
Current therapies of renal cell car-
cinoma (RCC), a  highly vascularised 
tumour, mostly rely on anti-angiogen-
ic treatment options. These include 
tyrosine kinase inhibitors (TKIs) and 
anti-VEGF monoclonal antibodies. 
Although these strategies aim at re-
straining vascularisation to control 
tumour growth, the effects of such 
therapies are much wider, as affect-
ing the vessel structure deeply mod-
ifies the microenvironment of the 
tumour mass. The aim of this review 
is to provide an overview of current 
knowledge on the global effects of an-
ti-angiogenic treatment, mostly TKIs, 
on the shaping of the immune com-
ponent of the RCC microenvironment. 
The data supporting the modification 
of immunity by anti-angiogenic ther-
apies are collected to reveal the po-
tential of angiogenesis modulation as 
a strategy for the adjuvant anti-cancer 
approach in immunotherapy.
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Despite considerable advances in treatments, in most developed coun-
tries cancer is the second cause of death, and the occurrence of the disease 
is rising all over the world [1]. Renal cell carcinoma (RCC) is among the 10 
most prevalent cancers, with increasing incidence worldwide. Additionally, it 
is a disease with a poor prognosis, as up to 30% of patients present metas-
tases at the time of diagnosis and a further 20% will develop them despite 
treatment [2]. This cancer seeds mostly to the lungs, bones, lymph nodes 
and liver [3], and metastasis is the main cause of high mortality among RCC 
patients (50% of patients during 5 years after diagnosis) [4].

Renal cell carcinoma and angiogenesis

Renal cell carcinoma is considered a highly vascularised cancer, and re-
cent advances in RCC biology have shown that angiogenesis is the key player 
in pathophysiology of this cancer [5, 6]. 60–80% of RCC tumours are charac-
terised by a mutation of the vhl gene [7–9]. VHL, von Hippel-Lindau protein 
[10], is a tumour suppressor crucial for the hypoxia response pathways; it 
targets for degradation the α-subunit of hypoxia-inducible factor 1α (HIF-1α) 
upon normoxic/physioxic conditions. Partial pressure of oxygen (pO

2
) varies 

in different tissues; the physiological level (physioxia) ranges from 1% in the 
skin to 10% in the kidney, and reaches 13% in arterial blood, yet is still below 
oxygen levels in atmospheric air (21%) [11]. Upon correct, physiological tissue 
oxygenation and constitutive expression of HIF-1α, the factor is regulated 
by oxygen-dependent proteolysis. However, when oxygen is lacking (in a hy-
poxic microenvironment), HIF-1α is not hydroxylated by prolyl hydroxylas-
es (PHD), and cannot be recognised by active phosphorylated VHL (pVHL) 
and targeted for proteolysis, so it is stabilised and accumulates in the cell 
[12]. Acting as a transcription factor, HIF1α activates the expression of many 
genes responsible for cell survival in low pO

2
 and counteracting pathologic 

hypoxia. These include VEGF (vascular endothelial growth factor; regulator 
of angiogenesis), EPO (erythropoietin), glucose transporters (responsible for 
anaerobic glycolysis), TWIST and Matrix metalloproteinases (significant for 
epithelial-to-mesenchymal transition and metastasis), cadherins and stem-
cell related markers (Oct4 and Notch) [13]. Increased secretion of VEGF and 
platelet-derived growth factor (PDGF) by cancer cells in hypoxia induces the 
formation and rearrangement of the host vasculature, which helps to sus-
tain tumour growth and dissemination. They act as attractants for endothe-
lial cells and induce their migration towards the tumour and subsequent 
proliferation [14]. Down-stream effects of HIF1α activation and stabilisation 
are summarised in Fig. 1.

De-regulation of VHL in RCC tumours have a similar effect; even in the 
absence of hypoxia, HIF-1α is not degraded, leading to activation of down-
stream signalling as described above. Consequently, VHL truncated kidney 



15Immune consequencesof anti-angiogenic therapyin renal cell carcinoma  

tumours are characterised by a high level of VEGF [15] 
and intense angiogenesis [16]. However, blood vessels 
in the tumour are highly abnormal; they are irregularly 
shaped and organised, prone to leakage and have dis-
turbed blood flow [17]. In such a setting, the tumour is 
characterised by temporal and spatial heterogeneity in 
terms of blood flow, oxygenation and nutrient levels, cre-
ating a unique, cancer-promoting microenvironment [18]. 
Hypoxia, or pseudo-hypoxia related to VHL mutation, 
was shown to be a selection factor for cancer stem-like 
cells (CSCs), which are likely to represent the main driv-
ing force of cancer progression, relapse and resistance 
to therapies [19]. Additionally, leaky vessels facilitate 
cancer spreading; insufficient lining of the endothelium 
promotes tumour cell extravasation [20]. Additionally, 
malfunctioning endothelium compromises drug delivery 
due to incorrect blood perfusion of the tumour mass [21]. 
On the other hand, pathological vasculature restrains 
the proper migration of immune cells and the cancer mi-
croenvironment activates their suppressive phenotypes 
[22]. As the tumour microenvironment is now considered 
as the main driving force for cancer development as well 
as a potential means to “re-educate” tumour cells [23], 
pathological angiogenesis seems to be an interesting tar-
get for treatment. An indirect strike on the tumour can 
be sufficient to modify the processes of its growth and 
progression. Indeed, anti-angiogenic treatments, includ-
ing tyrosine kinase inhibitors (TKIs), show significant ef-
ficacy in the clinic [24]. Many RCC patients benefit from 
anti-angiogenic therapy [25]; TKI treatment reduces tu-
mour growth and vascular density [26, 27] and leads to 
prolonged survival [28]. 

Immunosuppression in renal cell carcinoma 

Although RCC is to some extent an immunogenic tu-
mour [29–31], immunosuppression in kidney cancer pa-
tients is frequent. The host is unable to develop an ade-
quate immune response and immunity is abrogated by 
tumour-induced immunosuppression. This is mediated 
by multiple mechanisms with Treg lymphocytes and my-
eloid-derived suppressor cells (MDSCs) being the most 
widely studied in the RCC field. 

Although data on Treg frequencies in RCC patients are 
mixed [32, 33], it was reported that CD4+CD25+Foxp3+ 
lymphocytes are induced in kidney cancer patients, both 
in blood and the tumour, which correlates with poor prog-
nosis [33–36], and these cells possess a suppressive phe-
notype [37]. Kim et al. [38] reported that systemic Treg 
induction is characteristic for RCC patients with large 
tumours (> 7 cm), although intra-tumour presence of 
CD4+CD25+Foxp3+ cells was similar as in healthy kidney 
tissues. Tregs are important mediators of immunosup-
pression and mediate toleration to self-antigens in physi-
ological conditions. However, as many cancer antigens are 
host proteins, activity of Treg cells strongly contributes to 
cancer immune evasion [39]. Treg cells produce regulatory 
cytokines, e.g. IL-10 and TGF-β, and directly influence oth-
er leukocytes. Treg cells were shown to hamper matura-
tion of dendritic cells (DCs) (expression of co-stimulatory 
molecules) and therefore block their activator functions. 
What is more, Tregs suppress effector T lymphocytes (both 
CD4+ and CD8+), NK cells and other major players in an-
ticancer immunity [40]. Interestingly, additional expansion 
of Tregs was observed in RCC patients in response to IL-2 
treatment, which explains the weak efficacy of this thera-

Fig. 1. Downstream effects of HIF1α/VHL pathway
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peutic approach [36]. Treg induction in RCC can be a con-
sequence of impaired DC activation [41] and it was shown 
that other CD4+ cell populations of kidney cancer patients 
tend to express a naïve/resting phenotype although they 
do respond to non-specific activation in vitro [42]. In RCC 
cases it was shown that circulatory Tregs can differ from 
their intra-tumoural counterparts, which had increased 
levels of HLA-DR, Fas, and GITR and simultaneously pos-
sessed higher suppressive properties [37]. Yet, other stud-
ies proved that blood Tregs from RCC cases are functional-
ly suppressive and seem to be more resistant to apoptosis 
than the cells from healthy individuals [43]. Therefore, 
restriction of Treg suppressive action seems to be a prom-
ising strategy for RCC management, particularly in the 
case of metastatic disease. Ipilimumab (anti-CTLA-4) and 
nivolumab (anti-PD-1) are monoclonal antibodies that tar-
get Treg-mediated immunosuppression [44]. In mRCC, im-
munotherapy with these drugs showed significant efficacy 
in clinical trials and may soon change the treatment para-
digm in RCC. According to NCCN guidelines [45], anti-PD-1 
antibodies are suggested as a second line treatment for 
RCC patients treated previously with other drugs; immu-
notherapy showed superior efficacy to mTOR inhibitor 
leading to prolonged survival [46]. What is more, anti-PD-1 
therapy combined with anti-CTLA-4 antibodies was shown 
to be more effective first line treatment in comparison to 
TKIs [47]. This shows emerging role of immunotherapy and 
immune-modulating therapies for RCC control but also 
proves crucial role of Treg immunosuppression in the pro-
gression of the disease. 

Target proteins of anti-CTLA4 and anti-PD-1 antibod-
ies are immune checkpoint receptors and were shown to 
be negative Treg regulators. CTLA-4 (cytotoxic T-lympho-
cyte-associated protein 4) is constitutively expressed in 
these cells and is dependent on Foxp3, a transcription fac-
tor that serves as a Treg marker both in mice and humans. 
CTLA-4 expression is crucial for Treg-mediated protection 
from autoimmunity; it is postulated that it may be a com-
petitor to CD28 and reduce binding to co-stimulatory mol-
ecules on antigen-presenting cells (APCs), suppressing ac-
tivation of naïve T cells [48]. Anti-CTLA-4 antibodies lead to 
activation of CD4+ and CD8+ cells regardless of specificity, 
promoting anti-cancer responses [49]. Also increased di-
versity of T cell receptors was reported in melanoma pa-
tients treated with anti-CTLA-4 antibodies, what may both 
mediate anti-tumour protection and toxicities. At the same 
time, anti-CTLA-4 therapy enhanced humoral response to 
vaccine antigens with no exacerbation of autoimmunity 
[50]. In cancer, CTLA-4 blockade cause reduction of sup-
pressive T cell activity [51] and activate Th1 cell responses 
[52]. Programmed cell death-1 (PD-1; CD279) is present on 
effector T cells, while its ligand (PD-L1) can be found on 
various cells, including tumour cells. Interactions of these 
two molecules lead to inhibition of immune responses, 
both during natural tolerance and cancer immune evasion 
[53]. Blocking of PD-1/PD-L1 interaction by monoclonal 
antibodies stops negative signalling and restores T-cell 
responses; lymphocytes proliferate and produce IFN-γ 
and IL-2 [54]. Cancer-specific CD8+ lymphocytes expand 
upon PD-1 blockade in melanoma what coincides with in-

creased recognition and cytotoxicity against tumour cells 
[55]. Anti-PD-1 antibodies can modulate the immunologi-
cal microenvironment in the tumour restoring protective 
immune responses; T cell infiltration of the tumour can be 
enhanced [56] with diminished Treg activity [57]. On the 
other hand, anti-PD-L1 therapy showed only moderate an-
ti-cancer efficacy [58]. Importantly, PD-L1 is regulated by 
the HIF1α pathway; it is overexpressed in hypoxia and in 
VHL-mutated RCC cells [59]. This directly links hypoxia and 
immunosuppression but also suggests that counteracting 
low pO2

 in tumours is a strategy to shape the anti-cancer 
immune response. Overall, blockade of CTLA-4 and PD-1 
mediated Treg suppression is of great importance in re-
storing protective responses with proved clinical potential.

MDSCs are another population of cells with suppressive 
functions observed during RCC. These is a heterogeneous 
population of progenitors of mono- and granulocytes 
that are normally present in the bone marrow and blood 
to serve as a backup pool. However, during pathological 
states, such as cancer or chronic inflammation, these 
progenitors fail to mature but become activated and ex-
press a suppressive phenotype [60]. MDSCs suppress anti-
gen-specific and non-specific activation of CD4+ and CD8+ 
lymphocytes in both a direct and indirect manner. T cells 
are arrested in G0/G1 phase of the cell cycle by depletion 
of L-arginine and cysteine from the microenvironment by 
extensive MDSC metabolism of these amino acids [61]. 
Also, leukocyte migration is affected, leading to reduced 
infiltration of the tumour with effector cells. Due to anti-
gen-presenting abilities of MDSC, Treg cells can be addi-
tionally induced [62]. Production of IL-10 by MDSC further 
leads to an ineffective response, including M2 (or alterna-
tive) activation of macrophages [63]. This cell population 
is induced in blood and tumours of kidney cancer patients 
[64–67], and it was also reproduced in a murine model of 
RCC [68]. MDSCs were shown to accumulate in the tumour 
predominantly as compared to the healthy kidney tissues 
in a murine syngeneic model of kidney cancer. Moreover, 
both intra-tumoural and splenic cells express a suppres-
sive phenotype [68]. The predominant subpopulation of 
myeloid suppressor cells in RCC patients comprises gran-
ulocytic MDSCs with enhanced arginase 1 activity [67]. In 
mRCC patients, the blood elevation of arginase 1 activity 
(low L-arginine, high L-ornithine levels) coincided with de-
creased ζ chain expression in T and NK cells. As in vitro 
depletion of MDSCs restores T cell responsiveness to an-
ti-T cell receptor (TCR) stimulation, the suppressive role of 
these cells in RCC patients is significant [69]. Interesting-
ly, granulocytic MDSCs from RCC were shown to be more 
resistant to apoptosis after activation in comparison to 
cells from healthy individuals [67], but they are susceptible 
to cell death mediated by IL-2/anti-CD40 treatment [70]. 
The ways in which RCC activates MDSCs are not yet elu-
cidated; however, most likely they are induced by secre-
tion of GM-CSF, M-CSF, IL-6, IL-10, TGF-β, COX-2 or PGE2, as 
shown for other cancers [61, 71]. Also VEGF blocks myeloid 
cell maturation, which may account for RCC induction of 
MDSCs [72]. High mobility group box-1 protein (HMGB1) 
expression in the tumour was linked with suppression by 
myeloid cells in RCC; blocking of the protein reduced the 
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progression of the disease by inhibition of MDSC induc-
tion [73]. 

Currently, studies performed on targeting MDSCs focus 
mainly on limiting their suppressive functions. PDE-5 in-
hibitors were shown to limit MDSC suppression in cancer 
by inhibition of arginase 1 and iNOS – enzymes whose 
activity mediates T cell suppression [74]. Also COX-2 in-
hibitors can be used to block PGE-2 production, which is 
responsible for MDSC expansion [75]. In RCC, another ap-
proach was also used: administration of retinoic acid in 
cancer patients, which led to differentiation of MDSCs and 
abrogated their suppressive phenotype [76, 77]. However, 
no immunotherapy based on direct counteracting MDSCs 
is currently used in the clinic on daily basis [78].

Additionally, RCC cells counteract protective immune re-
sponses directly by secretion of suppressive cytokines or ex-
pression of down-regulating receptors. Lymphocyte apopto-
sis induced by RCC cells through CD70 [79] or FasL mediated 
mechanisms [80] and the lack of co-activation molecules 
(B7-1 and B7-2) [81] contributes to ineffective immunity in 
kidney cancer patients. Mutation of vhl in RCC cells was also 
shown to reduce interactions of cancer and immune cells in 
a VCAM-mediated mechanism [82]. Immune escape is also 
related to disturbed antigen processing and presentation 
by cancer and APCs [83–86]. HLA-G, a non-classical MHC 
class I molecule, is frequently up-regulated in RCC [87], and 
this receptor protects cancer cells from recognition by im-
mune cells and subsequently lysis [88]. Also IL-6, IL-10, TNF, 
TGF and VEGF secreted by RCC cells create a cytokine milieu 
that down-regulates immunity [89–91]. A non-protective re-
sponse in RCC is also related to unfavourable immune bias 
– non-protective Th2 and Th17 tend to be elevated during 
kidney cancer [92], which is mediated, among other factors, 
by impaired DC activation [93].

Although limitation of tumour-induced immunosup-
pression seems to be a promising approach to treat 
cancer [94], immunotherapy is rarely treated as a single 
option [95]. Cancer is a complicated disease and it has 
to be addressed on multiple levels, as breaching subtle 
tumour-host interactions can lead to far-reaching conse-
quences. Immunotherapy, like any other drug treatment, 
is limited by the accessibility of the tumour site where the 
cells to counteract are located. Changing the conditions of 
the vasculature by restraining the anarchic growth of in-
efficient vessels would help to obtain a properly function-
ing vascular network. This is a purpose of TKI treatment, 
which may change the tumour microenvironment and in-
fluence immune responses of the host and immunomod-
ulatory action of the cancer cells. Therefore, this aspect of 
anti-angiogenic therapy can serve as a strategy to boost 
natural defence mechanisms of the host. 

Anti-angiogenic therapy of renal cell carcinoma 
and changes in the immune response

When diagnosed early, over 50% of RCC patients are 
cured, but late stage disease has a poor prognosis. In 
the case of primary RCC, partial or radical nephrectomy 
without adjuvant therapy is a preferred treatment. With 
disease progression, apart from resection of metastatic 

tumours, systemic therapy is implemented. Since 2005 
targeted therapy is possible for advanced RCC, which up 
to now consists of 7 FDA-approved drugs, including: tyro-
sine kinase inhibitors (TKIs; sunitinib, sorafenib, pazopan-
ib, axitinib), mTOR inhibitors (temsirolimus, everolimus), 
anti-VEGF antibodies and immunotherapy, as described 
earlier in this review. Additionally, combinational thera-
py and other targeted drugs, like cabozantinib, reported 
efficient in different cancers, are tested as second line 
treatment in mRCC patients relapsing after prior treat-
ment [45, 96]. VEGF and many other growth factors bind 
to their receptors that contain tyrosine kinases in the in-
tracellular domain that is responsible for transduction of 
the signal inside the cell [97]. Tyrosine kinase inhibitors are 
small molecules that target these intracellular domains of 
receptor and in-cell signalling molecules [98]. Drugs that 
are currently used in anti-RCC treatment and slightly differ 
in specificity, include sorafenib (targeting VEGFR-2, VEG-
FR-3), sunitinib (targeting VEGFR 1–3, PDGFR, KIT, FLT3), 
pazopanib (targeting VEGFR, PDGFR, KIT) and axitinib (tar-
geting VEGFR 1–3, PDGFR, KIT) [99]. All these TKIs showed 
benefit in mRCC patients [100]. Despite the relatively large 
amount of data on TKI effectiveness in different patient 
groups [101–114] there are surprisingly few studies on the 
molecular effects of this treatment on the RCC tumour and 
its microenvironment. 

Anti-angiogenic therapy shows a wide spectrum of ef-
fects. TKIs directly reduce tumour growth by inhibition of 
c-kit signalling in cancer cells of c-kit and PDGF signalling, 
thus regulating their proliferation [115]. At the same time, 
TKIs target endothelial cells by inhibition of VEGF signal-
ling, which is crucial for recruitment of new vessels and 
modulates tumour vascularisation [116]. This restrains tu-
mour expansion; its growth is tempered and angiogenesis 
is normalised. Blocked receptors fail to activate endothelial 
cells to form new vasculature in the tumour but also restore 
proper functions of existing cancer-induced blood vessels. 
Also, as a consequence of TKI treatment, tumour compact-
ness is diminished, leading to better perfusion [116]. TKIs 
should then normalise the tumour microenvironment, lead-
ing to homogeneous conditions in the tumour, and reduce 
expression of growth factors, which may cause partial con-
trol of the disease. Additionally, TKI-mediated modification 
of cancer cells and angiogenesis affects the immune mi-
croenvironment; cancer-induced immunosuppression can 
be reversed, restoring host immunity [116]. When normal 
functions of blood vessels are regained, the tumour mass 
is again available for the action of immune cells [117] and 
other drugs when applied as adjuvant treatment [17]. As 
an example, it was observed that in cancer patients treat-
ed with TKIs, induction of immunosuppressive cell popula-
tions is reduced in comparison to untreated controls, which 
proves the additional benefit of anti-angiogenic treatment 
and makes it an adjuvant strategy for immunotherapy. Al-
though the mechanism of this phenomenon is also weakly 
described, changes in the tumour microenvironment affect 
its immunogenic/immunomodulatory abilities (Table 1). 

TKIs were shown to directly affect T cell functions, decreas-
ing proliferation and inducing apoptosis [118], yet this study was 
performed on effector T cells and it is not certain that a simi-
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lar effect is valid for Treg cells – especially as in vivo, TKI were 
shown to increase T cell mediated immunity in other cancers 
[116]. Sunitinib decreased the amount of circulatory [66, 119] 
and intra-tumoural Treg lymphocytes in RCC [120]. It was also 
observed to modulate Th2 immune bias and promote Th1-re-
lated responses [119] while decreasing regulatory cells [121]. 
Also the percentage of MDSCs in the blood of RCC patients 
dropped after 28 days of sunitinib therapy with a simultaneous 
increase in IFN-γ production in T cells [66]. In a murine model 
of kidney cancer it was confirmed that also intratumoural and 
splenic accumulation of MDSCs is reduced by sunitinib, and ini-
tial observations suggest that a similar phenomenon occurs in 
humans [122]. It can be mediated by Stat3 dependent inhibition 
of pro-angiogenic activity of MDSCs [123]. As VEGF receptors are 
expressed by MDSCs [124], a direct effect of TKIs on these cells 
is possible. Sunitinib was shown to impair proliferation and sur-
vival of MDSCs in murine cancer. However, similarly to tumour 
cells, this cell population may become resistant to TKIs [125]. 
Normal type DC distribution was recovered in RCC patients af-
ter sunitinib administration [126]. TKI therapy improved tumour 
infiltration with CD8+ cells [127] and increased T cell functions 
measured by the level of IFN [122], which supports the use of 
sunitinib in combination with immunotherapy. 

Sorafenib’s effect on the immune response in RCC is 
much less clear. The drug was reported to alter DC matu-
ration, impairing T cell responses [128, 129]. Nonetheless, 
sorafenib treatment reduced the infiltration of the tumour 
with Treg cells [130] while others showed that this TKI 
augments Foxp3+ lymphocytes in peripheral blood [131]. 
Busse et al. [132] on the other hand observed diminished 
percentages of circulatory Tregs in sorafenib-treated RCC 
patients but no effect of the therapy could be seen on the 
level IL-10 or TGFβ.

The systemic up-regulation of immunity during an-
ti-angiogenic treatment of RCC is additionally striking, as 
TKIs were shown to have direct immunosuppressive prop-
erties ([133] for review). This suggests the predominance 
of the vessel normalisation effect on the overall microen-
vironment and disease progression. Moreover, another 
approach for anti-angiogenic therapy using anti-VEGF an-
tibodies showed no effect on the development of immuno-
suppression as MDSCs were not affected by the treatment 
[67], proving the importance of the definition of the term 
anti-angiogenic strategies. 

Conclusions

Although the nature of immunosuppression reversal 
observed in TKI-treated RCC patients cannot be fully ex-

plained, it seems that the drugs affect immune cells both 
directly, inhibiting tyrosine kinase pathways, and indirect-
ly. This has deep consequences by modification of the ma-
lignant microenvironment. Overall, treatment with TKIs is 
one of the anti-angiogenic strategies because, by modify-
ing endothelial cell growth, they reduce the anarchic an-
giogenesis and cause restoration of functional vasculature 
in the tumour. This leads to normalised pO

2
 and improves 

cell metabolism, while phenotypically normalised endo-
thelium regulates the functions of vessels. This enhances 
the efficacy of chemotherapeutics, radiotherapy and mi-
gration of immune cells. Nevertheless, the normalisation 
effect of TKIs is transient, and temporal TKI resistance in 
RCC is often observed [26, 134]; ultimately anti-angiogen-
ic therapy leads to vascular regression and consequently 
hypoxia with all its cancer-promoting mechanisms [135]. 
Therefore, an innovative approach for the control of can-
cer growth could be persistent and stable vessel normal-
isation [136]. This could be achieved by several means, 
including enhanced O

2
 transport by erythrocytes and/or 

targeted reduction of pro-angiogenic signals. Kieda et al. 
showed that administration of the allosteric haemoglobin 
effector myo-inositol-trispyrophosphate (ITPP) increases 
the oxygen level and blood flow in experimental settings 
of melanoma and breast cancer models [137, 138]. ITPP 
caused activation of PTEN in endothelial cells, which led 
to vessel repair, and the treatment caused suppression of 
HIF1α-activated pathways and reduced the pro-angiogen-
ic activity of the tumours. These results suggest that ITPP 
can be an interesting adjuvant molecule improving the 
vascular architecture and enhancing the efficacy of co-ad-
ministered drugs. Additionally, the same group described 
a novel anti-VEGF therapy using epithelial precursor cells 
(EPCs) – tissue-specific cells which express soluble VEGF-R, 
consuming the excess VEGF [139]. sVEGF-R is under the 
control of the hypoxia response element (HRE) and thus 
is expressed only in hypoxic conditions. When the vessels 
are normalised, hypoxia is alleviated and the sVEGF-R is 
no longer produced. Such an approach also causes stable 
vessel normalisation and is tightly controlled by the treat-
ment outcome. Re-organisation of the tumour epithelium 
results in proper vasculature that can mediate immune 
infiltration, hypoxia alleviation and drug transport. These 
and other strategies can potentially be an adjuvant strat-
egy to RCC treatment. Stable normalisation of the tumour 
vasculature can be effective in restoration of the protec-
tive immune response, as seen in TKI-treated RCC patients, 
yet long-term effectiveness of the novel approach can be 

Table 1. Immunosuppression mechanisms induced by RCC and affected by TKI treatment

Immunosuppressive 
mechanism

Observation in RCC patients Effect of TKI

Treg induction Increased percentage in blood [33, 36, 38, 121]
Local accumulation in tumour [33]
Unchanged accumulation [38]

Reduced percentage [66, 119, 132]
Increased percentage [131]
Reduced infiltration [120, 130]

MDSC induction Increased percentage in blood [64–67]
Local accumulation in tumour [64–67]

Reduced percentage [66]
Reduced infiltration [122]

Th1/Th2 polarisation Th2 biased responses [92, 93] Restoration of Th1 immunity [66, 122, 126, 127]
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more beneficial for patients, leading to prolonged control 
of the disease.
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