
eral other options of extracorporeal support are of interest. 
Among those options is low blood flow extracorporeal 
CO2-removal (ECCO2R). Several devices for ECCO2R 
have been introduced, and feasibility of ultra-protective 
ventilation (tidal volume 4 mL/kg instead of 6 mL/kg pre-
dicted bodyweight6 as well as combination with continuous 
renal replacement and ultrafiltration has been shown.

The ADVOS device is based on a modified hemodi-
alysis technique providing albumin dialysis for extracor-
poreal liver support in addition to renal replacement.8 
The employed dialysate contains two 100 mL units of 
albumin 20%. Within a secondary dialysate-circuit albu-
min is pH-dependently reconditioned in order to recover 
its toxin-binding ability (Figure 2). This recycling step 
provides the ADVOS system with a modifiable dialysate 
in terms of pH (7.0–9.0). Finally, the bicarbonate content 
can be adapted (0–20 mmol/L), according to the patient 
needs. The H+ and HCO3

− control achieved, provides 
with acid-base balance correction and CO2 removal of 
up to 50% of adult human production.9 Nevertheless, 
there is a lack of published clinical proof of principle 
and feasibility of the ADVOS-procedure in patients with 
ARDS.

This case provides evidence on the feasibility of the 
ADVOS system for CO2 removal and acidosis correction 
in patients with ARDS and COVID-19. Acidosis can 
impair coagulation, reduces hemoglobin-oxygen-affinity, 
promotes pulmonary vasoconstriction and is associated 
with systemic hyperinflammation in the critically ill.25–27 
Accordingly, the restoration of acid-base homeostasis is 
also important in COVID-19 patients.

During the eight treatment sessions performed using 
blood flows between 150 and 300 mL/min, on average 
48 mL/min of CO2 were removed corresponding to about 
25% of the basal CO2-production-rate of a healthy adult. It 
should be noted that the CO2 elimination rate (48 ± 23 mL/
min vs. 51 ± 26 mL/min) was only slightly lower than 
reported for ECCO2R devices operated at higher blood 
flow rates (421 ± 40 mL/min).28 Thus, ADVOS may allow 

Figure 2. Set-up of the ADVOS procedure. CO2 removal results from a concentration gradient diffusion for H+ and HCO3
− 

between blood and dialysate due to increasing the pH-value of the purified albumin dialysate up to 9.0 in the extracorporeal circuit 
(red, left side of the dialyzer) and by convective filtration in the dialysate regeneration circuit (“regeneration circuit”). The variation 
in the ratio of acid and base added to form the dialysate helps to reach the desired dialysate pH. A more detailed explanation of 
technical aspects can be retrieved from de Garibay et al.9
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a similar lung protective reduction of tidal volumes as 
already described for low flow ECCO2R devices in addi-
tion to simultaneous correction of metabolic acidosis. The 
former remains speculative, since in our case an actual 
reduction of the driving pressures was not possible due to 
progressive disease. In contrast to these systems, ADVOS 
does not use a sweep gas flow and operates solely based on 
dialysis with an “intelligent” dialysate. The explanation 
for CO2 removal and acidosis correction relays on the 
removal of H+ and HCO3

− according to equation (1).

 H CO CO H O HCO H2 3 2 2 3↔↔ ++ ↔↔ ++−− ++   (1)

As explained in the proof of concept experiments,9 a high 
dialysate pH, provides a substantial reduction of the blood 
H+ concentration. In this way, CO2 will be reduced and 
HCO3

− will be generated, whose increase can be counter-
balanced using a low bicarbonate dialysate. This is only 
possible, if albumin is added to the dialysate.29 A physico-
chemical explanation based on the Stewart model is also 
provided in de Garibay et al.9

However, it deserves mentioning that data on pharma-
cokinetics of anti-microbial substances during ADVOS 
treatment is scarce. We did not detect evidence for anti-
microbial-drug side effects, that is, for Linezolid. Still, we 
could not perform therapeutic drug monitoring for 
Meropenem and Linezolid. Thus, doses were adjusted 
according to continuous renal replacement therapy kinet-
ics. Future studies should provide additional data on anti-
microbial agent clearance when using ADVOS.

Conclusion

Irrespective of this outcome we conclude that extracorpor-
eal CO2 removal and multiorgan-support were feasible in 
this COVID-19 patient. Combined and less invasive 
approaches such as ADVOS might be a treatment option in 
predominantly old-age-COVID-19 patients with MOF and 
with contra-indications to ECMO.
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