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Abstract

Background: A plethora of studies indicate that the development of multi-target drugs is beneficial for complex
diseases like cancer. Accurate QSAR models for each of the desired targets assist the optimization of a lead candidate
by the prediction of affinity profiles. Often, the targets of a multi-target drug are sufficiently similar such that, in
principle, knowledge can be transferred between the QSAR models to improve the model accuracy. In this study, we
present two different multi-task algorithms from the field of transfer learning that can exploit the similarity between
several targets to transfer knowledge between the target specific QSAR models.

Results: We evaluated the two methods on simulated data and a data set of 112 human kinases assembled from the
public database ChEMBL. The relatedness between the kinase targets was derived from the taxonomy of the humane
kinome. The experiments show that multi-task learning increases the performance compared to training separate
models on both types of data given a sufficient similarity between the tasks. On the kinase data, the best multi-task
approach improved the mean squared error of the QSAR models of 58 kinase targets.

Conclusions: Multi-task learning is a valuable approach for inferring multi-target QSAR models for lead optimization.
The application of multi-task learning is most beneficial if knowledge can be transferred from a similar task with a lot
of in-domain knowledge to a task with little in-domain knowledge. Furthermore, the benefit increases with a
decreasing overlap between the chemical space spanned by the tasks.

Keywords: Proteochemometrics, QSAR, Multi-target, Support vector machine, Kinome, Machine learning, Multi-task,
Domain adaption

Background
Much has happened in the process of rational drug discov-
ery in the last decades. The technology of next-generation
sequencing [1] with its possibility to sequence genomes
in an accelerating pace pushed the door open to a new
set of targets approachable by existing and future drugs.
Additionally, the methods of combinatorial chemistry [2]
enable pharmaceutical chemists to generate large com-
pound libraries by synthesizing more and more drug-like
molecules. To process these enormous amounts of data,
advances in the field of high-throughput screening com-
plement the previously mentioned methods in a way that
an increasing number of compounds can be screened
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against desired biological targets with a decreasing finan-
cial effort [3]. Regarding these facts and looking at the
increased amount of R&D investments, one could argue
that the drug discovery pipeline should be in full swing
yielding a growing amount of approved drugs. Albeit, the
number of novel drugs did not increase but rather, if any,
stayed constant [4].
A joint starting point of many drug design approaches

is an exhausting search for a drug-like molecule that
binds with a high affinity to a desired biological tar-
get. However, recent findings have shown that looking
for such a high affinity binder for a specific receptor is
not crowned with success in every case. Even if single-
target drugs can evoke the pursued effect on their specific
biological target, this does not necessarily apply to the
whole organism [5,6]. For example the targets associated
with the treatment of complex diseases like impairment
of the CNS, cancer, metabolic disorders, or AIDS are
diverse and several disease related mechanisms have to
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be taken into account [7,8]. Targeting multiple proteins is
required for these diseases because medication of the dis-
eased state is intercepted by the way the proteins interact
such that back-up circuits or fail-safe mechanisms take
effect. These backup systems can be sufficiently dissim-
ilar that they do not respond to a highly selective drug
[8-11]. Hence, in cancer therapy, drugs with a single or
few targets can be doomed to failure, since resistances are
more easily to arise than if pressure is exerted on more
targets [12].
In addition to new ways of treating diseases like cancer,

the approach of multi-target drug design offers various
advantages. Using a single molecule for different pathways
in a chemotherapy increases its therapeutic effectiveness,
and it is much easier to manage absorption and elimi-
nation for one molecule than for several [13]. Compared
to single-target drugs that bind with a high affinity to
their target, multi-target drugs are considered low-affinity
binders [6]. From this fact it follows that multi-target
drugs are not subject to the high constraints for high-
affinity binding and, furthermore, allow for targeting a
greater number of proteins [8]. In some cases, like the
operation of NMDA receptor antagonists, it is in fact
desirable to bind with a lower affinity, since shutting this
receptor completely down is impairing its normal func-
tion [14,15]. There is also evidence that several small
interventions to various targets, as achieved with multi-
target drugs, can have a greater effect on the outcome than
a strong single perturbation [6,16].
The multi-target drug design approach is a promis-

ing way to complement the existing single-target pro-
cess and a plethora of studies address the problem of
target prediction [17] and multi-target structure-activity
models [18-20]. Ma et al. [18] evaluated support vector
machine (SVM) classification models of several biologi-
cal targets for common hits. Heikamp et al. [19] linearly
combined independently derived SVM models by assign-
ing a distinct weight to each model. Ajmani et al. [20]
inferred models for three kinases with PLS regression
methods and evaluated the models for common struc-
tural requirements to inhibit the kinases. These studies
show that multi-target drug prediction is a contempo-
rary research topic in the field of drug design. Despite
the positive results of the studies mentioned above, the
considered models were still trained for each target
separately.
Studies in the field of multi-task and transfer learn-

ing suggested a promising way to combine knowledge
from problem-related tasks into a single SVM model.
Schweikert et al. [21] argued that from the kinship of
organism one can see analogous biochemical processes.
Therefore, it is possible to transfer the knowledge of a bio-
logical problem to another domain if both problems are
sufficiently related to each other. This domain adaption

approach was successfully applied to the binding predic-
tion of MHC class I molecules and splice site detection
[22]. Looking beyond the lead identification process and
with it the classification of molecules, support vector
regression (SVR) can be utilized to reveal and address the
specific affinity of molecules during the optimization of
potential drugs. Developing a multi-target agent requires
to monitor the affinity against a panel of similar targets.
Thus, adapting multi-task classification to a regression
setting should be beneficial for the lead optimization of
multi-target drugs.Multi-target regression algorithms can
compensate for a fewer amount of training instances avail-
able for a problem by exploiting the knowledge of a similar
problem.
The concept of taxonomy-based transfer learning is

similar to the concept of overlapping ligand–target
spaces in the field of proteochemometric modeling. A
proteochemometric model is trained on instances that
combine target descriptors with ligand descriptors. An
overview of proteochemometrics can be found in a
recent review by van Westen et al. [23]. In contrast to
proteochemometric models, transfer learning algorithms
infer target specific models solely on ligand descriptors,
but force themodels to be similar according to some target
similarity or taxonomy.
In this paper, we present two different multi-task regres-

sion algorithms based on the multi-task classifiers of
Widmer et al. [22]. We demonstrate the effectiveness
of the algorithms by inferring multi-target QSAR mod-
els on a subset of the human kinome. The taxonomical
relationship of the kinase targets should correlate with
the relatedness of the QSAR problems on these targets.
Hence, we derived the relatedness of the problems from
the human kinome tree [24].We compared our multi-task
methods to SVM models that were independently trained
for each target and an SVMmodel that assumed all targets
to be identical. We evaluated the methods on simulated
data sets, a data set with affinity data against a large frac-
tion of the human kinome, and four smaller subsets of the
aforementioned kinome data.
The results show that multi-target learning results in a

considerable performance gain compared to the baseline
methods if knowledge can be transferred from a target
with a lot of data to a similar target with little domain
knowledge.

Methods
First, this section shortly recaps standard support vector
regression. Second, we present two multi-task learning
approaches that can be used for multi-target QSAR and
discuss how they can be parametrized. Finally, we shortly
explain the employed molecular encoding and the base-
line methods used for comparison.
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Standard support vector regression (SVR)
A single-target QSAR problem comprises a set of l labeled
fingerprints {(xi, yi), i = 1, . . . , l}, where xi ∈ R

n is a
fingerprint of a compound and yi ∈ R is a pIC50 or pKi
value. Given such a QSAR data set the standard support
vector regression (SVR) solves the constrained optimiza-
tion problem shown in Equation 1, which is also known as
primal problem. A visualization of the problem’s variables
is presented in Figure 1.

min
w,ξ

1
2
||w||2 + C

l∑
i=1

lε(ξi, yi)

s.t. ξi = wTxi

(1)

In Equation 1, the term ||w||2 regularizes the model
complexity, C > 0 is a user-defined parameter and the
ε-insensitive loss function lε is defined as follows.

lε(ξi, yi) =
{
max(|ξi − yi| − ε, 0) or
max(|ξi − yi| − ε, 0)2 (2)

The function lε ensures that the loss is zero if |wTxi −
yi| = |ξi−yi| ≤ ε, whichmeans that the actual target value
yi lies within an ε-insensitive tube aroundwTx. Equation 2
is commonly known as L1 and L2 SVR loss, respectively. In
this study, we use the mean squared error (MSE) as error
function, which is directly modeled by the L2 loss. Hence,
the equations throughout the paper assume that L2 loss
is applied.

x

y

i

wTx

yi

|yi - i|

Figure 1 Support vector regression (SVR). Illustration of an SVR
regression function represented bywTx. The ε-insensitive tube
around the function is indicated by a gray tube. ξi = wTxi is the
predicted target value of xi and yi represents the actual target value.
Support vectors are indicated by a red border.

The dual problem fD(β) of L2 loss SVR is presented in
Equation 3, where Qij = xiTxj is the so called kernel
matrix.

min
β

fD(β) =

min
β

1
2
βTQβ +

l∑
i=1

(
ε|βi| − yiβi + 1

4C
β2i

) (3)

The data points, for which βi �= 0, are called support
vectors. A data point is a support vector if and only if its
actual target value yi is on the boundary or outside the
ε-insensitive tube around the predicted value wTxi. The
larger the value of ε, the sparser the resulting SVR model,
but the less precise the model needs to approximate the
target values yi. For the derivation of the dual problem
and a more detailed introduction to SVR theory, we refer
to [25,26].
The dual problem (3) can be rapidly solved with the

large-scale learning library LIBLINEAR [27]. The library
uses a dedicated solver [26], which allows for training an
SVR model with several hundred thousands of instances.
However, the library is limited to the linear case, which
means that the dot product kernel has to be used.
Generally, the dot product kernel results in larger simi-

larity values with an increasing compound or fingerprint
size. Hence, we normalize each fingerprint before train-
ing, such that ‖xi‖ = 1. This normalization in combi-
nation with the dot product kernel is equal to using the
cosine kernel as shown in Equation 4.

kcos(xi, xj) = xiTxj
‖xi‖

∥∥xj∥∥ (4)

The similarity values of the cosine kernel are normal-
ized to [0, 1] and are independent of the fingerprint size.
As a result, the cosine kernel generally performs better for
chemical fingerprints than using the dot product kernel
without normalization.

Multi-task learning
A multi-target QSAR data set with T different targets
comprises a set of triples {(xi, yi, ti), i = 1, . . . , l}, where
xi and yi are defined as for a single-target QSAR prob-
lem, and ti ∈ {1, . . . ,T} indicates to which target protein
the triple belongs to. For multi-target QSAR, inferring the
QSAR model for a certain target t can be regarded as a
separate learning task.
The goal of multi-task learning is to learn a set of func-

tions fT such that fti(xi) ≈ yi and the set fT generalizes
well to unseen data. Multi-task learning belongs to the
field of transfer learning. In transfer learning, knowledge
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of a well known domain s is transferred to a similar, less
known domain t. By transferring knowledge, the resulting
function ft should generalize better on unseen data. Con-
sequently, transfer learning should be most profitable if a
learning task with very few training instances is similar to
a learning task with many training instances.
The knowledge transfer is commonly achieved by forc-

ing the functions fs and ft to be similar if the domains
s and t are similar. For linear SVR models, a function
ft(x) = wtTx is completely determined by its weight vec-
tor wt. The weights w1, . . . ,wT are forced to be similar by
changing the SVR primal (1) to Equation 5.

min
w1,...,wT ,ξ

1
2

T∑
t=1

||wt||2 + J(w1, . . . ,wT)

+ C
l∑

i=1
lε(ξi, yi)

s.t. ξi = wti
Txi

(5)

The terms ||wt||2 control the task specific model com-
plexity, like for standard SVR. The function J(w1, . . . ,wT)
represents an additional regularization term that facili-
tates the similarity of the weight vectors of similar tasks.
The type of multi-task learning algorithm is determined
by a specific choice of the regularizer J(w1, . . . ,wT)
[28-31]. An example on how multi-task learning transfers
knowledge between tasks is depicted in Figure 2.

x

y

w1x
J(w1, ... ,wT)  

unkown data
for task 1

task 1

task 2

w2xT

T

Figure 2 Knowledge transfer in multi-task learning. Illustration of
a knowledge transfer from task 2, which comprises a lot of training
data (green), to a similar task 1, which contains little training data
(blue). The ε-insensitive tubes around the regression functionsw1

Tx
andw2

Tx are colored gray. The regularizer J(w1, . . . ,wT) forces the
model of task 1 (w1) to be more similar to the model of task 2 (w2). A
modelw1 that is more similar tow2 predicts the unknown data (red)
better, which results in a better generalization of the model.

Given an unseen data point x, the target value y for
a specific task t can be obtained by ft as shown in
Equation 6.

y = ft(x) = wt
Tx (6)

A task specific bias term bt can be included in the train-
ing and in the decision function by adding the bias to the
weight vector as shown in Equation 7.

ẇt =
[
wt
bt

]
, ẋ =

[
x
1

]
(7)

Including the bias term into the weight vector results
in a regularization of the bias, which can be a problem
if a larger bias is required. Furthermore, the similarity
between the tasks is facilitated by regularizing the task
specific weights. Given two similar tasks with consider-
ably different bias terms, the regularization can result in
mainly forcing the bias to be similar and not the fea-
ture specific weights. To avoid this problem, we centered
the target values y directly before the optimization and
used the offset as bias. For high dimensional data, such
as sparse chemical fingerprints, a bias term as shown in
Equation 7 is often not required [26,27]. While we did
not include regularized bias terms in our experiments
because of the aforementioned reason, it can be profitable
for GRMT if the average target values of the tasks differ
substantially.

Graph-regularizedmulti-task (GRMT) SVR
Evgeniou et al. introduced an approach that uses graph-
based regularization [29,30]. In their approach, each task
corresponds to a node in a graph and the similarity
between the tasks is encoded by weighted edges sum-
marized in an adjacency matrix A, where Ast ≥ 0
(see Figure 3). The resulting regularization J(w1, . . . ,wT)
is the sum of similarity weighted distances between the
weight vectors as presented in Equation 8. Using the graph
Laplacian L = D−A of a given adjacency matrix A, where
Dst = δst

∑
k Akt , the regularizer can also be expressed as

shown in Equation 9.

J(w1, . . . ,wT) = 1
4

T∑
s=1

T∑
t=1

Ast||ws − wt||2 (8)

= 1
2

T∑
s=1

T∑
t=1

Lstws
Twt (9)

Equation 8 indicates that the graph-regularized multi-
task (GRMT) SVR strongly depends on the choice of the
adjacency matrix A, which encodes the similarity between
the tasks.
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Figure 3 Graph-regularized multi-task (GRMT) SVR training. The
example shows four tasks, represented by four nodes of a graph, and
their corresponding weight vectorsw1 , . . . ,w4 . The tasks are related
by a real-valued adjacency matrix A. GRMT trains the task specific
modelsw1 , . . . ,w4 in a single step, indicated by a dashed box, using
the instances of all tasks.

The primal GRMT SVR optimization problem is
obtained by combining Equations 5 and 9, which results
in the following problem.

min
w1 ,...,wT,ξ

1
2

T∑
t=1

||wt||2 + 1
2

T∑
s=1

T∑
t=1

Lstws
Twt

+ C
l∑

i=1
lε(ξi, yi)

s.t. ξi = wti
Txi

(10)

Widmer et al. [32] proposed an alternative formula-
tion of the primal for GRMT classification, which com-
bines the task specific weights w1, . . . ,wT into a single
weight vector w. This alternative formulation uses the so-
called “block vector view”. Furthermore, they proposed a
new dualization technique, which allows for the deriva-
tion of a dual problem that can be optimized with an
adapted version of the LIBLINEAR solver [26,27]. With
the LIBLINEAR solver, the efficient training of large-scale
graph-regularized multi-task problems becomes feasible.
For formulating the GRMT SVR primal problem similar

to the classification formulation of Widmer et al., we first
introduce the “block vector view”. The “block vector view”
can be defined as shown in Equations 11 and 12, where In
is the n-dimensional identity matrix and L ∈ R

T×T . The

injective function ψ : Rn �→ R
nT maps a fingerprint xi to

a vector that is zero, except for the ti-th block.

block(L) :=
⎛
⎜⎝

L11In · · · L1TIn
...

. . .
...

LT1In · · · LTTIn

⎞
⎟⎠ (11)

ψ(xi) := (0, . . . , 0,xiT , 0, . . . , 0)T

↑
ti − th block

(12)

With the “block vector view”, the primal optimization
problem for GRMT SVR (10) can be reformulated as
follows.

min
w,ξ

1
2
wTblock(IT + L)w + C

l∑
i=1

lε(ξi, yi)

s.t. ξi = wTψ(xi)

(13)

The dual formulation of the primal (13) can be derived
with the dualization technique of Widmer et al. Details
on the derivation of the GRMT SVR dual can be found in
Additional file 1. The dual GRMT problem can be stated
as follows.

min
β

1
2

∥∥∥∥∥∥
l∑

i=1
βiψ(xi)

∥∥∥∥∥∥
2

block(M)

+
l∑

i=1

(
ε|βi| − βiyi + 1

4C
β2i

)

where M := (IT + L)−1

and ‖x‖2B := xTBx

(14)

Similar to GRMT classification [32], the dual problem
(14) can be solved using an adapted version of the LIBLIN-
EAR solver [26,27]. Details on the adaption of the solver
can be found in Additional file 1. With the adapted LIB-
LINEAR solver, training a GRMT regression problemwith
more than 20,000 instances and over 100 tasks becomes
feasible.

Top-down multi-task (TDMT) SVR
If the learning tasks or in our case protein targets are
related by some taxonomy T , the hierarchical structure
of T can be exploited to subsequently train more spe-
cialized models. We assume that the longer the common
evolutionary history of two targets, the more similar the
structure of the proteins, and themore beneficial it should
be to share information between the learning tasks. In
such a taxonomy, leaves correspond to learning tasks that
are related by the inner nodes.
The idea of top-downmulti-task (TDMT) learning is to

subsequently train models for each node of the given tax-
onomy in a top-downmanner, obtaining more specialized
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models while descending the taxonomy. The successive
specialization is achieved byminimizing the training error
with respect to the training instances of the current sub-
tree, while maintaining similarity to the ancestor by an
additional regularization term (see Figure 4). The primal
optimization problem at a certain node of the taxonomy
can be formulated as follows.

min
w

1 − B
2

||w||2 + B
2

||w − w∗
p||2 + C

∑
i∈S

lε(ξi, yi)

s.t. ξi = wTxi
(15)

In Equation 15, the set S contains the training instances
i, for which the task ti is a leaf of the current sub-
tree. The weight w∗

p is the optimal weight of the parent’s
SVR model, which is fixed during the optimization of
the current model. The parameter B ∈ [ 0, 1] controls the
trade-off between the margin of the current model and
the similarity to the parents model w∗

p. Setting B = 0 cor-
responds to training a model that is independent of its
ancestor, whereas setting B = 1 represents a model that is
maximally dependent on its ancestor.
The primal (15) can be reformulated to the following

problem.

min
w

1
2
||w||2 − BwTw∗

p + C
∑
i∈S

lε(ξi, yi)

s.t. ξi = wTxi

(16)

The alternative formulation (16) shows that the TDMT
optimization problem only has an additional linear term
compared to the standard SVR primal (1). Equation 17
denotes the dual optimization problem, which, limited to

the set S , is also identical to the standard SVR dual fD(β)
of Equation 3 except for an additional linear term.

min
β

fD(β)−
∑
i∈S

βi Bw∗T
p xi︸ ︷︷ ︸
pi

(17)

The linear terms pi can be pre-computed before opti-
mization and passed to the solver as additional linear
term. Hence, the optimization problem (17) can be effi-
ciently solved with any existing SVR solver by extending
the solver to handle custom linear terms pi. We extended
the Java port of LIBLINEAR to handle additional lin-
ear terms. As a result, the optimization of a top-down
model is as fast as training an independent model. How-
ever, a top-down model for each node of the taxonomy T
has to be calculated, which is more time consuming than
inferring models for the leaves only.
For the prediction of an unseen data point x, we need to

take into account the weight of the model and the weight
of the parent as formulated in Equation 18.

f (x) = (w + w∗
p)

Tx (18)

Task similarity parameters
Besides the standard SVR parameters C and ε, the task
similarity is an essential parameter for multi-task regres-
sion. For GRMT the task similarity is encoded in the
adjacency matrix A, whereas for TDMT the similarity is
encoded in the parameter B. In principle, each edge e
of the taxonomy can have a weight or distance, which
results in a parameter Be for each node model. Hence,
the similarity information of the taxonomy can be used as
parameters. For TDMT, the weights of the taxonomy are
scaled to [ 0, 1] and the parameters Be are set to the scaled
weights. A completely weighted taxonomy can be trans-
formed to a distance matrix, where the distance of two
taxa is the weight of the shortest path between the two
taxa. To obtain a similarity matrix A the distance matrix is

a b c

Figure 4 Top-downmulti-task (TDMT) training procedure. The example shows a taxonomy with two inner nodes and four leaves or tasks. A red
task indicates that the instances of the task are used for model training, whereas a yellow task means that the instances are not used for training. For
each node in the taxonomy a model is trained in a top-down fashion. (a) First, the root model is trained taking into account all training instances. (b)
Next, the model of the inner node 2 is trained with the instances of the subtree. The model is required to be similar to the parent modelw∗

p by the
regularization term of Equation 15, which is indicated by a gray arrow. (c) Finally, the leaf model for task “T1” is trained using the instances of the task
to compute the loss, while pulling the model towards the parent model. Procedure (c) is applied to all leaf nodes until we inferred a model for each
task.
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normalized to [ 0, 1] and the distances d are transformed
to a similarity s = 1 − d.
A simple approach to learn the task similarity for TDMT

is based on cross-validation [22]. However, searching the
best Be of all nodes in a joint grid search is too expensive.
A feasible approach is to do a local grid search for the best
Be at each node, which can be interpreted as a heuristic
that limits the parameter search space based on the given
taxonomy.
A problem for multi-task approaches can be negative

transfer [31]. Negative transfer is knowledge transfer that
results in a worse performance compared to a regres-
sion model without knowledge transfer. For the TDMT
approach, it is possible to prevent negative transfer by
adding the parameter B = 0 to the grid search at the leaves
to allow for an independent model, even if the parameters
are given by the weighted edges of a taxonomy.

Baselinemethods
To compare the benefit of knowledge transfer of both
TDMT and GRMT, we also evaluated the two baseline
methods tSVM and 1SVM. The tSVM represents the
usual approach whereby each of the T tasks stands for
a single kinase and T independent standard regression
SVMs are trained. So each of the resulting T models
reflects solely the information provided by the corre-
sponding kinase. For TDMT, the tSVM is equivalent to
setting B = 0 for all leaves. GRMT with the similarity
A = IT , where IT is the T-dimensional identity matrix, is
also equivalent to tSVM, with the difference that the same
SVR parameter C is used for each of the separate models.
Compared to the tSVM, the 1SVM represents the oppo-

site extreme, where one model is trained on the whole
kinome with the implication that all problems and all
kinases are assumed to be identical. This implication is
equivalent to training the root of a TDMT (see Figure 4a).
Setting Ast = 1.0 for all i, j for GRMT results in a model,
which is similar to 1SVM. Thus, TDMT and GRMT can
be configured to be similar to both extremes and the task
similarity allows for specifying from which tasks and to
what extent knowledge is communicated.

Molecular encoding
To generate the molecular fingerprints for SVR, we
used the Java library jCompoundMapper developed by
Hinselmann et al. [33]. With this library the extended-
connectivity fingerprints (ECFP) were calculated for every
compound used for training and testing. ECFPs [34] are
common circular topological fingerprints that are fre-
quently used for automatic comparison of molecules.
As additional preferences we used a radius of 3 bonds
(ECFP_6) and a hash space of size 220 bits for the result-
ing hashed fingerprints. The reduction of the hash space

from the standard 232 bits of the ECFP to 220 bits resulted
in ≤ 0.5% and 4.2% colliding bits for the kinase subsets
and the whole kinome data, respectively. Details on the
hashing procedure can be found in the documentation of
jCompoundMapper [33]. Additionally, we removed fea-
tures that occur in more than 90% of the compounds for
the whole kinome data.
A quality that speaks for the use of ECFPs is their

interpretability. After training an SVM model, mappings
between the hashed fingerprints and their correspond-
ing substructure in the molecules of the training set can
be established. This mapping enables a user to assign
an importance to each atom and bond in a given com-
pound. The importance can then be visualized with a
heat map coloring [35]. For QSAR models, the weight
of a substructure directly correlates with its activity
contribution [36].

Experimental
In this section, we first describe the data sets used for eval-
uation, which includes simulated as well as chemical data.
Then, we present the parameters of the algorithms and the
grid search ranges used for the experiments. Finally, we
describe the statistical tests that were used to measure the
significance of the differences between the algorithms.

Simulated data
To analyze the behavior of multi-task regression in a con-
trolled setting, we simulated data, varying the number of
instances, the number of tasks, and the dimensionality.
We adapted the simulation design of other researchers for
the evaluation of multi-task classification [29,37]. Using a
real-valued label instead of a class label, the design can be
adopted to multi-task regression.
Each data point comprises D different attributes, where

D controls the dimensionality of the data. Each attribute
can adopt 6 different values, which represent an influence
on the target value from very negative to very positive.
The choice of each attribute is encoded by a 6-dimensional
binary vector, e.g. (100000) for very positive and (000001)
for very low. Thus, each data point xi is a 6 × D dimen-
sional binary vector. The simulated data of [29,37] used
only 4 attribute values, but we decided to increase the
number of attribute values to better reflect the complexity
of chemical fingerprints.
We generated models for T different tasks, each com-

prising N different training instances. The N training
instances were sampled separately for each task. A model
is encoded by a 6×D dimensional weight vector, where the
weights were sampled attribute wise. Hence, the weight of
a task t is a vector

wt
T = (w11, . . . ,w16, . . . ,wD1, . . . ,wD6) ,
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where (wj1, . . . ,wj6) are the weights corresponding to
the j-th attribute. The weights of an attribute were ran-
domly sampled from a Gaussian with mean(

−β ,−2
3
β ,−1

3
β ,

1
3
β ,

2
3
β , β

)
.

The target values y of the tasks were calculated using the
standard multi-task prediction function (6), which means
that the target values do not contain label noise.
The parameter β controls the noise in the data. The

lower the value of β , the higher the noise in the data. We
used β = 3, which corresponds to a low noise in the
data [29,37]. The similarity between the tasks can be con-
trolled by varying the variance σ 2 of the aforementioned
Gaussian, where higher values of σ 2 represent a lower task
similarity. We used σ 2 = 3β to model a low task simi-
larity and σ 2 = 0.5β for modeling a high task similarity,
again like in [29,37]. To give an idea on how σ 2 influences
the task similarity, we calculated the cosine similarity (4)
between the tasks for N = 100, T = 10, and D = 10.
A low task similarity resulted in a pairwise similarity of
0.32 ± 0.12 between the tasks, whereas a high task sim-
ilarity induced a pairwise similarity of 0.75 ± 0.05. This
similarity was reflected by a Pearson correlation between
the target values of 0.43±0.14 and 0.82±0.05 for low and
high task similarity, respectively.
Summarized, the toy data can be varied in the dimen-

sion D, the number of tasks T, the number of training
instances per task N, and the similarity between the tasks
σ 2 = sβ .
We calculated the task similarity for the multi-task

algorithms from the weight vectors of the tasks. As tax-
onomy we used a tree with a root node, representing
the mean of the Gaussians, directly connected to the
T tasks. As edge weights, we used the cosine similarity
between the task models and the root node model, which
uses the mean of the Gaussians as attribute weights. For
the GRMT approach, we directly calculated the cosine
similarity between the weight vectors of the task models.

Chemical data
For evaluating the multi-task algorithms on chemical
data, we assembled a data set based on the ChEMBL
database [38] with compounds against a large num-
ber of human protein kinase targets. We searched the
ChEMBL database for the protein kinases of a previ-
ous study by Karaman et al., which comprises about 55%
of the human kinome [39]. Karaman et al. examined
the multi-kinase activity of several kinase inhibitors to
assess the biological implications of their administration.
The total amount of 317 kinases included 27 disease-
relevant mutant variants. Of the remaining 290 distinct
human protein kinases their equivalent representation in
ChEMBL was identified, which resulted in 278 kinases.

MYLK could not be matched, because ChEMBL only con-
tains MLCK which is a synonym for MYLK according
to UniProt [40]. The six kinases RPS6KA1 to RPS6KA6
account for 11 kinases altogether, because they are partly
subdivided into N-terminal and C-terminal domain. Since
ChEMBL handles this division on a lower level of the
database in the description of the assays, these 11 kinases
were also omitted. In general, kinase inhibitors can be
classified into various types according to their binding
mode, e.g. ATP-competitive and non-ATP-competitive
[41,42]. These diverse types bind different locations on
a kinase and therefore differ chemically from each other.
Hence, different types of kinase inhibitors should be dis-
tinguished during experiments. However, it was not pos-
sible to obtain the membership of each kinase inhibitor in
an automated fashion. As a result, different types of kinase
inhibitors were merged.
On the basis of the 278 matched kinases all compounds

were gathered for each target. Similar to the study of Hu
et al. [43], all compounds had to fulfill certain criteria
to be in the final data set. The first criterion was a cer-
tain ChEMBL confidence score. The ChEMBL confidence
score of a compound states the confidence that the respec-
tive compound was assigned to the correct target with
respect to the assay used. The highest score a compound
can achieve is the value 9. Hu et al. selected compounds
with a confidence score of 9 and omitted every other com-
pound. We also allowed compounds with a score of 8
because selecting compounds with only the highest score
resulted in too many data sets with an infeasible size
to perform two-deep cross-validation. Additionally, the
selection was restricted to molecules for which an assay
type binding (B) is declared. We further excluded entries
mapped to a mutant variant of a kinase, e.g. EGFR(L858R).
Since the binding pockets of mutants have different amino
acids available, the binding properties of compounds may
differ. Therefore, only compounds mapped to the wild
type were included. Like Hu et al., the final criterion for
the selection was a reasonably high pIC50 value. The
pIC50 value of a compound had to be at least 5.00. A
pIC50 value of ≤ 5.00 is equal to an IC50 value of ≥
10.0μm and represents a weakly active or inactive com-
pound. Furthermore, the pIC50 or IC50 value had to be
determined exactly, which excludes activity values given
as relation like e.g. < 50nM or > 50nM. All IC50 values
were converted to pIC50 values during the filtering pro-
cess. Compounds with multiple pIC50 that differed more
than 1 log unit where rejected to obtain a higher data
precision. If this was not the case, the geometric means
over all pIC50 values for the respective compounds were
calculated.
We filtered compounds with undesirable, not drug-like

physiochemical properties to exclude extreme outliers.
We used the following specifications for this filter: 90 <
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Molecular Weight ≤ 900; -7 ≤AlogP ≤ 9; Hydrogen Bond
Acceptors ≤ 18; Hydrogen Bond Donors≤ 18; Number of
Rotatable Bonds ≤ 18. Additionally, structures containing
non-organic atoms were discarded as well.
Due to the viability of a cross-validation, we addition-

ally excluded 166 protein kinases, which had less than 15
compounds mapped to them. We also found 10 groups
of duplicate structures with 3 compounds each, whereby
2 groups belonged to PTK2B and 8 groups to MAPK14.
Since these molecules appertained to one specific kinase
only, we mapped the ChEMBL ID of two structures to the
third for each group. After all filtering steps we obtained
23000 compounds in total.
To reflect the experiments with the simulated data, we

generated additional smaller data sets with the prerequi-
site that there have to be at least three kinases for every
data set with an overlap of at least 85 molecules. To be
more precise there has to be a pIC50 value for each of the
selected kinases. As a result of these constraints, we got
the four smaller data sets shown in Table 1. TK/PI3 depicts
the tyrosine kinase (TK) family consisting of members
from the SRC and ABl subfamily and the kinase PIK3CA
of the more distant PI3/PI4-kinase family. The data of this
subset comes from a study for dual inhibitors of tyrosine
and phosphoinositide kinases [44]. MAPK is composed
of members from the MAP kinase subfamily, also known
as c-Jun N-terminal kinases, which belong to the CMGC
Ser/Thr protein kinase family. The majority of the data
of this subset (131 compounds) stems from 6 different
studies (see ChEMBL for details), where 4 studies were
conducted by the same laboratory. PIM consists of mem-
bers from the PIM subfamily of the CAMK protein kinase
family. Half of the data stems from one study, the major-
ity of the remaining data points from 4 different studies.
PRKC contains three members of the AGCs PKC subfam-
ily. The data of this subset stems frommany different small
studies.
Like for the simulated data, we estimated the similarity

between the different tasks by calculating the correlation
between the actual target values of the tasks. However, we
used the Spearman coefficient instead of the Pearson cor-
relation because the pIC50 values cannot be assumed to
be normally distributed. For the TK/PI3,MAPK, PIM, and

Table 1 Kinase subsets

Identifier Members Size Cluster sizes

TK/PI3 HCK, PIK3CA, SRC, ABL1 123 18, 20, 39, 22, 19, 5

MAPK MAPK8, MAPK9, MAPK10 142 32, 24, 15, 28, 21, 22

PIM PIM1, PIM2, PIM3, 91 14, 10, 16, 17, 11, 23

PRKC PRKCD, PRKCE, PRKCH 99 12, 10 , 7, 18, 35, 16

Every compound of a subset has a pIC50 value for each kinase of the subset. The
chemotype clusters were calculated with a 6-median clustering on the Tanimoto
distance matrix.

PRKC subsets we obtained Spearman correlations of 0.85-
0.92, 0.67-0.85, 0.42-0.75, and 0.35-0.64, respectively. It
should be noted that measuring the task similarity with a
correlationmeasure does not capture potential differences
between the average pIC50 values.
In order to evaluate the performance of the methods

with respect to chemotypes, we generated a clustering on
the basis of the chemical similarity between the molecules
of each subset. We used a matrix with distance values
based on the Tanimoto similarity and a k-medians clus-
tering. On the basis of the within-cluster sum of squares
we determined a suitable value of 6 for k. As a result, we
calculated six clusters for each subset.
At last, the Standardizer was used for each data set

to canonicalize and transform every molecule struc-
ture, JChem 5.12.0, 2013, ChemAxon [45] (http://www.
chemaxon.com). On the basis of the guidelines by
Fourches et al. [46] we used the following configuration:
remove small fragments, neutralize, tautomerize, aroma-
tize, and add explicit hydrogens. Details on the chemical
data and the assigned clusters are provided in Additional
file 2.

Human kinome tree
To assess the relationships between the kinases used in
our experiments, a Newick tree was generated. As a basis
for this tree we used the binary dendrogram that was
derived from the work of Manning et al. [24]. They built
a kinome taxonomy based on the sequence similarities
between the kinase domains. Each subfamily is divided in
a binary fashion such that each node has two children at
maximum. We also extracted the evolutionary distances
of the kinases from the website http://kinase.com/human/
kinome/. The content of these pages supports the pub-
lished work of Manning et al. In addition to the given tree,
the two atypical protein kinases RIOK1 and PIK3CA con-
tained in our data set were directly attached to the root.
As for the distances, a maximum value of 1 was chosen to
reflect their low sequence similarity to all other kinases in
the data set.

Parameter settings
The task similarity for the chemical data was derived from
the human kinome tree. The branch lengths of the tree
were all in the range [0, 1], as were the pairwise task
distances derived from the tree, except for the two atypi-
cal kinases RIO1 and PIK3CA, which were added with a
branch length of 1.0. Hence, no scaling to [0, 1] was nec-
essary for both TDMT and GRMT. The similarity of the
atypical kinases to all other kinases was set to 0.0 for the
GRMT algorithm.
The value of the regression parameter ε is proportional

to the noise in the target values and the data set size.
We evaluated the standard deviations of the IC50 values

http://www.chemaxon.com
http://www.chemaxon.com
http://kinase.com/human/kinome/
http://kinase.com/human/kinome/
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of two recent binding assays [47,48]. The IC50 values
showed a relative deviation of ≈ 25%. A relative devia-
tion of 25% amounts to a deviation in the pIC50 values
of ≈ 0.1. Hence, we chose ε = 0.1 as parameter value
for the regression SVM. A grid search for an optimal ε
can improve the performance of the algorithms. However,
preliminary experiments did not yield substantial differ-
ences compared to ε = 0.1 and we decided to stick with
models with less parameters.
Recent publications [49,50] on the uncertainty in het-

erogeneous data such as ChEMBL showed that the error
is usually higher than the 0.1 log units estimated in this
study. The results of the studies show that the mean
unsigned error is 0.44 log units for Ki data and 0.55 log
units for IC50 data. These values might prove useful for
estimating ε in future studies.
The parameters B and C were determined by a grid

search. For all experiments and algorithms, except GRMT
on the kinome data, we used log2(C) ∈ {−5,−3, . . . , 7}.
For a large number of tasks GRMT often chose larger
values for C because there are many weight vector com-
binations compared to the loss term. For GRMT on the
kinome data we searched log2(C) ∈ {2, 4, . . . , 8}. The
grid search for the parameter B of TDMT used B ∈
{0, 0.1, 0.25, 0.5, 0.75, 0.9, 1.0}.

Statistical analysis
In this study, the performance of an algorithm was eval-
uated on several random data set splits for the kinase
subsets and on several cross-validation folds for the whole
kinome data. All algorithms use the same training and
test splits, which means that the performance values of
two algorithms on a data set split can be paired. Further-
more, the performance values cannot be assumed to be
normally distributed. Consequently, we used a two-sided
Wilcoxon signed-rank test to decide if the performance
of two algorithms differs significantly on a certain target.
The significance level was set to α = 0.05 for all tests.
On the kinase subsets, we compared multiple algo-

rithms on a given target with each other for significant dif-
ferences. Thus, we corrected the p-values of theWilcoxon
tests with Holm’s method [51] to control the family-wise
error. On the whole kinome data, we compared a multi-
task algorithm to a baseline method on all 112 kinase
targets and recorded the number of significant differ-
ences. Correcting the p-values of the Wilcoxon test with
the Benjamini and Hochberg correction [52] ensures a
false discovery rate of 5% in the number of significant
differences.

Results and discussion
In this section we present the results of the five app-
roaches tSVM, 1SVM, TDMTgs, TDMTtax, and GRMT
on the simulated data as well as the chemical data. The

chemical data can be divided into the kinase subsets and
the kinome data. The TDMTgs and TDMTtax represent
the TDMT algorithm, where the parameter B is defined by
a grid search and by the taxonomy edge weights, respec-
tively. All presented MSE performances were determined
on external test data, which was not included for the
training of the algorithms or the model selection.

Simulated data
We simulated data varying the simulation parameters to
capture the influence of the training set size N, the num-
ber of tasksT, the dimensionalityD, and the task similarity
on the performance of the five algorithms. We tested the
following parameter ranges: For the training set size N we
used N ∈ {15, 30, 45, 60, 75}, for the number of tasks T we
chose T ∈ {2, 4, 5, 10, 15}, and the number of attributes D
was set toD ∈ {6, 10, 14, 18, 22}. For each parameter setup,
we generated 10 random data sets for training and testing.
The generation of 10 different splits should avoid a valida-
tion bias induced by the random splitting procedure. Each
test set contained 25 randomly generated test instances
for each task with the same number of attributes as the
training instances. Given a different number of training
instances N, the test set stayed the same. The parameters
of the algorithms were searched with a 3-fold inner cross-
validation on the training set. We employed a 3-fold inner
cross-validation for the model selection to ensure a test
set size of ≥ 5.
The results on the simulated data with varying simu-

lation parameters N, T, and D are depicted in Figure 5.
The results for regression are in line with other multi-
task studies on classification [22,30]. Generally, all tested
algorithms except the 1SVM benefit from an increased
number of training instances until the underlying prob-
lem is solved, which is reflected by an MSE close to zero.
The 1SVM also benefits, but converges to a considerably
higher MSE because it assumes all problems to be equal,
which is not the case. The number of training instances
necessary to solve the underlying problem depends on
the complexity of the problem, which is controlled by
the number of attributes D. The more attributes, the
more training instances are required to solve the problem.
Given similar tasks and little training data, the multi-
task algorithms achieve a better MSE compared to the
tSVM. This benefit increases with the number of tasks T.
Overall, the benefit of multi-task algorithms compared to
the tSVM depends on the model complexity, the number
of tasks, the similarity between the tasks, and the num-
ber of training instances. Generally, the tasks have to be
sufficiently similar for multi-task algorithms to benefit.
Furthermore, the higher the model complexity, the higher
the number of tasks, or the lower the number of training
instances, the better the multi-task approaches perform
compared to the tSVM.
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Figure 5 Performance on simulated data. Average mean squared error (MSE) while varying (a) the training set size N, (b) the number of tasks T,
and (c) the number of attributes D. Varying a certain parameter, we kept the other parameters fixed to N = 45, T = 5, and D = 14. The average MSE
was calculated from the performance on the 10 randomly generated test data sets for each parameter setup. The upper graphs show results for
high task similarity, the lower graphs for low task similarity.

Another important factor is how much additional input
space is covered by the similar tasks. The multi-task
approaches benefit when the tasks cover a diverging por-
tion of the input space. If a task s covers a different region
of the input space than a similar task t, knowledge can
be transferred between the tasks, such that both tasks
generalize well on both regions of the input space. To eval-
uate the influence of the additional input space coverage
gained from similar tasks, we generated the same training
instances for all tasks. Still, the target values y were dif-
ferent for the tasks because of the task specific models.
For this simulation setup, all tasks cover the same portion
of the input space and no additional coverage is achieved
by transferring knowledge between the tasks. Given this
setup, the multi task approaches performed equal to the
tSVM because it is better to use the target values of the
actual task than transferring knowledge from the target
value of a similar task.
Further important aspects are the influence of the task

similarities supplied to the algorithms and the prevention
of negative transfer. To test the impact of the supplied task
similarities on the performance of TDMTtax and GRMT,
we compared the true task similarities with anti corre-
lated similarities and random similarities. The true task
similarities were estimated with the cosine similarity kcos
between the weight vectors of the models, the anti cor-
related task similarities were calculated by 1 − kcos, and
the random task similarities were set to uniformly dis-
tributed random numbers from the interval [0, 1]. The
similarity of a task to itself was fixed to 1.0 for all setups.

The results are depicted in Figure 6. The 1SVM, the tSVM,
and TDMTgs do not use the supplied task similarity or
determine the similarity in a grid search. Consequently,
the supplied similarities did not considerably influence the
performance of the algorithms. We conjecture that the
small performance differences for TDMTgs are due to the
randomization within the LIBLINEAR solver. For a low
similarity between the simulated tasks the supplied simi-
larity had only marginal influence, even if the algorithms
were provided with anti correlated task similarities. For a
high similarity between the tasks, GRMT was less prone
to changes in the supplied task similarities than TDMT-
tax. Provided with anti correlated task similarities, the
performance of TDMTtax and GRMT decreased by 120%
and 40%, respectively. Thus, the task similarity is a sen-
sible parameter for TDMTtax, whereas GRMT is more
robust against changes in the supplied task similarities.
It should be stated that the simulated data employed a
very simple taxonomy because all tasks were direct chil-
dren of the root task. Earlier studies showed, that the gain
of top-down learning increases with an increasing depth
of the hierarchy [53]. Hence, the simple taxonomy of the
simulated data might benefit GRMT.
We tested the TDMTtax approach with and without

prevention of negative transfer for all parameter combi-
nations. We could observe a noticeable negative transfer
only for simulation data with 2 tasks and a low task sim-
ilarity. For the majority of simulation parameter settings,
TDMTtax without negative transfer prevention achieved
a better MSE. Similar results were obtained even for
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Figure 6 Performance varying the supplied similarities.Mean
squared error (MSE) while varying the supplied similarities. Each
boxplot visualizes the performance on the 10 randomly generated
test splits. True stands for correct task similarities given by kcos , Anti for
anti correlated similarities given by 1 − kcos , and Random for random
similarities. The upper graph shows results for a high task similarity
between the simulated tasks, the lower graph for a low similarity.

taxonomies with incorrect task similarities. Hence, nega-
tive transfer should not prevented for TDMTtax.

Kinase subsets
We evaluated the five algorithms on the kinase subsets.
Each subset contains only compounds that are annotated
with pIC50 labels for every target of the corresponding
subset. This evaluation setup allows for a controlled eval-
uation of the algorithms on chemical data. To obtain a
different input space coverage for each task, we randomly
selected 60 compounds per task. From the remaining
instances of a task, we randomly chose 25 test instances,
which is the reason why each subset was required to
have at least 85 molecules. Compounds that are in the
training set of a task are likely in a test set of a differ-
ent task. Consequently, knowledge about the potency of
a compound in one task can be transferred to another
task provided that the tasks are sufficiently similar. We
randomly generated 10 training and test sets for evalua-
tion. For a comparable setup with respect to the simulated
data, the parameter settings were determined with a 3-
fold inner cross-validation. We supplied the algorithms

with subtrees of the humane kinome tree that contain only
targets relevant to a subset (see Figure 7).
The results on the kinase subsets are presented in

Figure 8. Additional results, such as the performance with
respect to the scaffold or when using an ECFP encod-
ing with depth 2 (ECFP_4), can be found in Additional
file 3. For all subsets, but theMAPK subset, the multi-task
approaches achieved a significantly better mean perfor-
mance than the baseline methods 1SVM and tSVM. For
the MAPK and PIM set, GRMT performed best, whereas
TDMTtax achieved the lowest MSE for the TK/PI3 and
PRKC set. Compared to the tSVM baseline, the best
multi-task approach decreased the MSE by 26% for the
MAPK subset up to 43% for the TK/PI3 subset. Zoom-
ing in on the targets of the subsets, the performance
gain of the best multi-task approach compared to the
tSVM ranged from 16% for MAPK9 up to 56% for SRC.
At least one multi-task algorithm obtained a significantly
better performance than the tSVM for all targets except
PIK3CA.
PIK3CA is part of the TK/PI3 kinase subset. The com-

position of this set is different compared to the other
3 subsets. While the other subsets comprise targets of
the same subfamily, the TK/PI3 set contains kinases of 2
different TK subfamilies and the atypical, taxonomically
distant kinase PIK3CA. However, PIK3CA is structurally
similar to the eukaryontic protein kinases [24,44]. The
taxonomical relationships between PIK3CA and the other
3 targets were reflected in relatively low Spearman cor-
relations between the target values (0.35-0.45). TDMTgs
could not significantly improve the performance com-
pared to the tSVM for this target because of the low
task similarity. GRMT and TDMTtax performed equally
to the tSVM because the similarity to PIK3CA was set
to zero by the taxonomy. Supplying GRMT and TDMT-
tax with the Spearman correlations resulted in a small but
non-significant performance gain for both algorithms.
On the TKs ABL, SRC, and HCK the multi-task

approaches improved the MSE compared to the tSVM.
Both top-down algorithms achieved a better perfor-
mance than GRMT. The 1SVM performed similar to
the tSVM, which indicates a high similarity between
the tasks. This fact was underscored by high Spear-
man correlations between the target values (0.85-0.92).
These correlations exceed the values for theMAPK subset
(0.67-0.85), although taxonomy based task similarities
are low (0.43-0.67) compared to the pairwise similarities
between MAPK8-10 (0.87-0.95). These results show that
the kinase domain sequence similarities might not reflect
the actual similarities between the pIC50 values of the
training compounds. Still, the topology of the given tax-
onomy was reflected by the pIC50 values, which might be
a reason for the promising performance of the top-down
approaches. Given the high correlation between the target
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Figure 7 Taxonomies of kinase subsets. Taxonomies of the kinase subsets that were supplied to the multi-task algorithms. Each taxonomy is a
subtree of the humane kinome tree.

values, the exact value of B just needs to be large enough
for the TK taxonomy nodes to allow for knowledge trans-
fer between the tasks. In the given human kinome tree,
even taxonomically long branches induced a similarity
parameter B > 0.5.

On the PIM subset the multi-task approaches achieved
a significantly lower MSE compared to the tSVM for all
targets. The MSE of the 1SVM is considerably higher
on PIM2 than on PIM1 and PIM3. The taxonomy based
task similarities indicate that PIM2 is more distantly
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Figure 8 Performance on kinase subsets.Mean squared error (MSE) for kinase subsets. Each boxplot depicts the performance on the 10
randomly generated test sets. The target “Mean” includes the data of all targets.
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related to PIM1 and PIM3 than they are related to each
other. Additionally, inhibitors often exhibit a higher affin-
ity against both PIM1 and PIM3 than against PIM2 [54],
which is reflected by the pIC50 values of the subsets. We
conjecture that the 1SVM mainly learned the structure-
activity relationships based on the training data of PIM1
and PIM3, which lead to a worse performance on PIM2
because themean pIC50 values differ by about 0.8. In con-
trast to the 1SVM, themulti-task approaches could exploit
the taxonomy of the PIM kinases and adapt to differences
in the target values, which improved the MSE. Gener-
ally, the 1SVM should achieve a high MSE when there are
considerable differences in the mean pIC50 of the targets.
For the MAPK subset, the multi-task learners achieved

the smallest performance gain. The 1SVM performed
considerably worse than the tSVM for MAPK8, which is
similar to the behavior on the PIM subset. However, lit-
erature [55], the high taxonomy based task similarities
(0.87-0.95), and the pIC50 values of the targets indicate
a reasonably high similarity between the tasks. An expla-
nation might be the considerably larger variance of the
pIC50 values for MAPK8. The 1SVM mainly adapted to
the applicability domain of MAPK9 and MAPK10, which
does not include the larger pIC50 range of MAPK8. Inter-
estingly, GRMT and TDMTgs performed significantly
better than the tSVM on all targets of the subset, whereas
TDMTtax performed similar to the tSVM except for
MAPK9. This behavior indicates that the supplied taxon-
omy is suboptimal. We evaluated an alternative taxonomy,
which we generated with UPGMA from the Spearman
correlations between the pIC50 values. The alternative
taxonomy did have slightly lower task similarities and
the positions of MAPK9 and MAPK8 were swapped (see
Figure 9). Supplied with this taxonomy TDMTtax also

2

1

MAP K8

0.07 0.07

0.09 0.16

MAP K10MAP K9

Figure 9 Alternative taxonomy for the MAPK subset. The
alternative taxonomy was generated with UPGMA from the Spearman
correlations between the pIC50 values of the MAPK subset targets.

performed significantly better on MAPK8 and MAPK10
(see Additional file 3). The performance of TDMTgs also
slightly increased with this alternative taxonomy on all
targets but MAPK9. These results show that the topology
of the taxonomy matters for top-down approaches.
On the PRKC subset, the multi-task algorithms

achieved a significantly better performance than the
tSVM on all subsets. For PRKCD, the 1SVM achieved a
lower median MSE than the multi-task approaches. How-
ever, this difference was non-significant. Like on the PIM
subset, the mean pIC50 of PRKCE is about 0.6 lower than
the mean pIC50 of the other targets, which resulted in a
high MSE for the 1SVM on PRKCE. TDMTgs performed
considerably worse than TDMTtax for all targets. The
pIC50 values of PRKCE and PRKCH are dissimilar com-
pared to the similarity to PRKCD. The grid search chose
B ≤ 0.1 for the parent taxonomy node of PRKCE and
PRKCH for 4 out of 10 repetitions. Given these parame-
ter settings, PRKCE and PRKCH could not profit from the
pIC50 value similarity to PRKCD. Furthermore, the grid
search yielded B ≤ 0.25 for 5 out of 10 runs for PRKCD,
which resulted in a small profit for PRKCD. Optimizing
both C and B resulted in overfitted parameter values for
TDMTgs that do not generalize well. TDMTtax is less
prone to overfitting because it only searches forC in a grid
search.
Overall the results show that the multi-task algorithms

are promising methods for inferring multi-target QSAR
models. However, each of the algorithms has its draw-
backs. While GRMT and particularly TDMTtax rely on
sensible taxonomies, TDMTgs is prone to overfitting
parameter values for small data sets.
In addition to grouping the results of a kinase subset by

targets as presented in Figure 8, we grouped the results
of each subset according to the clusters of a 6-medians
clustering. The results (see Additional file 3) show a con-
siderably varying MSE between the clusters of a subset.
These observations indicate that the established recep-
tor based models do not perform equal for all scaffolds
as it has already been shown, e.g. by van Westen et al.
[56]. Therefore, different scaffolds of our diverse multi-
target set can show different performances and not every
compound can be predicted equally well. Furthermore,
a correlation between the size of the clusters and the
performance can be observed, since scaffolds with less
training instances are more difficult to predict. However,
this correlation is observed for all evaluated methods and
none shows a considerably stronger correlation compared
to the other four. The performance on the TK/PI3 and
MAPK subset is more uniform between the clusters in
comparison to the PIM and PRKC subsets, which might
be a result of the compilation of the data set. The binding
affinities of the TK/PI3 and MAPK subsets mainly come
from a few number of studies that were conducted by
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mainly the same laboratory, whereas the data of the PRKC
subsets stems from several different studies conducted by
different laboratories.
To evaluate the predictive power of multi-task learning

with respect to novel targets, we performed a leave-one-
sequence-out validation, which puts aside the data of a
certain target for external testing while using the data of
the remaining targets for training. To keep comparability
to the previous setup, we used the same 25 test com-
pounds of a target as in the previous experiments. Further-
more, the training sets had the same size as in the previous
setup. To account for putting aside one target, the remain-
ing targets received more training instances. Like before,
we generated 10 different splits, which resulted in 10
different performance values per left out target.
The multi-task methods had to be adapted for the pre-

diction of novel targets. For the TDMT approaches, the
parent model of the left out target leaf was used for
the prediction because a leaf model cannot be inferred
without training instances. In the GRMT formulation, we
adapted the graph Laplacian L, such that the GRMT does
not regularize the model complexity (‖wt‖2) of a target t
without training instances, but only forces the similarity
to other models (Ast ‖ws − wt‖2).
The results of the leave-one-sequence-out experiments

are depicted in Figure 10. The results show that the 1SVM
exhibits a similar behavior compared to GRMT, which is
different to the behavior of both top-down approaches.
On 3 targets GRMT and the 1SVM perform considerably
better, whereas the top-down approaches achieved a bet-
ter MSE for 4 targets. Furthermore, there is always one
target per subset on which the TDMT methods perform
equal to the 1SVM (PIM2, PIK3CA, MAPK9, PRKCD)
because the parent node of the corresponding leaf is the
root, and training the root is equal to training the 1SVM.
Generally, the results indicate that it is often better to train
the 1SVM instead of the GRMT approach. An explana-
tion for this behavior is, that based on the small number
of targets in a kinase subset, it is better to exploit as
much knowledge from the other targets as possible. For
data sets with more targets and a deeper taxonomy, there
might be a difference between the 1SVM and GRMT.
Comparing the results to the previous evaluation setup
indicates that the knowledge transfer to novel targets
does only work considerably well for highly similar targets
(e.g. HCK, SRC). Zooming in on the details shows that one
of the main problems for the prediction of novel targets
is a shift in the bias. On PIM1 and PIM3, the leave-one-
sequence-out results of the TDMT algorithms are similar
to the results of the previous evaluation (see Figure 8),
whereas the approaches performed considerably worse for
PIM2. Differences in the bias might also be the explana-
tion for the difference between the top-down approaches
and GRMT/1SVM because the TDMTmethods calculate

a new pIC50 bias for each node, whereas GRMT/1SVM
calculate an average bias over all training instances.

Kinome
In the final experiment, we evaluated the five algorithms
on the whole kinome data using the human kinome tree
as taxonomy. We assessed the performance with a 3-fold
nested cross-validation that we repeated 3 times. Hence,
we obtained 9 performance evaluations per algorithm
and target. The data set preparation of the kinome data
required at least 15 compounds for each target. Conse-
quently, a 3-fold outer cross-validation ensures a test set
size of ≥ 5. For the model selection, we employed a 2-fold
inner cross-validation, again to ensure a test set size of at
least 5.
Figure 11 summarizes the results of the multi-task

approaches compared to the baseline methods. Detailed
results for all 112 kinase targets are depicted in Additional
file 4. As to be expected, the 1SVM baseline had the worst
performance onmost of the data sets because the proteins
of the kinome are substantially different. It obtained a con-
siderably higher MSE on the majority of the targets. The
1SVM obtained a non-significantly different performance
to the tSVMon 43 targets and to themulti-task algorithms
on 21 targets for TDMTtax up to 39 targets for TDMTgs.
On ERBB4 all other algorithms performed worse than the
1SVM. ERBB4 is a small set (39) whose compounds highly
overlap with compounds of the large sets EGFR (1104) and
ERBB2 (962). The overlapping molecules exhibit a high
correlation between the pIC50 values (≈ 0.8). We think
that the combination of the overlap, the high target value
similarity, and possibly a restriction to a small part of the
chemical space enabled the 1SVM to learn the task better
than the other approaches.
Looking at the differences to the tSVM, GRMT per-

formed best. It obtained a significantly lower MSE for the
majority of the data sets, followed by TDMTgs, which
achieved a lower MSE for a third of the targets. TDMT-
tax exhibited the worst performance of the multi-task
algorithms and performed significantly better for only
28 targets. However, zooming in on the SRC subfamily
TDMTtax achieved the best results on HCK, LYN, and
YES1 and decreased the MSE by 48 − 75% compared to
the tSVM. A similar behavior on the SRC subfamily was
observed on the TK/PI3 kinase subset. The SRC subfam-
ily tree of the human kinome taxonomy approximates the
task similarities well.
TDMTgs performed at least as well as the tSVM on all

of the targets, whereas TDMTtax and GRMT obtained a
significantly higher MSE for 4 and 1 targets, respectively.
The largest performance loss of GRMT amounted to 62%
and was observed for MAPK3. MAPK3 is a small set (19)
with a low median pIC50 (5.48) compared to the overall
median pIC50 (6.7) and a low median absolute deviation
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Figure 10 Leave-one-sequence-out performance on kinase subsets.Mean squared error (MSE) for leave-one-sequence-out validation. Each
boxplot depicts the performance of a leave-one-sequence-out validation performed on 10 random splits. The target “Mean” includes the data of all
targets. For PIK3CA, the GRMT performance was not evaluated because the task similarity to the other targets was zero.

(0.32). Similar to the 1SVM, GRMT centers the pIC50 val-
ues using the average over all tasks. It has to encode the
bias between the average pIC50 values of the tasks using
the features contained in the training compounds of the
tasks. However, it might not be possible to encode the
bias well, which results in a higher MSE. Thus, for taxo-
nomically similar tasks with substantially differentmedian
pIC50 values GRMT potentially encounters difficulties.
In contrast, the TDMT algorithms center the pIC50 val-
ues for each taxonomy node separately, which allows to
easily adapt to changing average pIC50 values. However,
this behavior results in less comparable weights between
the nodes because the bias of the pIC50 values is not
encoded by features of the compounds of the tasks. The
problem of differing average pIC50 values between tasks
can be circumvented for GRMT by adding a regularized
bias term as shown in Equation 7. Another possibility is
to skip the feature selection, which removes features that

occur in more than 90% of the compounds. The weight of
these features can act as implicit bias terms. Evaluating the
performance of GRMT without feature selection resulted
in a comparable performance to the tSVM on MAPK3
(see Additional file 4). Still, one should be cautious when
using multi-task regression given tasks with considerably
differing average target values.
The potency of a compound against a number of kinase

targets is dependent on the structural similarity of the
targets, which might be better reflected by pairwise sim-
ilarities than by a taxonomy. The taxonomy forces the
similarities to evolve along a tree, whereas the pairwise
similarities allow for the exchange of specific structural
features between the tasks. Hence, the GRMT might
fit the underlying task structure more than a top-down
approach. Additionally, GRMT should work well supplied
with sensible pairwise similarities between protein tar-
gets. These pairwise similarities can be calculated with
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existing target descriptors used in proteochemometric
modeling.
As shown on the simulated data, the benefit of multi-

task learning depends on the model complexity, the num-
ber of training instances of a task, and the availability
of a similar target. Given at least one target with suffi-
cient similarity (≥ 0.8), GRMT decreased the MSE by
20% for targets with less than 100 compounds, whereas
the decrease was only 6% on average for targets with at
least 100 compounds. Hence, out-of-domain knowledge
from other targets is mainly beneficial when not enough
in-domain knowledge is available. In order to check the
possible benefit of multi-task learning, we can compute
a learning curve (e.g. number of compounds vs. MSE) as
suggested in [22]. If the curve reaches saturation, multi-
task learning is likely not beneficial. Furthermore, the
benefit increases for targets with a small amount of in-
domain knowledge that are similar to a target with a lot of
compounds, like for YES1 in the SRC subfamily. The YES1
set comprises 37 compounds, whereas the taxonomically
highly related target SRC contains 1610 compounds.
Finally, it should be mentioned that the multi-task

algorithms are not designed for simultaneously inferring
QSAR models on tasks as diverging as the whole kinome,
but rather one should focus on a subset of desired targets.

Conclusions
In this study, we presented two multi-task SVR algo-
rithms and their application on multi-target QSAR mod-
els to support the optimization of a lead candidate in
multi-target drug design. The first method, top-down
domain adaption multi-task (TDMT) SVR, successively
trains more specific models along a supplied taxonomy.

For TDMT the branch lengths of the taxonomy can be
supplied by the user or approximated by a grid search
during training. The second method, graph-regularized
multi-task (GRMT) SVR, assumes the tasks to be pairwise
related with a given similarity and trains all task models in
one step. The training time of both algorithms is linear in
the number of training instances and tasks.
We evaluated the two TDMT SVR variants and the

GRMT SVR on simulated data and on a data set of
human kinases assembled from the database ChEMBL.
Furthermore, we examined the behavior of the employed
methods on selected subsets of the kinome data set. The
results show that multi-target learning results in a con-
siderable performance gain compared to training separate
SVRmodels if knowledge can be transferred between sim-
ilar targets. However, the performance increases only as
long as not enough in-domain knowledge is available to a
task for solving the underlying problem. Generally, QSAR
problems are complex and high dimensional such that a
considerable performance gain is apparent as long as there
is sufficient similarity between the tasks, which, in partic-
ular, is the case for the kinase subfamilies. Yet, if the tasks
are too similar it can be worthwhile to regard the models
as identical and train a simple SVM with all data, as done
by the 1SVM.
Another important aspect is the chemical space

spanned by the different tasks. The lower the overlap of
the chemical space spanned by the different tasks, the
more multi-task learning benefits because it can transfer
knowledge from different regions of the chemical space
between the tasks. In contrast, if all tasks contain the same
compounds, multi-task learning will not exhibit a ben-
efit compared to training separate models because it is
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better to use the actual potency of a compound against
a target than to transfer knowledge from a similar target.
Multi-task learning ismost beneficial given a task with few
training compounds that is similar to a number of tasks
with many training compounds, which span a diverging
region of the chemical space.
Each of the presented multi-task SVR algorithms and

variants has advantages and drawbacks. TDMTtax and
GRMT rely on a sensible taxonomy and task similarities,
respectively. Supplied with a bad taxonomy or incorrect
task similarities both algorithms exhibited a consider-
ably worse MSE on the simulated data. On the simulated
data GRMT emerged to be more robust than TDMTtax,
whereas both were equally robust on the chemical data.
TDMTgs does a grid search for the branch lengths of the
taxonomy. Thus, it only relies on the topology of the given
taxonomy, which results in a robustness against subopti-
mal branch lengths. On the other hand, the grid search is
vulnerable to overfitting parameter values, especially for
small data sets.
To conclude, we think multi-task learning is a valu-

able approach for inferring multi-target QSAR models
to help in the optimization of lead candidates. While a
single-target model for each target can be used to pre-
dict multi-target binding affinities or selectivity profiles,
the exploitation of the targets’ taxonomy with multi-task
learning can significantly increase the quality of the pre-
dictions. In principle, themulti-task methods, particularly
the top-down approaches, are able to predict novel targets
if the novel target is highly similar to at least one known
target and if the average pIC50 values between the targets
do not differ substantially.
A focus of future studies might be the application of

multi-task learning in virtual screening and the combi-
nation of our methods with the approach of Heikamp
et al. [19]. Ourmethods can be used to infermore accurate
task specific models by exploiting task similarities. Then,
the accurate models can be linearly combined to search
for compounds with a desired activity profile. Further-
more, the presentedmethods infer linear models based on
the ECFPs, similar to a previous study [35]. In principle,
the methods should be interpretable in a similar fashion,
which can be exploited to reveal structural features that
are important for binding a number of desired targets.
All multi-task learning algorithms were implemented

in an in-house Java based machine learning library. The
source code of the complete library is available upon
request.

Additional files

Additional file 1: Theoretical derivations of the GRMT. This PDF
document contains additional information on the theoretical derivations of

the GRMT SVR dual problem and the optimization technique used to solve
the problem.

Additional file 2: Details for the chemical data sets. The ZIP archive
contains the ChEMBL IDs and the pIC50 values of the four kinase subsets
and the kinome data. A pIC50 value of “NaN” denotes a missing pIC50
value for a target and compound. Additionally, the archive contains the
Newick trees for the chemical data, the task similarity matrices used for
GRMT, and the size of the target sets of the kinome data.

Additional file 3: Additional result plots for the kinase subsets. The ZIP
archive contains results of additional evaluations performed on the kinase
subsets. It includes boxplots for the chemotype specific performance on
the kinase subsets, for the alternative taxonomy of the MAPK subset, and
for an evaluation with ECFP encoding with depth 2 for all kinase subsets.

Additional file 4: Additional result plots for the whole kinome data.
The ZIP files contains PDF documents that depict the detailed results of the
kinome experiments with the described setup and with a setup without
feature selection. Each figure shows two bar diagrams that visualize the
MSE and Q2 of the five algorithms on all 112 protein kinases.
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