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Overconsumption of sucrose and other sugars has been
associated with nonalcoholic fatty liver disease (NAFLD). Re-
ports suggest hepatic de novo lipogenesis (DNL) as an impor-
tant contributor to and regulator of carbohydrate-induced
hepatic lipid accumulation in NAFLD. The mechanisms
responsible for the increase in hepatic DNL due to over-
consumption of carbohydrate diet are less than clear; however,
literatures suggest high carbohydrate diet to activate the lipo-
genic transcription factor carbohydrate response element-
binding protein (ChREBP), which further transcribes genes
involved in DNL. Here, we provide an evidence of an unknown
link between nuclear factor kappa-light chain enhancer of
activated B cells (NF-κB) activation and increased DNL. Our
data indicates high carbohydrate diet to enforce nuclear
shuttling of hepatic NF-κB p65 and repress transcript levels of
sorcin, a cytosolic interacting partner of ChREBP. Reduced
sorcin levels, further prompted ChREBP nuclear translocation,
leading to enhanced DNL and intrahepatic lipid accumulation
both in vivo and in vitro. We further report that pharmaco-
logical inhibition of NF-κB abrogated high carbohydrate diet–
mediated sorcin repression and thereby prevented ChREBP
nuclear translocation and this, in turn, attenuated hepatic lipid
accumulation both in in vitro and in vivo. Additionally, sorcin
knockdown blunted the lipid-lowering ability of the NF-κB
inhibitor in vitro. Together, these data suggest a heretofore
unknown role for NF-κB in regulating ChREBP nuclear local-
ization and activation, in response to high carbohydrate diet,
for further explorations in lines of NAFLD therapeutics.

Nonalcoholic fatty liver disease (NAFLD) is defined as a
clinical state of excessive accumulation of lipids within hepatic
tissue without any history of alcohol abuse. Higher intake of
dietary components like carbohydrates (fructose, sucrose, and
glucose) promotes chronic positive energy balance fostering
hepatic manifestations like NAFLD (1). One of the hallmarks
signaling causing NAFLD is abnormally elevated de novo
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lipogenesis (DNL). NAFLD patients have been reported with
enhanced DNL and correspondingly high levels of enzymes
required for DNL (2–9). DNL is a highly dynamic and well-
coordinated biochemical process with the involvement of
prominent transcriptional regulators like carbohydrate
response element-binding protein (ChREBP) and SREBP-1c
(sterol regulatory element-binding transcription factor 1) (10).

ChREBP is a master regulator of lipid metabolism present
across various organs and majorly regulates hepatic DNL. On
its nuclear entry, ChREBP binds to highly conserved carbo-
hydrate response element regions across the promoters of
ChREBP responsive target genes coding for key enzymes of
DNL-like fatty acid synthase (FASN), acetyl-CoA carboxylase
(ACC), and stearoyl-CoA desaturase (11). In a study, geneti-
cally obese mice (ob/ob) and as well as human fatty liver bi-
opsy samples were seen to have increased expression of
ChREBP and elevated transcripts of lipogenic genes (12).
Although a high carbohydrate diet is known to be an etio-
logical parameter related to the development of metabolic
diseases, ChREBP seems to be a hub protein that translates the
carbohydrate-dependent signaling for glucose disposal as
lipids (13, 14). Moreover, few studies have also shown inhibi-
tion of ChREBP to ameliorate NAFLD in ob/ob and diet-
induced obese mice (12, 15). Activation of ChREBP includes
several posttranslational modifications like phosphorylation
and acetylation as described in the cited articles (16–18).
Cytoplasmic sequestration of ChREBP with adaptor proteins
like 14-3-3β or sorcin stands out to be another promising axis
of ChREBP activation (19–21).

Sorcin (soluble resistance-related calcium-binding protein)
is a calcium-binding protein belonging to penta-EF-hand
family. It is reported to be an important regulator of calcium
homeostasis in organs like the heart and brain by inhibiting
(ryanodine receptor) RyR activity and Ca2+-induced Ca2+

release. A study reports sorcin to interact with RyR, pore-
forming α1 subunit of voltage-dependent L-type Ca2+ chan-
nels (L-type VDCC), sarcoendoplasmic reticulum Ca2+

ATPase pumps, to potentially monitor Ca2+ dependent intra-
cellular excitation-contraction (22). Sorcin is poorly under-
stood in the context of its regulation and mechanism of tissue-
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NF-κB regulates nuclear entry of ChREBP
specific functions. An interaction study demonstrates sorcin to
interact with ChREBP and thereby regulate glucose sensing
and metabolism in pancreatic β cells (21). Adding to the same,
our lab recently reported Pb2+ exposure to downregulate he-
patic sorcin levels and thereby enrich ChREBP transactivation
and steatosis in liver (20). As sorcin seemed to be regulating
ChREBP-mediated hepatic DNL, we were keen to assess the
effect of dietary carbohydrates on hepatic sorcin expression
and its crosstalk with ChREBP to the progression of hepatic
lipid accumulation.

We observed high carbohydrate diet (30% sucrose for in vivo
model and 30 mM glucose for in vitro model) to lower hepatic
sorcin protein levels and thereby set cytosolic ChREBP free for
nuclear entry and transcriptional activity. As dietary carbo-
hydrate appears to be a universal causative agent of NAFLD
progression, it seemed rationale to investigate the regulation of
sorcin by high carbohydrate diet.

The nuclear factor kappa-light chain enhancer of activated B
cells (NF-κB) signaling stands pivotal across many complexly
coordinated biological processes (23). Pieces of literature
broadly present NF-κB activation to be either canonical owing
to inflammatory stimuli or noncanonical owing to develop-
mental cues (23). Five cytosolic NF-κB subunits form poten-
tially 15 complexes of homodimers/heterodimers of RelA/p65,
cRel, RelB, NFκB1/p52, and NFκB2/p50. These subunits
through their conserved Rel Homology Domain interact with
the κβ sites of target genes and regulate transcription. Addi-
tionally, the p65, cRel, RelB possess a transactivation domain
through which their transcriptional regulation could be
remodeled (24, 25). We found high carbohydrate diet down-
regulates hepatic sorcin expression through NFκβ-NCoRI–
mediated transcriptional repression.

Herein, using numerous complementary experimental ap-
proaches, we show the critical participation of NF-κB in
ChREBP’s nuclear entry on exposure to excessive carbohydrate
diet and linked fatty liver pathologies. Our findings highlight
dietary carbohydrate–induced NF-κB nuclear localization and
its significance in regulating hepatic sorcin, which in turn
regulates ChREBP. Our studies also indicate PDTC (pyrroli-
dine dithiocarbamate; [NF-κB inhibitor]) to curtail high car-
bohydrate diet–induced hepatic lipid accumulation by
attenuating excessive carbohydrate–induced ChREBP’s nu-
clear entry. Taken together, we strongly advocate NF-κB p65
to be a critical hub protein with great therapeutic potential in
NAFLD
Results

High carbohydrate diet induces ChREBP transactivation via
sorcin

We developed a high sucrose–fed mouse model (Fig. 1A) to
provide a deeper understanding of endogenous mechanisms-
underlying sucrose-induced fatty liver diseases. Mice main-
tained on regular chow diet (Fig. 1A) when exposed to 30%
sucrose (w/v) contained drinking water (HSD group) showed a
significant rise in their body weights over the control mice
(NCD) (Fig. 1B). In line with reports that mention excessive
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carbohydrate intake to induce liver fattiness (26), we found
dense lipid droplets and vacuolar degeneration within the liver
section of HSD mice, as compared with NCD mice post-H&E
and oil red O staining, as depicted in the representative images
(Fig. 1C). Furthermore, we also found transcript levels of he-
patic DNL regulators (ACC, FASN, ChREBP) were increased
in HSD exposed mice liver as compared with the NCD
(Fig. 1D). As we had recently identified sorcin as a novel
regulator of ChREBP-linked DNL (20), we assessed for sorcin
level in the HSD liver tissue. We saw significant reductions in
the transcript as well as the protein level of hepatic sorcin in
HSD liver over NCD liver (Fig. 1, E–G), whereas sorcin levels
remained unaltered in white adipose tissue (Fig. S1). So, as to
understand the physiological mechanism underlying dietary
carbohydrate–induced liver sorcin reduction and enhanced
ChREBP-linked DNL, we generated a mouse model with
adenoviral-mediated overexpression of sorcin (Fig. 1H).
Following the adenoviral treatment regimes, Ad-SRI injected
HSD mice showed a significant reduction in their body weights
as compared with the control counterpart (Fig. 1I). Western
blot analysis of hepatic tissue confirmed the significant
expression of exogenous sorcin within the liver of Ad-SRI
injected mice, as compared with respective control (HSD
mice) (Fig. 1, J and K).

Next, we wanted to determine whether the reduced sorcin
level in the liver of HSD mice associates with enhanced
ChREBP nuclear protein abundance in liver. Immunoblotting
of subcellular fractionated liver lysates revealed significant rise
in the abundance of ChREBP protein in the nuclear lysate of
HSD mice group as compared with NCD, and markedly, nu-
clear ChREBP levels decreased significantly after adenoviral
overexpression of sorcin (Ad-SRI) in the HSD group (Fig. 1, L
and M). These results suggested that ChREBP is translocated
into the nucleus in response to high sucrose diet, whereas Ad-
SRI reduced the sucrose-stimulated nuclear entry of ChREBP,
which is required for its transactivation. Our in vivo observa-
tions proposed high sucrose diet to reduce hepatic sorcin
levels and enable enhanced cytosol-nuclear shuttling of
ChREBP, eventually causing hepatic dyslipidemia.

Further to delineate the underlying mechanism of high
carbohydrate diet–induced enhanced ChREBP nuclear locali-
zation, we developed an in vitro setup, by treating the hepatic
cell line (HepG2) with low (5 mM) and high (30 mM) glucose
concentrations. Western blot analysis depicted high glucose to
reduce sorcin protein levels in HepG2 cells (Figs. S2 and S3).
To strengthen our observation of high glucose–mediated
enhanced intracellular lipid accumulation is because of
ChREBP’s transactivation via sorcin, we examined ChREBP
subcellular localization, in response to low and high carbo-
hydrate. Microscopic studies deciphered increased nuclear
accumulation of ChREBP, in high glucose, as compared with
low glucose (Fig. 1N). To further decipher the role of sorcin in
high glucose–mediated ChREBP’s nuclear localization, we
overexpressed m-Sorcin-FLAG in hepatocyte cells and per-
formed ChREBP’s subcellular localization. Interestingly, sorcin
overexpression in high glucose sequestered a major pool of
ChREBP within the cytosol (Fig. 1N, O). The in vitro results
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Figure 1. High carbohydrate diet induces ChREBP transactivation via sorcin. A, schematic description of the treatment regimens followed in the in vivo
study. B, graphical presentation of body weight gain across the mice within both the groups (NCD, HSD) (mean ± SEM, *p < 0.05, **p < 0.005). C, his-
tological analysis of liver tissue sections through oil red O staining and H&E staining from both NCD, HSD group (Image scale bar is 500 μm). D, relative qPCR
data of lipogenic genes assessed within the mice liver from both NCD and HSD groups (mean ± SEM, *p < 0.05, **p < 0.005, ***p < 0.0005). E, transcript
levels of sorcin within mice liver isolates, inferring HSD to significantly reduce sorcin levels as compared with NCD (mean ± SEM, ***p < 0.0005). F and G,
qualitative and quantitative representation of sorcin protein levels within NCD and HSD liver lysates normalized to loading control (mean ± SEM, *p < 0.05,
**p < 0.005). G, diagrammatic description of the mice groups used in this strategized study for adenoviral studies. H, pictorial representation of the
adenoviral treatment regimen used for our in vivo study. I, graphical presentation of body weight gain across the mice within both the groups (NCD, HSD)
(mean ± SEM, *p < 0.05, **p < 0.005). J and K, expression abundance of sorcin titers within the mice liver post Adv-SRI (HSD) and Adv-EV injections (NCD,
HSD) in the respective groups, as depicted (mean ± SEM, *p < 0.05, **p < 0.005). L and M, qualitative and quantitative representation of ChREBP levels in
the subcellular fractionated liver lysate of different mice group of adenoviral study. N and O, representative microscopic images of immunofluorescent
tracking of ChREBP within the subcellular regions in presence of different conditions in HepG2 cells and the final quantification of ChREBP signals from the
same (Image scale bar is 10 μm). ChREBP, carbohydrate response element-binding protein.

NF-κB regulates nuclear entry of ChREBP
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NF-κB regulates nuclear entry of ChREBP
thus reinforced the role of sorcin in cytosolic sequestration of
ChREBP in hepatocytes. Altogether, these data clearly show
that the downregulation of hepatic sorcin is the major factor
that influences enhanced nuclear translocation of ChREBP in
response to high carbohydrates intake.

Pharmacological inhibition of NF-κB p65 attenuates high
glucose–induced hepatic lipid accumulation

Our previous observations motivated us to delineate the
mechanism behind the regulation of hepatic sorcin in
response to carbohydrate treatment. Dietary components
like high fat are reported to augment NF-κB p65 activation
and induce lipogenesis in the liver (27–29). Thus, we aimed
to study the effect of a high carbohydrate diet on NF-κB p65
activation. Posttranslational modifications of NF-κB p65
subunits, like phosphorylation of p65 subunit at serine536,
activate NF-κB p65 and enables its nuclear entry (30).
Phosphorylation of the p65 subunit is required for the
optimal p65-mediated transactivation potential of NF-κB.
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Thus, we assessed the extent of phosphorylation-mediated
nuclear translocation of NF-κB p65 in presence of low and
high glucose and PDTC (an inhibitor of NF-κB). Surpris-
ingly, we observed high glucose (30 mM) to enrich nuclear
abundance of NF-κB p65 as compared with low glucose
(5 mM), and also, PDTC was able to block high glucose
induced translocation of NF-κB p65 (Fig. 2, A and B). We
then questioned whether high glucose–induced activation of
NF-κB p65 to have any link with subcellular movement of
ChREBP in the similar nutritional stress. Interestingly, we
did see high glucose–induced nuclear abundance of ChREBP
to be significantly reduced in both pharmacological-induced
NF-κB inhibition (PDTC) and NF-κB knockout state using
siRNA for NF-κB p65 (Fig. 2, C and D). Knockdown was
specific as reflected on immunoblot by approximately 90%
reduction of NF-κB p65.

Additionally, we also assessed the phenotypic outcome
of NF-κB p65 inhibition on ChREBP-induced hepatic
intracellular lipid accumulation. High glucose (30 mM)
treatment showed increased Bodipy-stained lipid droplets
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NF-κB regulates nuclear entry of ChREBP
as compared with low glucose (5 mM). Pharmacological
inhibition of NF-κB p65 abrogated high glucose–induced
intracellular lipid droplet abundance. To further evaluate
the participation of sorcin in fatty liver attenuating prop-
erties of NF-κB p65 inhibitor (PDTC), we knocked down
sorcin using sorcin siRNAs in cultured HepG2 cells (Fig.
S4) and later assessed the outcome through Bodipy
staining. Interestingly, PDTC-induced reduction in intra-
cellular lipid droplets was blunted in sorcin knocked down
cells (Fig. 2, E and F). These observations recommended
NF-κB p65 to have a pivotal role in high glucose–induced
elevated hepatic lipid accumulation, and sorcin can be
critical in the same axis.
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High glucose stimulates repression of hepatic sorcin via NF-κB
p65-NCoR1 signaling

We next examined whether NF-κB p65 directly stimulates
hepatic sorcin repression. Through bioinformatics tool, we
came across NF-κB consensuses on human sorcin promoter
(Fig. 3A-i). Hence, we prepared a luciferase reporter plasmid of
human sorcin promoter with both the putative functional
NF-κB consensuses found near (−69 to −80 bp) and (−103
to −114 bp) (Fig. 3A-ii). Following transfections and luciferase
assay, we observed that cells exposed to high glucose showed
reduced sorcin promoter activity in response to high glucose
as long as two NF-κB sites were intact. Mutation of both the
NF-κB sites abrogated the high glucose–mediated
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NF-κB regulates nuclear entry of ChREBP
transcriptional repression of sorcin (Fig. 3B). Connecting with
our previous observations, our results confirmed high glucose
to stimulate nuclear localization of NF- κB p65followed by
repressing sorcin promoter activity.

We, then next assessed the presence of activated NF-κB
p65 (pNF-κB) on the sorcin promoter through ChIP assay.
qPCR analysis of NF-κB specific consensus, from chromatin
elutes obtained post immunoprecipitation with pNF-κB and
IgG antibodies, showed high glucose treated cells to have
greater interaction of NF-κB on sorcin promoter, as
compared with low glucose (Fig. 3C). This observation
seemed a little intriguing, as high carbohydrate diet–
mediated NF-κB p65 activation had a negative co-relation
with the hepatic sorcin abundance. Thus, we hypothesized
presence of an additional transcriptional co-repressor.
Following the cited literature (30), we assessed for the
presence of nuclear receptor corepressor 1 (NCoRI), along
with p65 protein on sorcin promoter. Interestingly, we did
see enriched occupancy of NCoRI on NF-κB p65 consensus
of sorcin promoter in chromatin elutes of high glucose
exposed cells, as compared with the control (Fig. 3D). To
further authenticate the association of NF-κB p65 or NCoRI
with transcriptional repression of sorcin, we used siRNA
specific of NF-κB p65 and NCoRI respectively and per-
formed a sorcin reporter assay. Knockdown was specific as
reflected on immunoblot by significant reduction of NF-κB
p65 and NCoRI (Figs. S5 and S6). As depicted (Fig. 3E), on
NF-κB p65 or NCoRI silencing, cells showed vivid pertur-
bation in high glucose–induced reduction in sorcin pro-
moter activity, respectively. Also, when assessed at the
protein level from the total cell lysate, NF-κB p65 and NCoRI
knockdown in high glucose conditions did significantly
exhibit protection from high glucose–induced sorcin
downregulation (Fig. 3, F and G).

To further validate our observation of NF-κB p65 medi-
ating high glucose–stimulated sorcin downregulation, we
used S536 mutants of p65-WT-FLAG construct and vali-
dated the role of NF-κB p65 (through S536) in carbohydrate
stress–induced sorcin expression. Cells overexpressing p65-
WT-FLAG construct significantly reduced sorcin promoter
activity in presence of high glucose, whereas overexpression
of the phospho-null (p65-S536A-FLAG) construct greatly
attenuated the high glucose–induced repression of sorcin
promoter activity. To our immense surprise, cells over-
expressing the phospho-mimic (p65-S536D-FLAG) reduced
sorcin promoter activity in presence of low glucose (Fig. 3H).
This observation kindled an authentication of NF-κB p65
phosphorylation at S536 residue to be pivotal in high
carbohydrate–mediated sorcin gene regulation. We also
found a similar trend as observed in promoter activity when
we assessed the transcript level endogenous sorcin in pres-
ence of these p65 constructs (Fig. S7). To further substan-
tiate our observations, we transfected HepG2 cells with
p65-S536D-FLAG and p65-WT-FLAG and maintained them
in low and high glucose conditions and determined the
sorcin protein levels. As shown in Figure 3, I and J,
6 J. Biol. Chem. (2021) 296 100714
overexpression of p65-WT construct significantly reduced
sorcin expression in presence of high glucose, whereas
overexpression of the phospho-mimic greatly suppressed
sorcin protein levels in presence of low glucose. Taken
together, all our observations strongly highlight the crucial
importance of NF-κB p65-NCoRI complex in mediating high
glucose–induced repression of hepatic sorcin levels.

Pharmacological inhibition of NF-κB p65 ameliorates high
sucrose–induced fatty liver pathology in vivo

To evaluate whether NF-κB p65 participates in regulating
sucrose-mediated transactivation of ChREBP and thereby
modulate hepatic lipid accumulation in in vivo, we adminis-
tered PDTC through I.P. injections to the high sucrose-fed
mice, with respective control groups (Fig. 4A). As observed
in our in vitro setup, hepatic lipid attenuating properties of
PDTC was significantly vivid in our in vivo model too, as both
oil red O staining and H&E staining of liver sections (Fig. 4B).
Next, we examined NF-κB p65 subcellular localization in
response to high sucrose diet and effect of PDTC treatment on
the same. Interestingly, we found increased NF-κB p65 nuclear
localization in HSD exposed mice, which was prevented by
PDTC. Overall, PDTC treatment did curtail nuclear abun-
dance of NF-κB, as observed otherwise in HSD exposed mice
(Fig. 4, C and D). Moreover, PDTC treatment also showed
slight reduction in the nuclear levels of ChREBP in HSD
background (Fig. 4, C and D), indicating PDTC to effectively
block high sucrose–induced hepatic lipid accumulation by
restricting nuclear localization of ChREBP, which is otherwise
required for optimal sucrose-mediated enhanced DNL. To
examine the effect of high sucrose diet and/or PDTC on sor-
cin, we measured sorcin protein expression profile in NCD and
sucrose-fed mice (HSD) liver in presence and absence of
PDTC treatment (Fig. 4, F and G). Interestingly, we observed
that in HSD-saline mice group resulted in significant repres-
sion of sorcin levels in the liver, whereas PDTC treatment
protects sorcin from such downregulation (Fig. 4, F and G).
Taken together, these results indicate PDTC to specifically
block high carbohydrate diet–stimulated nuclear localization
of NF-κB p65, which is required for optimal p65-mediated
transactivation potential of NF-κB to suppress sorcin expres-
sion which in turn enhances nuclear localization of ChREBP.

To further dissect the antilipogenic mechanistic axis of
PDTC, on hepatic lipid homeostasis, through another potent
energy metabolism energy sensor protein, AMP-activated
protein kinase (AMPK) activation is expected to coordinate
the partitioning of fatty acids between oxidative and biosyn-
thetic pathways by increasing fatty acid oxidation (FAO) ca-
pacity and inhibiting DNL, respectively. We thus measured the
phosphorylation of AMPK at Thr172, as a surrogate for AMPK
activation, in the liver lysates of our experimental mice group.
Interestingly, we found that high sucrose (HSD liver lysates)
exposure blunted AMPK(Thr172) phosphorylation, whereas
PDTC restrained the downregulation of phosphorylation of
AMPK (Thr172) led by high sucrose, inferring PDTC to also
signal through AMPK to perturb hepatic dyslipidemia
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Figure 4. Pharmacological inhibition of NF-κB p65 ameliorates high sucrose–induced fatty liver pathology in vivo. A, schematic description of the
treatment regimens categorized in the in vivo study aiming NFκB inhibition through PDTC. B, histological analysis of liver tissue sections through oil red O
staining and H&E staining from all the mice groups portraying the extent of intracellular accumulated lipid droplets (Image scale bar is 500 μm). C–E,
qualitative and quantitative representation of ChREBP (D) and NF-κB p65 (E) levels in subcellular fractionated liver lysates, normalized to loading control
(mean ± SEM, **p < 0.005, ***p < 0.0005). F and G, qualitative and quantitative representation of sorcin abundance in the liver lysates of respective mice
groups of our in vivo study (mean ± SEM, *p < 0.05). H and I, qualitative and quantitative representation of phosphorylated AMPK (Thr172) levels in the liver
lysates of respective mice groups (mean ± SEM, **p < 0.005). J and K, mitochondrial respiration potential emphasizing ability to oxidize exogenous lipid was
assessed in HepG2 cells exposed to differential glucose concentrations through Seahorse flux analyser (mean ± SEM, *p < 0.05, **p < 0.005). AMPK, AMP-
activated protein kinase; ChREBP, carbohydrate response element-binding protein; NF-κB, nuclear factor kappa-light chain enhancer of activated B cells;
PDTC, pyrrolidine dithiocarbamate.

NF-κB regulates nuclear entry of ChREBP
(Fig. 4H). Thus parallelly, our data sets also hint NF-κB p65
inhibition to induce AMPK activation and attempt a broader
protection against hepatic triglyceride accumulation in mice
fed a high-sucrose diet.

High carbohydrate intake induced hepatic dyslipidemia is an
outcome of enhanced DNL along with collateral signaling
cascades like increased fatty acid uptake or reduced lipolysis or
lipid export from the liver (31). As lipogenesis is preferentially
coupled with lipolysis for lipid homeostasis, the lipid oxidation
potential of cells in the presence of high glucose concentra-
tions and in presence of sorcin overexpression. For this, we
analyzed the oxygen consumption rate (OCR) in the presence
of an exogenous fatty acid mixture using the Seahorse Flux
Analyser approach. Basal respiration and ATP synthase–
dependent OCR changes did not seem to have significant
differences in presence of 5 mM and 30 mM glucose. But
interestingly, 30 mM glucose treated cells did show significant
reduction in the 2-[2-[4-(trifluoromethoxy)phenyl]hydraziny-
lidene]-propanedinitrile-induced mitochondrial quest to
oxidize the exogenously provided fatty acid mixture as
compared with the 5 mM glucose control, inferring perturbed
lipolytic axis in presence of 30 mM glucose exposure. Also, to
our great surprise, sorcin overexpression in 30 mM glucose
treated cells showed a remarkable reversal of mitochondrial
potential to oxidize exogenous lipid (Fig. 4, J and K). All the
above attributes observed in the almost absence of sorcin (i.e.,
in carbohydrate treatment) and its overexpression conditions,
vividly present sorcin to be a novel hub protein dictating
intracellular hepatic lipid partitioning. Collectively, our data
sets confirm maintaining of hepatic sorcin level in high car-
bohydrate treatment to significantly reverse high
carbohydrate–induced fatty liver pathologies, by blocking
ChREBP driven hepatic DNL and also elevating the lipid
oxidation axis.
Discussion

Incidences of metabolic dysfunction are elevating at an
alarming rate across the globe. NAFLD characterized by
excessive hepatic fat accumulation is a multifactorial clinical
manifestation, without a history of alcohol abuse. NAFLD in-
vokes serious concerns owing to no treatment modalities or no
J. Biol. Chem. (2021) 296 100714 7
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“magic bullet” which could pharmacologically target its
occurrence or rescue (32). It also becomes trivial to dissect this
pathophysiology as regulation of hepatic lipogenesis involves
the interplay of various transcription factors and/or nuclear
receptors, varying hormonal stimuli, nutrients, and/or envi-
ronmental toxicants (20, 33). Excessive intake of carbohy-
drates, as well as high-fat meals, is reported to be a major risk
factor of NAFLD development (34). Because excessive circu-
lating sugar can force an anabolic flux within the liver worth
fatality, it becomes imperative to understand sugar responsive
pathways within the liver for therapeutic advances.

ChREBP is a glucose-sensitive lipogenic transcription factor
majorly found in lipid metabolizing organs like adipose tissue
and liver. ChREBP-driven DNL within hepatocytes is recorded
to be one of the master regulators of NAFLD (35). Structural
studies of ChREBP present several posttranslational modifi-
cations to unbridle ChREBP from the cytosolic sequestration
fostering nuclear entry. Although there are kinases that
phosphorylate ChREBP and limit it within the cytoplasm, we
through our study highlight an adaptor protein sorcin to
regulate nucleo-cytosolic ChREBP trafficking. Sorcin is a cal-
cium sensor protein, belonging to the penta-EF-hand family is
a highly conserved protein among mammals (36). It is reported
to interact and localize ChREBP within the cytoplasm of he-
patocytes and pancreatic β-cells (20, 21). In our study, we
observed high carbohydrate diet to reduce both mRNA and
protein levels of hepatic sorcin. This phenomenon enriched
nuclear entry of ChREBP, prompting transactivation of
ChREBP-dependent genes like FASN, ACC. The upregulation
of these genes enforced hepatic dyslipidemia, thereby pro-
voking the graduation of fatty liver pathologies. Interestingly,
exogenous sorcin blocked high carbohydrate–induced
ChREBP hypertransactivation and thereby attenuated lipo-
genesis, we also observe sorcin overexpression to accelerate
lipid oxidation. Our observation presented exogenous sorcin
to rescue high carbohydrate diet–compromised mitochondrial
potential toward enhanced β-oxidation. High carbohydrate
diet–induced oxidative stress would be an early priming agent
damaging mitochondria, which later reduces the quest of he-
patic mitochondria to oxidize exogenous lipid (37, 38). Over-
expression of sorcin in high glucose condition seemed to
retrieve the health of mitochondria (as observed by the base-
line OCR, Fig. 4K) and thereby enforced FAO in hepatocytes.
Thus, through our work, we propose hepatic sorcin to have a
plausible regulator of hepatic lipid homeostasis.

Although sorcin is a well-studied protein in the field of
calcium cycling, intracellular calcium homeostasis, multidrug
resistance, cancer, etc., there exists no article that mentions
any signaling axis for its regulation. As NF-κB is one of the
major transcription factors that regulate development, in-
flammatory responses, and tackle nutritional stress (high car-
bohydrate diet/high-fat diet) by fostering lipogenic stimulus
(39–41), we were keen to assess high carbohydrate–induced
effect on NF-κB signaling. Subcellular fractionation (liver tis-
sue) and ChIP assay demonstrated a high carbohydrate diet to
phosphorylate p65 at S536 and thereby activate its transcrip-
tional activity. Phosphorylation of p65 at S536 residue
8 J. Biol. Chem. (2021) 296 100714
enforced interaction with NcoRI and thereby repressed tran-
scription of sorcin, following the cited studies (42, 43). As our
focus was to understand the importance of sorcin in regulating
high carbohydrate diet–induced ChREBP-driven hepatic
steatosis, it seemed imperative to understand the mechanism
behind sorcin downregulation. Thus, through this study, we
for the first-time present NF-κB p65 to mediate the repression
of hepatic sorcin and in turn modulate dietary carbohydrate
induced DNL. Thus, along with other cited reports empha-
sizing NF-κB p65 in cases of fatty liver pathologies (29, 44, 45),
we propose NF-κB–Sorcin–ChREBP be a potential axis worth
therapeutic explorations.

Our current observations prompted us to explore the prob-
able signaling cascade which induces high carbohydrate diet–
mediated NF-κB p65 activation. IKK1/2 stands out to be a
probable kinase that transduces high carbohydrate diet–induced
p65 activation, as high glucose is observed to regulate its
expression and activity. Another study, in accordance, highlights
the O-GlcNacylation of IKK to enhance p65 activation by
phosphorylating it at S536 (27, 46–50). At this juncture, we
speculate HSD to induce the O-GlcNacylation of IKK and
thereby enhance NF-κB activity, a possibility that remains to be
tested. Another interesting aspect that appears to stand out in-
cludes no aggravation (absence/repressed) of an inflammation
and insulin resistance, in our study, as NF-κB p65 activation
induces an inflammatory response and thereby exacerbates in-
sulin sensitivity. This could have been owing to multiple reasons
like NF-κB p65 is studied to portray phosphorylation residue-
specific remodels gene-specific transcriptional regulation (24)
or ChREBP–dependent production of lipid intermediates which
can act as an anti-inflammatory and insulin-sensitizing lipid
mediators into systemic circulation acting through cell-autono-
mous or/and nonautonomous manner (1, 34, 51–55).

Given that the growing population is at risk of many path-
ological conditions linked with fatty liver, it stands relevant to
identify molecular mechanisms through which diet-induced
pathogenesis of fatty liver progresses. Our data suggest a
critical role of NF-κB p65 in regulating ChREBP’s nuclear
localization to increase hepatic lipid accumulation.

Based on these findings, we propose that the NF-κB p65–
Sorcin–ChREBP cytosolic complex to be a potential site for
pharmacological interventions as an effective therapy for
reducing high carbohydrate diet–induced fatty liver disease.

Experimental procedures

In vivo studies

Animal studies were approved by the Jamia Hamdard Ani-
mal Use and Care Committee and were performed in 6- to 8-
week-old BALB/c male mice. The mice were maintained on
regular chow diet and housed at a temperature of 25 �C with
12-h light/dark cycles. Ten mice were divided into two major
groups, wherein the untreated control mice (were kept on
normal drinking water, whereas the test group (HSD) was fed
with 30% sucrose (w/v) through drinking water ad libitum).
Three mice/group (mice were selected on the basis of blood
glucose, serum ALT, AST, TG) were used for transcripts levels
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quantification in liver tissue. For PDTC experiments, we
administered 1 mg/kg body weight of PDTC through I.P. in-
jections to the high sucrose fed mice, with respective control
groups. All the experiments were performed following guide-
lines stated and approved by the Animal Ethics Committee of
Jamia Hamdard. Adenoviral overexpression of exogenous hu-
man sorcin in the in vivo model was carried out as described
previously (20).

Preparation of recombinant SRI-adenovirus

Sorcin adenoviral construct (Ad5-SRI) was prepared
following the Gateway cloning methodology (Thermo). h-SRI
cDNA was sequentially cloned into pAD/DEST vector, after d-
TOPO vector. SRI cloned pAD vector was then linearized
using PacI and then transfected into HEK293A cells for
amplification using lipofectamine 2000 (Invitrogen). High titer
stocks of amplified recombinant adenovirus were purified us-
ing PureVirusTM Adenovirus Purification Kit (CELL BIO-
LABS INC) as per the protocol. Viral titers were determined,
diluted in 0.9% saline and administered approximately 109 pfu/
mice through tail vein injection. All respective control mice
were injected with p-Ad-empty (no insert) for maintaining the
exact similar vehicle control.

Gene expression level studies

Cells/tissues were lysed using TRI-reagent, and total RNA
was extracted. 1 μg of total RNA was processed for cDNA as
per the manufacturer’s guidelines (iScript cDNA synthesis kit,
Bio-Rad). Quantitative PCR was then performed using the
SYBR mix following iQ SYBR Green Supermix, Bio-Rad. Gene
expression analysis was carried out using 2−ΔΔCT method and
normalized with 18srRNA, HPRT gene expression.

In vitro experiments

HepG2 cells were used for several in vitro studies. To mimic
high carbohydrate condition in in vitro model, cells were
treated with 5 mM and 30 mM glucose solutions, for a stip-
ulated period, specified experimentally. Transfection experi-
ments were performed using Lipofectamine 3000 (Thermo) or
Lipofectamine RNAimax (Thermo) for plasmid or siRNA
respectively, strictly following the manufacturer’s protocol.
siRNA sequences used in the study is enlisted in the supple-
mentary file (Table S1). For, performing site-directed muta-
tion’s, Q5-SDM kit (NEB) was used, and the primers were
prepared using the NEBase changer link. The mutants were
successfully sequenced using respective plasmid specific
sequencing primers then used for in vitro experiments.

Nuclear localization analysis of ChREBP

ChREBP-driven lipogenic upregulation expects
cytoplasmic-nuclear shuttling. This localization was tracked
using immunocytochemistry (ICC) and subcellular fraction-
ation following the protocol described previously (20). ICC was
performed in HepG2 cells using 1:100 diluted ChREBP and
1:200 diluted anti-rabbit. Microscopic images were captured
using a Zeiss fluorescence microscope. ICC experiments were
repeated three times, and the best representative images have
been represented. Subcellular fractionation was majorly per-
formed from liver tissues using NE-PER nuclear and cyto-
plasmic extraction kit (Thermo), and an equal concentration of
nuclear pools were loaded for Western blot, respectively.

Lipid droplet staining

DNL–induced intracellular lipid droplets were qualitatively
studied using Bodipy staining (in vitro) and Oil Red O (tissue).
For HepG2 cells, cells were stimulated with 5 mM and 30 mM
Glc for 48 h and then stained with Bodipy. Briefly, cells were
washed 1X-PBS and fixed with 3% PFA for 10 min at RT.
Following two PBS washes, cells were stained with Bodipy
(2 μM) for 30 min at 37 �C. Cells were mounted using
mounting media (Sigma), following three PBS washes and later
visualized on a confocal microscope (A1+, Nikon), and
representative images have been presented. Liver tissues were
embedded in Tissue-Tek, frozen sections were then processed
for oil red O staining using a routine method (20). Images were
captured using Nikon Eclipse TS 100 confocal microscope.

Chromatin immunoprecipitation and sorcin promoter studies

S536 phosphorylation of p65 enforces its nuclear entry and
thereby regulates transcriptional processes. Sorcin promoter
was analyzed using the EPD tool accessed from ExPASy. Sig-
nificant interaction sites of NF-κB were found on the promoter
at 75 base pairs upstream to the transcription start site.
Chromatin immunoprecipitation to assess occupancy of
phosphorylated p65 along with co-repressor on sorcin pro-
moter was performed as described previously (20). Primers
enriching the domain containing NF-κB consensus (−313 bps
to −22 bps) were designed using the EPD tool.

Sorcin promoter reporter construct was prepared by cloning
NF-κB consensus containing a fragment of human sorcin
promoter(from human gDNA) into the pGL3B construct
(Addgene). To validate our hypothesis, we also mutated the
same stretch of the promoter sequence by deleting both the
two NF-κB consensuses (GGRRNNYYCC) site found near the
following sites (−69 to −80 bp) and (−103 to −114 bp) and
performed promoter activity. Primer sequences is shared in the
supplementary file (Table S2).

Western blotting

Tissues and cells were lysed using RIPA buffer mixed with
protease inhibitor cocktail and phosphatase inhibitor
(Thermo). A constant amount of protein was electrophoreti-
cally run on SDS gels and then transferred onto a 0.22μ
nitrocellulose membrane (BioRad) at a constant voltage. Blots
were probed with respective antibodies and then developed
using ECL (GE) as per guidelines. Antibodies used in the study
are enlisted in the supplementary file (Table S3).

Exogenous fatty acids oxidation

Mitochondrial ability to undergo lipid oxidation was
assessed in in vitro using Xp-Seahorse flux analyzer. Ten
thousand cells were seeded in each well and later treated with
J. Biol. Chem. (2021) 296 100714 9



NF-κB regulates nuclear entry of ChREBP
5 mM and 30 mM glucose concentrations for 48 h, respec-
tively. Later, the cells were incubated with substrate limited
media for 24 h, followed by FAO buffer, as suggested in the
manufacturer’s protocol. Basal respiration was assessed fol-
lowed with an injection of 1 mM free fatty acid mixture
comprising of palmitate and oleate in ratio 2:1 into the wells to
analyze the exogenous free FAO. Free fatty acid was then
followed with oligomycin (2 μM), 2-[2-[4-(trifluoromethoxy)
phenyl]hydrazinylidene]-propanedinitrile (1.5 μM), and Eto-
moxir (40 μM). As we had performed this study in the XFp
system, we have presented the OCR (pmol/min) post
normalization from all the studies.

Statistical analysis

Most of the figures presented are as mean ± SEM of a
minimum of three experiments unless mentioned. An un-
paired student t test (for two groups) and one-way ANOVA
test (for three groups) were used for all the statistical analysis
purposes. For all the photomicrographs, the scale usually set
was 10 μM, unless specified.

Data availability

The data sets supporting the conclusions of this article are
included within the article and its supporting information.

Supporting information—This article contains supporting
information.
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