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Abstract: Neurogenin 1 (Ngn1) belongs to the basic helix–loop–helix (bHLH) transcription factor family
and plays important roles in specifying neuronal differentiation. The present study aimed to determine
whether forced Ngn1 expression contributes to bone homeostasis. Ngn1 inhibited the p300/CREB-binding
protein-associated factor (PCAF)-induced acetylation of nuclear factor of activated T cells 1 (NFATc1)
and runt-related transcription factor 2 (Runx2) through binding to PCAF, which led to the inhibition of
osteoclast and osteoblast differentiation, respectively. In addition, Ngn1 overexpression inhibited the
TNF-α- and IL-17A-mediated enhancement of osteoclast differentiation and IL-17A-induced osteoblast
differentiation. These findings indicate that Ngn1 can serve as a novel therapeutic agent for treating
ankylosing spondylitis with abnormally increased bone formation and resorption.
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1. Introduction

Bone homeostasis is maintained by the balance of tightly coupled processes between
bone resorption by osteoclasts and bone formation by osteoblasts. However, an imbalance
in these processes leads to skeletal disorders, such as osteoporosis, osteopetrosis, and
rheumatoid arthritis [1–3]. Osteoclasts are giant multinucleate cells (with diameters of up
to 100 µm) that are differentiated from bone marrow hematopoietic precursor cells under
the control of macrophage colony stimulating factor (M-CSF) and the receptor activator of
nuclear factor kappa-B ligand (RANKL). RANKL and the receptor activator of nuclear factor
kappa-B (RANK) constitute the key signaling pathway for osteoclast differentiation and
function. This pathway induces the expression of several transcription factors, including
the master regulator of osteoclastogenesis, the nuclear factor of activated T cells 1 (NFATc1),
and osteoclast-specific genes, such as tartrate-resistant acid phosphatase (TRAP, Acp5),
the osteoclast-associated receptor (Oscar), and cathepsin K (Ctsk) [4–7]. Osteoblasts are
differentiated from mesenchymal stem cells (MSCs) under the control of multiple signaling
pathways, such as the bone morphogenetic protein (BMP), Wnt, and notch signaling
pathways [8]. All these pathways play important roles in the expression and activity of
the master transcription factor of osteoblastogenesis, namely, runt-related transcription
factor 2 (Runx2) [8,9]. Runx2 induces the commitment of MSCs to the osteogenic lineage
and stimulates osteoblast differentiation by inducing the expression of osteoblast-specific
genes, such as alkaline phosphatase (ALP, Alpl), osterix (Sp7), bone sialoprotein (BSP, Ibsp),
and osteocalcin (Bglap) by binding to the osteoblast-specific acting element (OSE) present
in the promoter region [10–12].
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Neurogenin 1 (Ngn1) belongs to the family of basic helix–loop–helix (bHLH) tran-
scription factors. Ngn1-null mouse models have revealed that the gene plays a critical
role in the differentiation of glutamatergic spiral ganglion neurons during development.
It contributes to the normal differentiation of glutamatergic spiral ganglion neurons by
activating the downstream cascade of NeuroD1, Brm3a, GATA3, and neurotrophic factor re-
ceptors. Furthermore, in vitro studies using an Ngn1 overexpression model have revealed
that Ngn1 stimulates the neuronal differentiation of neural progenitors but inhibits glial
differentiation [13–16].

The neural and skeletal systems are physically and functionally associated [17–21]. Im-
paired innervation in skeletal disorders, such as osteoporosis, osteoarthritis, and neurogenic
heterotopic ossification, indicate a close interaction between skeletal and neural systems.
Moreover, the crosstalk between osteoclasts or osteoblasts and neurons is supported by
both in vivo and in vitro studies. These studies have demonstrated that correct innervation
is important to maintain bone homeostasis, skeletal growth, and fracture repair. In addition,
a disrupted skeletal system affects nerve formation and signaling [17]. Moreover, neural
and skeletal systems share various molecules and regulatory mechanisms, such as BMPs,
Eph-ephrin, netrins, semaphorins, and Slit/Robo signaling [17,20,22–28].

The present study aimed to determine whether Ngn1 affects osteoclast and osteoblast
differentiation. We found that the overexpression of Ngn1 in osteoclast or osteoblast
precursor cells negatively regulated osteoclast or osteoblast differentiation by inhibiting the
transcriptional activity of NFATc1 or Runx2, the master regulators of differentiation into
osteoclasts or osteoblasts, respectively. The regulation of these two transcription factors
by Ngn1 was associated with a direct interaction between Ngn1 and p300/CREB-binding
protein-associated factor (PCAF).

2. Results
2.1. Ngn1 Inhibited Osteoclast and Osteoblast Differentiation

Since Ngn1 expression is very low during osteoclastogenesis and osteoblastogenesis,
we overexpressed Ngn1 in osteoclast and osteoblast precursor cells using a retrovirus to
investigate its role in bone cells. To determine the role of Ng1 in osteoclast differentiation,
Ngn1 was overexpressed in BMMs. Ngn1 overexpression significantly suppressed the
formation of TRAP-positive osteoclasts (Figure 1a) and significantly downregulated the ex-
pression of osteoclastogenic marker genes, such as Nfatc1, Acp5, Oscar, and Ctsk (Figure 1b).
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Figure 1. The overexpression of Neurogenin 1 (Ngn1) inhibited the receptor activator of nuclear 
factor kappa-B ligand (RANKL)-induced osteoclast differentiation. (a,b) Bone marrow-derived mac-
rophages (BMMs) overexpressing Ngn1 were generated via retroviral infection and cultured with a 
macrophage colony stimulating factor (M-CSF) and RANKL for 3 days. (a) Tartrate-resistant acid 
phosphatase (TRAP)-stained cells (left panel) and the number of TRAP-positive multinucleated cells 
(right panel), scale bar: 200 µm. (b) Relative expression of the indicated genes quantified using quan-
titative reverse-transcription PCR (qRT-PCR). # p < 0.05, * p < 0.01, ** p < 0.001 vs. control. 

 
Figure 2. The overexpression of Ngn1 strongly inhibited osteoblast differentiation. (a–c) Osteoblast 
precursor cells overexpressing Ngn1 were generated via retroviral infection and incubated in an 
osteogenic medium (OGM). (a) Levels of alkaline phosphatase (ALP) in cells cultured for 3 days. (b) 
The cells were cultured for 6 days, stained with alizarin red (left panel), and those positive for aliz-
arin red were quantified (right panel). (c) Relative expression of the indicated genes quantified via 
quantitative reverse-transcription PCR (qRT-PCR). # p < 0.05, * p < 0.01, ** p < 0.001 vs. control. 

  

Figure 1. The overexpression of Neurogenin 1 (Ngn1) inhibited the receptor activator of nuclear factor
kappa-B ligand (RANKL)-induced osteoclast differentiation. (a,b) Bone marrow-derived macrophages
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(BMMs) overexpressing Ngn1 were generated via retroviral infection and cultured with a macrophage
colony stimulating factor (M-CSF) and RANKL for 3 days. (a) Tartrate-resistant acid phosphatase
(TRAP)-stained cells (left panel) and the number of TRAP-positive multinucleated cells (right panel),
scale bar: 200 µm. (b) Relative expression of the indicated genes quantified using quantitative
reverse-transcription PCR (qRT-PCR). # p < 0.05, * p < 0.01, ** p < 0.001 vs. control.

Ngn1 was then overexpressed in osteoblast precursors to evaluate the effect of Ngn1
on osteoblast differentiation. Ngn1 overexpression in osteoblast precursors resulted in
the remarkable inhibition of ALP activity and mineralization (Figure 2a,b). In addition,
Ngn1 overexpression significantly suppressed the expression of osteoblastogenic marker
genes, such as Runx2, Alpl, Ibsp, and Bglap, during osteoblast differentiation (Figure 2c).
Collectively, the overexpression of Ngn1 inhibits the differentiation of the two major types
of bone cells.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 12 
 

 

 
Figure 1. The overexpression of Neurogenin 1 (Ngn1) inhibited the receptor activator of nuclear 
factor kappa-B ligand (RANKL)-induced osteoclast differentiation. (a,b) Bone marrow-derived mac-
rophages (BMMs) overexpressing Ngn1 were generated via retroviral infection and cultured with a 
macrophage colony stimulating factor (M-CSF) and RANKL for 3 days. (a) Tartrate-resistant acid 
phosphatase (TRAP)-stained cells (left panel) and the number of TRAP-positive multinucleated cells 
(right panel), scale bar: 200 µm. (b) Relative expression of the indicated genes quantified using quan-
titative reverse-transcription PCR (qRT-PCR). # p < 0.05, * p < 0.01, ** p < 0.001 vs. control. 

 
Figure 2. The overexpression of Ngn1 strongly inhibited osteoblast differentiation. (a–c) Osteoblast 
precursor cells overexpressing Ngn1 were generated via retroviral infection and incubated in an 
osteogenic medium (OGM). (a) Levels of alkaline phosphatase (ALP) in cells cultured for 3 days. (b) 
The cells were cultured for 6 days, stained with alizarin red (left panel), and those positive for aliz-
arin red were quantified (right panel). (c) Relative expression of the indicated genes quantified via 
quantitative reverse-transcription PCR (qRT-PCR). # p < 0.05, * p < 0.01, ** p < 0.001 vs. control. 

  

Figure 2. The overexpression of Ngn1 strongly inhibited osteoblast differentiation. (a–c) Osteoblast
precursor cells overexpressing Ngn1 were generated via retroviral infection and incubated in an
osteogenic medium (OGM). (a) Levels of alkaline phosphatase (ALP) in cells cultured for 3 days.
(b) The cells were cultured for 6 days, stained with alizarin red (left panel), and those positive for
alizarin red were quantified (right panel). (c) Relative expression of the indicated genes quantified
via quantitative reverse-transcription PCR (qRT-PCR). # p < 0.05, * p < 0.01, ** p < 0.001 vs. control.

2.2. Ngn1 Inhibited NFATc1 and Runx2 Transcriptional Activities through Interaction with PCAF

Since the overexpression of Ngn1 inhibited the expression of differentiation marker
genes in both osteoclasts and osteoblasts, we speculated that Ngn1 might inhibit the
transcriptional activities of master transcription factors of osteoclast or osteoblast differ-
entiation through the regulation of certain activators that are simultaneously involved in
both osteoclast and osteoblast differentiation, independently of their DNA-binding ability.
PCAF is a coactivator that regulates both osteoclast and osteoblast differentiation. To
determine whether Ngn1 sequesters PCAF to inhibit NFATc1 or Runx2 target gene expres-
sion, we investigated whether Ngn1 directly binds to PCAF. When Ngn1 and PCAF were
co-transfected and immunoprecipitated, a physical interaction was observed between Ngn1
and PCAF (Figure 3a). We then investigated the role of Ngn1 in the PCAF-mediated acetyla-
tion of NFATc1 and Runx2 using immunoprecipitation assays. As shown in Figure 3b and c,
Ngn1 remarkably suppressed the acetylation of NFATc1 and Runx2 mediated by PCAF.
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Upon observing repressed acetylation, we subsequently explored the role of Ngn1 in the
transcriptional activity of NFATc1 driven by Acp5 and Oscar promoters using luciferase
assays. The results show that Ngn1 significantly suppressed the NFATc1-induced and
PCAF-enhanced transcription of NFATc1 target genes, namely, Acp5 and Oscar (Figure 3d).
Furthermore, the effects of Ngn1 on the transcriptional activity of Runx2 driven by Alpl,
Bglap, and OSE downstream of Runx2 were determined using luciferase assays. Ngn1
significantly suppressed the transcription of Runx2 downstream targets induced by PCAF
(Figure 3e). These results suggested that the interaction between Ngn1 and PCAF sup-
pressed the NFATc1 and Runx2 acetylation mediated by PCAF, thereby suppressing the
expression of their target genes.
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Figure 3. Ngn1 regulated the p300/CREB-binding protein-associated factor (PCAF)-mediated tran-
scriptional activities of the nuclear factor of activated T cells 1 (NFATc1) and runt-related transcription
factor 2 (Runx2). (a) The 293T cells were co-transfected with Flag-PCAF and Flag-Ngn1 and subjected
to immunoprecipitation with an IgG or anti-PCAF antibody, followed by Western blot analysis with
an anti-Flag antibody. (b) The 293T cells were co-transfected with HA-NFATc1, Flag-PCAF, or Flag-
Ngn1, as indicated. Cell lysates were subjected to immunoprecipitation with an anti-acetyl-lysine
antibody, followed by Western blot analysis of the indicated antibodies. (c) The 293T cells were
co-transfected with Myc-Runx2, Flag-PCAF, or Flag-Ngn1, as indicated. Cell lysates were subjected
to immunoprecipitation with an anti-acetyl-lysine antibody, followed by Western blot analysis with
the indicated antibodies. (d) The 293T cells were co-transfected with the indicated plasmids along
with an Acp5 or Oscar promoter luciferase reporter. Cell lysates were subjected to the luciferase assay.
(e) The 293T cells were co-transfected with the indicated plasmids along with an Alpl, Bglap, or OSE
promoter luciferase reporter. Cell lysates were subjected to the luciferase assay. # p < 0.05, * p < 0.01,
** p < 0.001 vs. control.
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We then examined whether NFATc1 or Runx2 could rescue defects in osteoclastogene-
sis or osteoblastogenesis, respectively, caused by Ngn1 overexpression. The overexpression
of the constitutively active form of NFATc1 (Ca-NFATc1) partially but significantly rescued
the Ngn1-induced suppression of osteoclast formation (Figure 4a). Furthermore, the over-
expression of Runx2 partially but significantly rescued the inhibitory effects of Ngn1 during
osteoblastogenesis (Figure 4b,c). Collectively, these results suggest that the simultaneous
inhibition of osteoclast and osteoblast differentiation by Ngn1 is associated, at least in part,
with reduced PCAF-mediated NFATc1 and Runx2 acetylation.

2.3. Ngn1 Inhibited the Osteoclast and Osteoblast Differentiation Mediated by Inflammatory
Cytokines

Osteoclast differentiation, although mainly induced by RANKL, can also be induced
by other inflammatory cytokines [29,30]. Therefore, we analyzed whether Ngn1 can inhibit
the osteoclast formation induced by inflammatory cytokines, such as TNF-α and IL-17A.
Ngn1 overexpression completely inhibited the osteoclast formation induced by TNF-α
(Figure 5a) and IL-17A (Figure 5b), as observed via TRAP staining. Furthermore, as IL-17A
is known to induce osteoblast differentiation, we investigated the effects of Ngn1 on IL-
17A-induced osteoblast differentiation. Ngn1 overexpression significantly inhibited ALP
activity, as well as the mineralization induced by IL-17A (Figure 5c,d). Collectively, Ngn1
inhibited RANKL-induced osteoclast and BMP2-induced osteoblast differentiation, as well
as the osteoclast and osteoblast differentiation induced by inflammatory cytokines, such as
TNF-α and IL-17A.
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Figure 4. The overexpression of NFATc1 or Runx2 partially rescued the inhibitory effects of Ngn1
on osteoclastogenesis or osteoblastogenesis, respectively. (a) BMMs overexpressing Ngn1 or Ngn1
and Ca-NFATc1 were generated via retroviral infection and subsequently cultured with M-CSF and
RANKL for 3 days. TRAP-stained cells (left panel) and the number of TRAP-positive multinucleated
cells (right panel), scale bar: 200 µm. (b,c) Osteoblast precursor cells overexpressing Ngn1 or Ngn1
and Runx2 were generated via retroviral infection and subsequently cultured with OGM. (b) Levels
of ALP in cells cultured for 3 days. (c) Cells were cultured for 6 days, stained with alizarin red (left panel),
and those positive for alizarin red were quantified (right panel). # p < 0.05, * p < 0.01, ** p < 0.001 vs. control.
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Figure 5. The overexpression of Ngn1 inhibited the osteoclastogenesis and osteoblastogenesis
mediated by inflammatory cytokines. (a) BMMs overexpressing Ngn1 were generated via retroviral
infection and subsequently incubated with M-CSF, RANKL, and TNF-α for 3 days. TRAP-stained cells
(left panel) and the number of TRAP-positive multinucleated cells (right panel), scale bar: 200 µm.
(b) BMMs overexpressing Ngn1 were generated via retroviral infection and subsequently incubated
with M-CSF, RANKL, and IL-17A for 3 days. TRAP-stained cells (left panel) and the number of
TRAP-positive multinucleated cells (right panel), scale bar: 200 µm. (c,d) Osteoblast precursor cells
overexpressing Ngn1 were generated via retroviral infection and subsequently cultured with ascorbic
acid, β-glycerophosphate, and IL-17A. (c) Levels of ALP in cells cultured for 3 days. (d) Cells were
cultured for 6 days, stained with alizarin red (left panel), and those positive for alizarin red were
quantified (right panel). * p < 0.01, ** p < 0.001 vs. control.

3. Discussion

Several studies have shown that histone acetyltransferases, including PCAF, p300,
monocytic leukemia zinc finger protein (MOZ), and MOZ-related factor (MORF), stimulate
osteoclastogenesis and osteoblastogenesis through the acetylation of both histone and
non-histone proteins [31]. PCAF is a histone acetyltransferase involved in tumor initiation
and progression primarily via the acetylation of H3 histones. PCAF is also associated
with multiple hepatic metabolic and pathogenic diseases, such as metabolic syndrome,
inflammation, apoptosis, injury, and cancer, via the acetylation of non-histone proteins such
as phosphoglycerate kinase 1 (PGK1), ATP-citrate lyase (ACLY), peroxisome proliferator-
activated receptor gamma coactivator 1-alpha (PGC1-α), forkhead box P3 (FOXP3), and
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p53 [32]. Additionally, PCAF is also involved in the differentiation of bone cells via the
acetylation of both histone and non-histone proteins.

Both NFATc1 and Runx2 are master transcription factors of osteoclast and osteoblast
differentiation, respectively [33,34]. They are tightly regulated at the transcriptional, trans-
lational, and post-translational levels. Their stability and activities are affected by PCAF-
mediated acetylation [35–38]. PCAF synergistically enhances RANKL-induced osteoclast
differentiation by promoting the stability and transcriptional activity of NFATc1 through
direct interaction [37]. Furthermore, PCAF binds to Runx2, thereby acetylating it and
consequently increasing its stability and transcriptional activity. In addition, PCAF stimu-
lates osteoblast differentiation through inducing Runx2 acetylation in MC3T3-E1 cells [39].
Therefore, PCAF positively regulates the differentiation of osteoclasts and osteoblasts by
promoting the stability and activity of their respective master transcription factors.

Ngn1 regulates Ngn1-dependent transcription by binding to E-box elements as a
bHLH transcription factor, and also acts as a transcription repressor independently of
its ability to bind to DNA. For example, Ngn1 sequesters the transcriptional coactivator
complex comprising the CREB binding protein (CBP)/p300 and Smad1 from STAT by
directly interacting with CBP, thus inhibiting glial cell differentiation [40]. We found that
Ngn1 overexpression simultaneously inhibited osteoclast and osteoblast differentiation
and suppressed the expression of all their specific genes. These results indicate that Ngn1
simultaneously prevents the function of an activator of NFATc1 and Runx2 via protein–
protein interactions rather than the transcriptional regulation of each gene through DNA
binding. One suitable candidate that mediates the inhibitory function of Ngn1 on NFATc1
and Runx2 is PCAF, as it co-regulates osteoclast and osteoblast differentiation. Therefore,
we investigated whether Ngn1 interacts with PCAF. The co-immunoprecipitation results
reveal an interaction between Ngn1 and PCAF. Ngn1, when bound to PCAF, inhibited
PCAF-mediated acetylation and the transcriptional activities of NFATc1 and Runx2. How-
ever, neither the overexpression of NFATc1 nor Runx2 rescued the inhibitory effects of
Ngn1 completely. Therefore, Ngn1 may also regulate target gene expression depending
on its ability to bind to DNA or other PCAF-dependent transcription factors to inhibit
osteoclast and osteoblast differentiation.

Ankylosing spondylitis (AS) is a common inflammatory autoimmune disease that
is involved in disorders of the immune and skeletal systems [41]. It is characterized by
inflammatory damage to the axial skeleton and bony ankyloses [41]. The pathogenesis of
AS is associated with infection and environmental and genetic factors [42,43]. This disease
uncouples the processes between osteoclasts and osteoblasts, concomitantly resulting in
osteogenesis and osteolytic bone destruction. Pathological changes in the spine during
AS are characterized by an increased synthesis of new bone at sites of inflammation and
excessive resorption of trabecular bone, with an increased number of osteoclasts [44–49].
Although TNF-α blockade strategies for AS have been developed, more effective and
safer strategies are needed owing to the controversy over the effects of TNF-α on bone
formation [50–52]. Patients with AS express abundant IL-17A, which is involved in rapid
differentiation into mature osteoblasts and the promotion of osteoclast differentiation and
resorption [50,53,54]. Hence, strategies to block IL-17A can be applied to treat AS.

In the present study, the overexpression of Ngn1 negatively regulated osteoblast dif-
ferentiation. Ngn1 inhibited the osteoclast differentiation induced by RANKL, as well as
by TNF-α and IL-17A. Furthermore, Ngn1 suppressed the osteogenic differentiation and
function induced by BMP2 and IL-17A. Together, these results suggest that the administra-
tion of Ngn1 can ameliorate excessive bone formation and resorption in inflammatory sites
of AS. While multiple in vitro studies suggest that Ngn1 overexpression promotes prolifer-
ation during the development of spiral ganglion neurons and neuronal differentiation in
pluripotent stem cells, little is known about the function of Ngn1 overexpression in vivo,
except for reports that retina-like tissue is induced by ectopic Ngn1 expression from the
Bestrophin1 promoter [55,56]. Therefore, the therapeutic potential of Ngn1 in AS needs to
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be confirmed using bone cell-specific Ngn1-overexpressing mice. Nevertheless, due to a
lack of information, it is difficult to predict the effects of Ngn1 overexpression in vivo.

4. Materials and Methods
4.1. Osteoclast Differentiation

Bonemarrow-derived macrophages (BMMs), isolated from the femurs and tibias of wild-
type ICR mice by flushing with α-MEM (HyClone Laboratories, Logan, UT, USA), were cultured
in α-MEM containing 10% FBS (HyClone Laboratories, Logan, UT, USA), 100 U/mL penicillin,
100 mg/mL streptomycin (Life Technologies, Carlsbad, CA, USA), and 30 ng/mL M-CSF,
for 3 days. Nonadherent cells were removed, and adherent BMMs were differentiated into
osteoclasts via incubation with α-MEM containing 10% FBS (HyClone Laboratories, Logan,
UT, USA), 100 U/mL penicillin, 100 mg/mL streptomycin (Life Technologies, Carlsbad,
CA, USA), M-CSF (30 ng/mL), and RANKL (10–150 ng/mL). Mature osteoclasts were fixed
and stained for TRAP. Thereafter, TRAP-positive multinuclear cells with >3 nuclei were
considered as osteoclasts.

4.2. Osteoblast Differentiation

Primary osteoblast precursors were isolated from the calvarias of neonatal ICR mice
via enzymatic digestion with 0.1% collagenase (Life Technologies, Carlsbad, CA, USA) and
0.2% dispase II (Roche Diagnostics, GmbH, Mannheim, Germany). Primary osteoblast
precursors were differentiated into osteoblasts by culturing in α-MEM containing 10% FBS
(HyClone Laboratories, Logan, UT, USA), 100 U/mL penicillin, 100 mg/mL streptomycin
(Life Technologies, Carlsbad, CA, USA), BMP2 (100 ng/mL), ascorbic acid (50 µg/mL),
and β-glycerophosphate (100 mM). The cultured cells were lysed in 50 mM Tris-HCl
(pH 7.4) containing 1% Triton X-100, 150 mM NaCl, and 1 mM EDTA and incubated with
p-nitrophenyl phosphate substrate (Sigma-Aldrich, St. Louis, MO, USA). ALP activity was
then assessed by measuring the absorbance at 405 nm using a spectrophotometer. Cultured
cells were fixed with 4% paraformaldehyde, stained with 40 mM alizarin red (pH 4.2), and
washed with phosphate-buffered saline (PBS) to remove nonspecific staining. Then, the
cells were visualized using the CanoScan 9000F Mark II scanner (Canon Inc., Tokyo, Japan).
The quantitation of alizarin red was performed by extracting alizarin red from the stained
cells with 10% acetic acid for 30 min. Subsequently, the absorbance of the samples was
measured at 405 nm via spectrophotometry.

4.3. Retroviral Transduction

Plat-E cells were transfected using FuGENE 6 (Promega, Madison, WI, USA), as
described by the manufacturer, to produce retroviral packages. Retroviral supernatants
were collected 48 h post-transfection and then incubated with the cells of interest for 6 h
with 10 µg/mL polybrene (Sigma-Aldrich Corp., St. Louis, MO, USA).

4.4. Quantitative Reverse-Transcription PCR (qRT-PCR)

We amplified the sequences of interest using specific primers in triplicate via qRT-
PCR using SYBR Green (Qiagen, GmbH, Hilden, Germany) and Rotor-Gene Q (Qiagen).
The transcript-level expression of target genes was normalized to that of Gapdh. The
relative quantified value for the expression of each target gene compared with its cali-
brator is expressed as 2−(Ct−Cc), where Ct and Cc are the mean threshold cycle differences
of the target and calibrator genes, respectively, after normalization to Gapdh expression.
The relative expression for each sample is shown in a semi-log plot. The forward and
reverse primer sequences (5′ → 3′) were as follows: Gapdh, TGACCACAGTCCATGCCAT-
CACTG and CAGGAGACAACCTGGTCCTCAGTG; Nfatc1, CTCGAAAGACAGCACTG-
GAGCAT and CGGCTGCCTTCCGTCTCATAG; Acp5, CTGGAGTGCACGATGCCAGC-
GACA and TCCGTGCTCGGCGATGGACCAGA; Oscar, TGCTGGTAACGGATCAGCTC-
CCCAGA and CCAGGAGCCAGAACCTTCGAAACT; Ctsk, AGGAGGCATTGACTCT-
GAGATG and GTTGTTCTTATCCGAGCCAAGAG; Runx2, CCCAGCCACCTTTACC-
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TACA and CAGCGTCAACACCATCATTC; Alpl, CAAGGATATCGACGTGATCATG and
GTCAGTCAGGTTGTTCCGATTC; Ibsp, GGAAGGGAGACTTCAAACGAAG and CATC-
CACTTCTGCTTCTTCGT TC; and Bglap, ATGAGGACCCTCTCTCTGCTGCTCAC and
AGAGCAAACTGCAGAAGCTGAGAG.

4.5. Luciferase Reporter Assay

We transfected 293T cells with Acp5, Oscar, Alpl, Bglap, or OSE reporter plasmids
using FuGENE 6 for 48 h (Promega, Madison, WI, USA), as described by the manufac-
turer. The cells were lysed in Passive Lysis Buffer (Promega, Madison, WI, USA), and lu-
ciferase activity was measured in duplicate using the dual-luciferase reporter assay system
(Promega, Madison, WI, USA).

4.6. Immunoprecipitation

We transfected 293T cells with the peptide sequence DYKDDDDK (Flag)-PCAF, Flag-
Neurogenin 1, human influenza agglutinin-NFATc1 (HA-NFATc1), or anti-master regulator
of cell cycle entry and proliferative metabolism-Runx2 (Myc-Runx2), as indicated. The cells
were washed with PBS and lysed with 50 mM Tris-HCl (pH 8.0), 150 mM NaCl, 1 mM
EDTA, 0.5% Nonidet P-40, 1 mM PMSF, and a protease inhibitor cocktail. Proteins in the
lysates were immunoprecipitated using PCAF (Santa Cruz Biotechnology, Dallas, TX, USA)
or Ac-lysine (Cell Signaling Technology, Danvers, MA, USA) antibodies overnight at 4 ◦C.
Protein–antibody complexes were extracted using Pierce™ Protein G Agarose (Thermo
Fisher Scientific, Waltham, MA, USA); then, the proteins were separated via SDS-PAGE
and transferred onto PVDF membranes (Millipore, Burlington, MA, USA). Nonspecific
binding on the membranes was blocked by treating them with 5% skim milk in 10 mM
Tri-HCl (pH 7.6), 150 mM NaCl, and 0.1% Tween 20 (TBS-T). The membranes were then
immunoblotted with anti-Flag antibodies (Sigma-Aldrich Corp., St. Louis, MO, USA), anti-
NFATc1 antibodies (Santa Cruz Biotechnology, Dallas, TX, USA), or anti—Myc antibodies
(Santa Cruz Biotechnology, Dallas, TX, USA). Signals were detected using ECL solution
(Millipore, Burlington, MA, USA) and analyzed using the Azure 300 luminescent image
analyzer (Azure Biosystems, Dublin, CA, USA).

4.7. Statistical Analysis

All values are expressed as mean ± standard deviation (SD). Statistical significance
was determined using a two-tailed Student’s t-test for two independent samples or analysis
of variance (ANOVA) with post hoc Tukey HSD test for multiple group comparisons.
Results with p < 0.05 were considered statistically significant.
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