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Abstract: The recyclability and improved suitability for high-volume production make fiber-reinforced
thermoplastic polymers (FRP) attractive alternatives for the current thermoset-based ones. However,
while they are more ductile than their thermoset counterparts, their behavior is also more susceptible
to environmental conditions such as humidity, temperature, and strain rate. The latter can trigger self-
heating and thermal softening effects. The role of matrix self-heating in FRP subjected to transverse
loading is investigated using micromechanical modeling. Particularly, the effect of self-heating, strain

rate and conductivity of the fiber-matrix interface is illustrated. It is shown that local heating of the
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Gpdates matrix is dominant for the homogenized behavior of the material. Although the global homogenized

temperature increase is limited, local thermal softening can induce premature failure. It is shown that
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the effect of thermal softening can be more prominent with increasing volume fraction, increasing
strain rate, and lower interface conductivity.
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1. Introduction

Fiber-reinforced polymers (FRP) with thermoplastic matrix material offer, compared
to thermoset FRP, better recyclability and improved suitability for high-volume production

processes. These properties make them an attractive alternative for the current thermoset-
based FRP in high strength and low weight applications for both low volume (air, space,
wind energy) and high-volume applications (e.g., automotive, transport). However, they
are more ductile than their thermoset-based equivalent, their behavior is also more sus-
ceptible to environmental conditions, such as humidity and temperature. Moreover, their
inherent rate-dependency adds difficulties in the matrix characterization due to a lack
of understanding of the relaxation process of polymer chains. Additionally, most ther-
moplastics are semi-crystalline polymers where complex morphological amorphous and
crystalline phases are involved. Viscous dissipation, which occurs at an elevated strain
rate, can naturally trigger self-heating and the associated thermal softening. Considering
the competition between plastic deformation, associated heat generation, and thermal
diffusion, coupled thermomechanical analysis of these materials is necessary to enable the
use of thermoplastic materials in FRP.

The constitutive behavior of FRP can either be determined experimentally or estimated
using advanced simulations. When a multitude of variables are involved (e.g., temperature,
Attribution (CC BY) license (https:// humidity, strain rate, pressure) an experimental campaign including all possible combina-
creativecommons.org/licenses,/by/ tions of parameters quickly becomes too expensive to execute in terms of time, money, and
10/). resources. As an alternative, advanced simulation methods based on the micromechanics
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of the material can provide at least a qualitative prediction of the material response. This
type of simulation environment enables investigating the effect of multiple parameters,
including environmental conditions, on material behavior, at a limited added cost. In
this way, the most promising combinations of fibers and matrices, for the given design
conditions can be chosen for a thorough quantitative experimental assessment.

Micromechanical simulation of FRP usually consists of the analysis of a Representative
Volume Element (RVE) in which the fibers, matrix, and the conductivity of the fiber-matrix
interface are treated as individual entities. In the RVE, each constituent is assigned its
individual constitutive behavior. Then, the combined response of the constituents and
their interaction in the RVE, subject to several boundary conditions, is homogenized to the
macroscale [1]. Crucial for these simulations is the definition of the constituent behavior,
which should be accurate and representative of the material at the microscale. Otherwise,
as shown by Chevalier et al. [2], erroneous conclusions can be drawn.

Computational micromechanics has been used to simulate the mechanical response of
the FRP undergoing different conditions by varying the temperature and strain rates, as
well as investigating the effect of the constituent materials [3]. Micromodels of UD FRP
are primarily used to investigate the transverse and shear behavior of the material because
the properties of the matrix and the conductivity of the fiber-matrix interface dominate the
macroscale UD response. Melro et al. [4], Huang et al. [5], and Garoz et al. [6] focused on the
generation of periodic microstructures with random fiber arrangements. They concluded
that a model size containing 30 to 50 fibers is sufficient to represent the homogenized
behavior. Sharma and Daggumati [7], Liu and Li [8], and Wan et al. [9] investigated the
initial failure location and damage evolution under transverse loading. The works of Yan
and Ran [10], Asp et al. [11], Hobbiebrunken et al. [12], and Moraleda et al. [13] investi-
gate the effect of the strength of the interface on the damage evolution. Wang et al. [14]
investigated the effect of friction after fiber-matrix debonding under transverse compres-
sion. Maligno et al. [15], Totry et al. [16,17], Segurado and Llorca [18], and Vaughan and
McCartney [19,20] also included the effect of thermal residual stress generated during
the production process. The influence of strain rate is investigated by Sao et al. [21] and
Shafiei et al. [22]. Arteiro et al. [23] investigated the effect of neighboring plies on the dam-
age development inside a central ply. Jordan et al. [24], Sato et al. [21], and Bai et al. [25]
included the effect of temperature on the macroscale behavior. This is done by including a
temperature dependency in the constitutive equations of the matrix material.

In these models, the fibers (typically glass or carbon) are modeled as linear elastic ma-
terial, while the constitutive behavior of the matrix and/or the interface varies depending
on the type of matrix, type of deformation, and environmental conditions. For example,
Bai et al. [25] use a paraboloidal yield criterion in combination with a thermo-visco-plastic
hardening law to include both the effect of strain rate and temperature. Sharma and Dag-
gumati [7] use a linear Drucker-Prager plasticity model with a ductile damage criterion
for the matrix. The choice of the specific constitutive behavior for the matrix is usually
based on the experimental evidence from tensile or compressive tests on the bulk matrix.
However, several authors have already presented evidence that the bulk matrix behavior
might not be representative of the behavior of the matrix confined in small resin pockets
between fibers [2,26]. It seems that the local yield stress of the matrix appears to be higher,
resulting in a more brittle behavior compared to the bulk. In contrast, Verschatse et al. [27]
found that the yield stress of microfiber epoxy matrix is lower than the yield stress of the
bulk material. The difference might be caused by the different loading conditions applied.
Verschatse et al. [27] applied tensile loading, while Chevalier et al. [2] applied compressive
load. Other differences might be caused by a different arrangement of the polymer chains,
guided by the fiber direction, or different crystal structures (in the case of thermoplastic
(TP) matrices) initiated by the fiber type [28]. In general, the modeling of a matrix material
compatible with micromechanical simulations needs to be carefully considered.

As aforementioned, the influence of several matrix types with thermal, viscous, and
plastic constitutive response has been investigated previously. However, it is known that
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polymeric materials generate heat when visco-elastic and visco-plastic deformations occur.
This phenomenon, also known as self-heating, is primarily important at high strain rates
under monotonic loading or at high frequencies under cyclic loading [29,30]. Since the
local strain rate in matrix pockets might be significantly different than the macroscopically
applied strain rate, the question of whether localized self-heating plays an important role
in the macroscopic response of the FRP remains open.

In this work, the role of matrix self-heating in FRP subjected to transverse loading
at the micro- and macroscale is investigated. Particular attention is paid to the effect of
self-heating, strain rate, and the conductivity of the fiber-matrix interface. For this, an RVE
with a microstructure referring to a UD Carbon/PA6 FRP is used. The fibers are modeled
as transverse isotropic linear-elastic materials. The matrix is modeled based on the polymer
yield kinetics phenomenology recently developed in a thermo-visco-plastic constitutive
law for semi-crystalline polymers, which includes self-heating [31]. The interface between
fibers and matrix is included as a conductive interface with cohesive behavior. The role of
self-heating is investigated by applying several macroscopic strain rates to the RVE. The
amount of local self-heating and its dispersion through conduction is determined. At the
same time, the generation of self-heating as a function of the fiber volume fraction and the
conductivity of the fiber-matrix interface is studied and quantified.

This paper is structured as follows. In Section 2, the RVE model, its generation,
and the application of the periodic boundary conditions are explained. In Section 3, the
material constitutive relationships, including the thermal properties of the fibers, matrix,
and fiber-matrix interface are given as well as the determination of the material parameters.
Section 4 presents a study on the effect of self-heating and the conductivity of the fiber-
matrix interface in relation to the applied strain rate and fiber volume fraction. Finally,
Section 5 highlights the main conclusions.

2. RVE Modeling

An RVE model is required in order to study the effect of matrix self-heating on the
micromechanical behavior of a UD composite ply. The elements necessary to construct this
RVE are the geometry, the boundary conditions, and the appropriate material constitutive
relationships. The latter is discussed in the following section.

The selected composite material for this research corresponds to a UD Carbon/PA6
FRP represented by randomly positioned cylinders embedded in a polymer matrix assum-
ing periodic boundary conditions. This geometry is illustrated in Figure 1 for a model with
16 fibers and a fiber volume fraction of 50%.

3D RVE Zoom with mesh indication

Fiber
Matrix

Fiber-matrix Interface

Figure 1. Periodic RVE with 16 fibers and a fiber volume fraction of 50%.
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The position of the fibers is generated using a random generator previously used
for molecular dynamics simulation of two-dimensional cohesive granular materials [32].
The fiber diameter is set to 7 pum. This is a regular size for carbon fibers. Fibers and
matrix are independently meshed using C3D6T wedge elements [33]. A mesh convergence
study is carried out to ensure that the elements are sufficiently small. This resulted in
an approximate element size of 0.4 um. The fiber matrix-interface is modeled using a
surface-to-surface contact definition accounting for thermal conductivity and cohesive
behavior. The particular values used for the thermal conductivity and cohesive behavior
are given in Section 3.

Mechanical Periodic Boundary Conditions (MPBC) are assigned according to the
relative formulation with Node-to-Node coupling by Garoz et al. [34]. Through these
MPBCs, a mechanical load in the transverse direction is applied while Poisson’s contraction
is allowed. In a similar fashion as for the MPBCs, Thermal Periodic Boundary Conditions
(TPBC) are introduced as follows:

Gx,min _ gxmax — Agx
Qymin _ gy,max — Agy (1)

Gz,min — gzmax — A@z

where 6 is the temperature on the nodes on opposite surfaces in the x, y and z-direction.
These equations are applicable, regardless of whether the RVE is used to predict the thermal
conductivity or the thermomechanical response. For the prediction of thermal conductivity,
a temperature difference is applied by setting A0y, A6, A6, to a non-zero value. This
would induce a heat flux between the nodes on the opposite surfaces from which thermal
conductivity can be obtained. For thermomechanical response, a specific heat flux between
parallel sides of the RVE is not desired. Therefore A6, = A6, = A8, = 0, ensuring that
opposite nodes have the same temperature. The latter is key to generating a meaningful
constitutive behavior. The initial temperature of the RVE is set to 23 °C.

3. Material Constitutive Behavior

The thermomechanical constitutive behavior of the fibers, matrix, and fiber-matrix
interface are discussed in this section, together with the initial values for the material
parameters. Some of these initial parameters are varied in subsequent sections to study the
effect on the homogenized response. Any adaptation of specific parameters is mentioned
in the respective section.

3.1. Fiber Material

It is assumed that the carbon fibers follow a linear elastic and transversely isotropic
response. The properties for the mechanical and thermal constitutive behavior are adopted
from Arteiro et al. [26] and Dong et al. [35,36], respectively. The properties are given in
Table 1.

Table 1. Carbon fiber mechanical and thermal properties.

Mechanical [26] Thermal [36]

E1q [GPa] 276.0 k13 [Wm—1K1] 10.2
Ey = E33 [GPa] 15.0 kop = k33 [Wm—1K1] 1.256
G = Gy3 [GPa] 15.0 o [kg m~3] 1800

Gy [GPa] 5.8 cp Ukg 1K1 750

vi2 = 13 [-] 0.01

vo3 [-] 0.3
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3.2. Matrix Material

The matrix material is modeled using the Unified Semi-Crystalline Polymer (USCP)
constitutive model based on [31] and further developed in [37]. This model has an improved
representation of the double-yield phenomenon considering a temperature-dependent
visco-plastic response, including self-heating and thermal softening effects.

Figure 2 schematically presents the stress-strain response of a typical SCP composed
of elementary spherulites. The associated rheological representation is depicted with a
newly developed visco-plastic dashpot that integrates two athermal strengths, s, and s3,
corresponding to the saturated states of the amorphous and crystalline phases, respectively.
Owing to the complex yield kinetics of SCPs [31], two yield points correlated to the double
kink release process in the amorphous phase and the crystal slips in the crystalline phase
are derived.

2¢4 samirated
- 50 5 s am=m—TE—=
Isothermal response - - alss
Adiabaric response yield -
.
- 7 02152) Self-heating
I_ui[ia] ! Thermal softening
SHILESS £ 1 il /) A Initial stiffness
S cails) 1% saturated  f
. iy - .-,,{s_)‘./ _ Mixture of amorphous
z E el and crystalline phases
= oy .
= | aulsg)
j’“; 0 Yield of crystalline phase F .~
= Spherulite * Yield of amorphous phase ¢
= Viscoplastic flow
« F- _
. _\Q\.\f‘;—b.-f \) C Considering yield
=l _‘ﬁ o | F- kmetics in SCP
inn n integrating two yield
e N saturated sh!tes
k- '\ (-’ - - respectively for
amorphous and
crystalline phases.
True strain
(a) (b)

Figure 2. Schematic diagram of the morphological transformation of molecular structure in SCP with
(a) corresponding stress-strain curve and (b) rheological representation.

The amorphous phase is characterized following the parameter identification pro-
cedure of a modified Boyce-Park—Argon model described in [38]. Additionally, three
material parameters g, s3, and /3 are introduced to characterize the stress contribution of
the crystalline phase. The coupled thermo-mechanical response is implemented in a finite
strain kinematic framework. A brief overview of the constitutive equations for the matrix
behavior is given in the following.

The Cauchy stress tensor is calculated using the linear spring in terms of the elastic
deformation gradient F,, given by:

(Atr[h]I + 2uh), 2)

o =

1
det [F,]

where A and y are the Lamé constants, I is the second order identity tensor, and h is the
Hencky strain tensor.

To update the elastic deformation gradient, the plastic deformation gradient F,
is required. F, is obtained using the inelastic rate of deformation D, by integrating

F, = (F,) ~'DyF. The prescribed form is expressed as:

D, =N 3)
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where N is the direction tensor and £ is the constitutive effective plastic strain rate. The
plastic flow follows a thermally activated visco-plastic law given by [31]:

3 1. g
As 20'(7

£ =¢gpexp ) 1-— e 4)

where €(, m and A are the rate-dependent sensitivity parameters, which determine the first
peak yield stress at different strain rates. 6 is the absolute temperature. ¢’ is the deviatoric
part of the stress tensor. s is the athermal strength initiated with a value [31]:

8.5~ 1/m E(6)
\[3(1—0) 2(1+0)

Two representative athermal strengths in the saturated states of the amorphous and
the crystalline phases are considered in the evolution of s as follows:

5= Hy(8) (1;>é+Hz(s) (1:2>é+H3(e) (153)& ©)

A series of smooth Heaviside-like functions is formulated to connect the yielding
stages occurring in each phase [37]:

Hi () = —hl{tanh<€f£:p ) - 1} @)

Hy(8) = h2{1 - tanh(s;é:p)tanh(sj;fc> } (8)

H3(e)=h3{1+tanh<g_€f>} )
fe

To capture the experimental observation of self-heating, a thermomechanical coupling
analysis is developed. The heat balance equation considering the associated plastic dissipa-
tion is included. Assuming constant thermal specific heat ¢, and thermal conductivity k,
the heat balance equation is written as:

el _ 00
peps, =0 ¢ FeDp(F) l1v. (kaxx> (10)
Meanwhile, the thermal softening effect is naturally captured by taking into account
the temperature dependency of the current elastic modulus. A logarithmic regression
between the current and reference temperatures 6, is adopted via a material constant §3,

according to Poulain et al. [38].
Eref

E(Q) - 10ﬁ(9_9ref)

Figure 3 plots the results from model calibration and the corresponding validation
process. To calibrate the intrinsic material behavior, attention should be paid to the con-
version of the true stress-strain curve from the engineering one. The material parameters
associated with PA6 are determined from the experimental results of Parodi et al. [39]. The
amorphous related parameters are identified using an in-house developed optimization
script based on a modified Nelder-Mead algorithm with a baseline stress-strain curve at the
lowest strain rate (i.e., ¢ = 1 x 1045~ 1) [37,40]. First yield stress at a higher strain rate is
supplied to determine the rate-sensitive parameters. The constitutive behavior of the matrix
is included as a user subroutine in the finite element solver. The result after the fitting
process for crystalline-related parameters is shown in Figure 3a. The calibration is based on
a single element simulation, whereas the validation is performed on a real-scale dog-bone

(11)
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simulation. Figure 3b shows the validation of the experimental results and predictions of
PA6 with a good agreement. Here, the engineering stress and strain are processed in the
same way as the experimental tests. The engineering stress is calculated using the total
pulling force and the initial cross-section. The strain is obtained with a virtual extensometer.
The properties are summarized in Table 2.

. ‘ 100
75+
w
o
-
8 50t 1
2 PA6, 9= 23°C
Eﬂ Exp. by Parodi ef al. 2018
PAG | £ Exp. USsCP
Exp. by Parodi et al. 2018 25+ 1x10 *g'! x - -
s=1x10"*s7!, §=23°C 3x 1074 g! o S
— Sim. 1x 1077 57! ) —_—
o Exp. 3x 1073 57! 4 p— i
01 015 02 025 03 035 00 0.1 0.2 03
True strain (-) Eng. strain (-)
(a) (b)

Figure 3. USCP model considering two saturated states (a) fitting of crystalline related parameter
and (b) model validation using dog-bone test.

Table 2. Properties of PA6 matrix.

Mechanical Thermal [31]

E,.f [GPa] 2.6 k[Wm~1K1] 0.25
Oref [K] 296.15 cp Dkg 1K1 1700
BIK™1] 0.0072 o [kg m~3] 1200

v [ 0.39

& [1/s] 3.55 x 101
A[KMPa 1] 104.0
m [-] 0.80

so [MPa] 184.2
s1 [MPa] 195.6
s, [MPa] 192.6
s3 [MPa] 232.6

hy [MPa] 32,350.9
h, [MPa] 14,827.2

h3 [MPa] 900.0

g [] 0.00905
. [] 0.03205
fI 0.30

3.3. Fiber-Matrix Interface

The fiber-matrix interface is considered as a zero-thickness conductive surface between
the fiber and the matrix. This is implemented using the built-in general cohesive contact
available in the FEM software. Compared to conventional approaches where cohesive
elements are explicitly placed between matrix and fibers, the adopted surface-based formu-
lation avoids unnecessary degrees of freedom (DOFs) without requiring a conformal mesh
between fibers and matrix. Moreover, the formulation can be easily enriched with damage
to model fiber-matrix debonding, which is planned for use in future work. Although it is
known that the conductivity of the fiber-matrix interface can be different than either matrix
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or fiber conductivity [41-44], this value is initially set equal to the thermal conductivity of
the pure matrix.

4. Results and Discussion

In this section, the effects of volume fraction, self-heating, strain rate, and interface
conductivity on the thermomechanical behavior of the material are numerically investigated
by varying the parameters controlling the aforementioned properties. Before this can be
reliably done, however, the optimum size of the RVE must be verified.

4.1. Optimal RVE Size for Reliable Coupled Thermomechanical Analysis

Since previous works did not include TPBCs and a self-heating-enabled matrix model,
the optimum size of the RVE (30 to 50 fibers [4-6]) must be re-evaluated. This is done by
keeping the basic material properties for the RVE constant (described in Section 3) while
multiple RVEs with different volume fractions and number of fibers are generated. Five
different random arrangements were generated with four volume fractions (30%, 40%,
50%, 60%) and five amounts of fibers (4, 8, 16, 32, 64). This results in a total of 100 models
which were mechanically loaded with a strain rate of 1.0 s~! This strain rate is chosen such
that a moderate amount of heating would be generated inside the matrix. This is key to
ensuring a fully thermal coupled regime [31]. The models are strained up to 5%. This is
a high transverse strain for UD composites. Upon comparing experimental results, the
failure strain is limited to 2.5% for a dry-conditioned C/PA6 at room temperature and
quasi-static strain rate [28]. Based on this, one could argue that any result beyond 2.5%
strain is irrelevant. However, under the influence of temperature and humidity, the matrix
can become softer, which could result in an increased strain at failure. To anticipate this, 5%
of transverse strain is considered a reasonable value. To determine the minimum number
of fibers, the homogenized stress-strain and temperature-strain curves for each volume
fraction are compared amongst each other. This is illustrated in Figure 4 for the volume
fraction of 50%. It can be seen that, by increasing the number of fibers, the homogenized
stress-strain response of the RVEs tends towards the lower stress bound. From 32 fibers
and higher, the scatter in the stress-strain curves is sufficiently small.

Fiber volume fraction 50%, strain rate = 1.0 [-/s]

150 _. ................ e, ._,,,.—-_-_-:"“.""__:'—_- 29 )
: ! = : ]
: : == _ H fibers
P, Al : 128 4
: - i —
T 100 F e f O g7 O === 8
= : s : > T fibers 1 a
A 5 5 ~ S ereeeenes 16
e 7 : : # 26 5
° : : : ] = ———— 32
B0 frerrrreenne T — ................. .............. ] 25
H : : ] —_—— 54
: 24
0 | : AU l L . 1 S 23
0.00 0.01 0.02 0.03 0.04 0.05
gy [

Figure 4. Homogenized stress-strain response for the models with 50% volume fraction and different
amounts and arrangements of fibers.

As such, it is concluded that a minimum amount of 32 fibers is sufficient to result in a
converged homogenized behavior.

Another observation is that the double yield phenomenon present in the matrix
material, Figure 3, is obscured in the homogenized behavior of the RVE. The latter could
be an issue for works where the matrix properties in an RVE are reverse engineered from
macromechanical experimental testing of the composite material, as this behavior, if it
should occur, would not be visible in these curves.
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In the next sections, the influence of volume fraction, strain rate, self-heating, and
interface conductivity is studied in detail. For this, it is not necessary to run all variations
on each of the remaining 40 models (32 fibers and up) since these would give similar results.
Therefore, only one representative RVE with 32 fibers is selected for each volume fraction.

4.2. Effect of Volume Fraction

The influence of volume fraction on the homogenized stress-temperature-strain for a
load rate of 1.0 s~! is illustrated in Figure 5. It can be concluded that an increasing fiber
volume fraction results in a higher stiffness of the material as well as higher yield stress
and lower yield strain. The latter is generally expected.

Homogenized, strainrate = 1.0 [-/s]

140 —
120}
100} VA. [%]30
g sof £
s Tl g T 40
- £
b;: 60: _ R 50
40 Y4 ————— 60
20f:

0
0.00 : 0.02
&y [-]
Figure 5. Homogenized stress-strain and temperature-strain with volume fraction.

What might be surprising is that the temperature rise in the RVE, although limited
for the strain rate of 1.0 s~ !, increases with higher fiber volume fraction. To result in an
average increased temperature with increased fiber volume, the remaining matrix must be
exponentially heating up. This indicates a significant increase in plastic dissipation in the
matrix material for the same homogenized strain level. The latter can be seen in Figure 6
where the temperature distribution for the RVEs with 30% and 60% volume fraction at the
same total strain is shown.

* 1t

TEMP

(hvg: 75%)
+2.700e+01
+2.6672+01
+2.6338+01
+2.600e+01
+2.567e+01
+2.533e+01
+2.500e+01
+2.4672+01
+2.4338+01
+2.400e+01
+2.367e+01
+2.333e+01
+2.300e+01

(a) (b)

Figure 6. Temperature distribution for the RVEs with Vf. = 30% (a) and 60% (b) at a € = 0.043
andé=1s"1.
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ayy [MPa]

ayy [MPa]

Note that both the matrix and the fiber temperature are higher for the volume fraction
of 60%, indicating that the heat transfer from matrix to fibers is occurring as well. Clearly,
the amount of self-heating, since it is related to the rate-dependent plastic dissipation
influencing the matrix stiffness, has an effect on the global stress strain behavior at multiple
strain rates.

4.3. Effect of Self-Heating and Strain Rate

To study the influence of self-heating, a comparison is made between the cases where
self-heating is disabled and enabled. With no self-heating, Equation (10) is deactivated,
which effectively results in an RVE where the temperature remains constant at 23 °C during
the entire loading. At the same time, to study the influence of strain rate, the global strain
rate on the RVEs is varied between 1074 s71,1072s7 1,151, and 100 s 1. Figure 7 shows
the resulting homogenized stress-strain behavior for all the studied volume fractions. This
figure clearly shows that the self-heating of the matrix softens the visco-plastic response.
Generally, the amount of softening increases with increasing volume fraction and increasing
strain rate.

T

1201 —

100 -

No heating

Self-heating

Homogenized, Vf. 30% Homogenized, Vf. 40%
T T H T T T

1205 = No heating

Self-heating

100}

80

6oL

ayy [MPa]

Strain rate [-/s]
........ 0.0001 |..4

aof ooco1 ]

................ 1. - 20:

(L) —

oo

i i i £ H i L H E
0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05

gy -1 (b) gy -1

Homogenized, Vf. 50%
1s0p Ottty ot

120}

No heating

Self-heating

[ | == No heating

L | — seir-heating

100

dyy [MPa]
&,
S,
N,
%

R

0.0001 [

0.01

0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05

gy [-] (d) gy -]

Figure 7. Homogenized stress-strain for the fiber volume fraction of 30% (a), 40% (b), 50% (c), and
60% (d) at several strain rates.

It is remarkable that considerable softening is also observed for the lowest strain rate of
10~% 571, despite that the global heating of the material is quite limited. The latter suggests
that the effect of the local heating of the matrix between the fibers can be significant, even
at quasi-static strain rate. The phenomenon becomes more prominent with increasing
volume fraction and increasing strain rate. For example, in Figure 7a, the loss is moderate
for every strain rate at a fiber volume fraction of 30%. At the same time, as shown in
Figure 7d, the response is catastrophic for the load carrying capability of the material at
the volume fraction of 60% and the highest strain rate. Despite the loss of strength in this
case, it is observed that the homogenized temperature at the strain rate of 100 s ! is just a
few degrees (Figure 8). To result in such a significant stiffness loss, the local heating of the
matrix must, therefore, be significant.
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Figure 8. Effect of strain rate on homogenized stress-temperature-strain for Vf. 60%.

The latter is confirmed in Figure 9, where the temperature distribution in the matrix
for the RVE with the volume fraction of 60% for the same homogenized strain level is
compared between the strain rate of 1 s~! and 100 s~!. It can clearly be seen that, for
the high strain rate case, a horizontal band with elevated temperature in the matrix is
generated. In this band, the matrix has significantly softened, leading to unloading of the
other parts in the RVE, while the hot band takes up the remaining deformation.
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Figure 9. Temperature distribution for the RVEs with Vf. 60% at a strain of 0.037 [-]. strain
rate 1. [s~1] (a) and 100. [s~1] (b).

This result shows that not only microcracks but also matrix softening from self-heating
might produce a substantial loss of material strength. This might happen, especially in
the case when a matrix material with significant self-heating behavior is used. For the
PA6 matrix material used in this work, self-heating is confirmed in [45]. For engineering
purposes, it can be interesting to determine the threshold where local thermal softening
induces premature failure in the UD FRP. For this, one would have to match the strain rate
at which thermal softening induces premature failure in the pure matrix to the strain rate
occurring locally in the matrix pockets of the UD FRP. Although the authors stress that, in
reality, one would also have to account for the occurrence of matrix cracks, this method can
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give a fast indication as to whether thermal softening should be taken into account for the
particular application.

4.4. Effect of Interface Conductivity

The effect of the conductivity of the fiber-matrix interface is investigated by modifying
its value between 0 Wm~'K~! and 1.256 Wm~'K~!. The latter corresponds to the trans-
verse thermal conductivity of the carbon fibers (Table 1). This range also covers the thermal
conductivity of the matrix (0.125 Wm~1K™1).

Figure 10 shows the homogenized stress-strain response of the RVE for the volume
fraction of 50%. The results for the other volume fractions are similar. In the figure, it can be
seen that the thermal conductivity of the interface has a limited effect on the homogenized
response. Only when the thermal conductivity of the interface is lower than the one from
the matrix, a difference can be observed for strain rates lower than 1 s~1. An additional
softening is observed, which can be explained by the obstruction of heat flow to the fiber
material, resulting in an elevated heating and softening of the matrix. The effect increases
with an increasing volume fraction of the material. In reality, it is unlikely that the thermal
conductivity of the fiber-matrix interface would be lower than that of the matrix. This
would only occur if there were defects present, e.g., air pockets or debonding, which can
obstruct heat flow. The latter is not expected in a well-designed and undamaged FRP
material. Therefore, the effect of the conductivity of the fiber-matrix interface is not of
primary concern in the thermomechanical modeling of RVEs.
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Figure 10. Effect of fiber-matrix interface conductivity on homogenized stress-strain at multiple strain
rates for a volume fraction of 50%.

5. Conclusions

In this work, the effect of self-heating from the visco-plastic behavior of the matrix
material in continuous fiber-reinforced thermoplastic composites is investigated using
micromechanical modeling. A representative RVE of Carbon/PA6 UD composite material
is constructed with the Finite Element Method. Several random fiber distributions and vol-
ume fractions are generated. Hereby, the PA6 matrix constitutive behavior is modeled with
an improved representation of the double-yield phenomenon considering a temperature-
dependent visco-plastic response, including self-heating and thermal softening effects. The
micro RVE model accounts for both mechanical and thermal periodic boundary conditions.
The effect of self-heating is investigated by applying several strain rates and modifying
the parameters that govern the self-heating behavior and the interface conductivity. In
summary, the following conclusions can be drawn:

e 32 fibers are sufficient to provide a converged homogenized thermomechanical re-
sponse of an RVE with volume fractions ranging between 30% and 60%.
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e  The double-yield phenomenon, observed in stress-strain curves of semi-crystalline
polymers, is concealed in the homogenized behavior of the composite material.

e  Localized highly strained matrix regions can be present with significant self-heating.
Although they do not notably increase the homogenized temperature of the RVE,
the self-heating can be significant, leading to premature plastic-like failure of the
material. The lack of visibility in the homogenized temperature also indicates that
this phenomenon will be very hard to measure experimentally since it happens on a
microscopic scale.

e  The effect of the conductivity of the fiber-matrix interface is limited to cases where
the conductivity is lower than the conductivity of the matrix. Since this is an unlikely
scenario, the influence of this parameter is of secondary importance.

This work shows that matrix self-heating and its associated softening can have a
significant influence on the mechanical behavior of fiber reinforced thermoplastic materials.
Up to now, this effect has not been thoroughly investigated in relation to strain rate, volume
fraction and thermal conductivity of the fiber-matrix interface. This work provides a further
basis for the investigation of the macroscopic behavior with micromechanical modeling for
other loading directions, such as shear loading, and including additional phenomena, such
as fiber-matrix debonding, fiber failure and matrix failure.

The results of this study can be limitedly projected on UD FRP with other combinations
of fibers (glass, boron, polyimide) and matrix (PP, PET). It is expected that, for fibers with a
lower transverse thermal conductivity than carbon fibers, the self-heating effect is more
significant because the generated heat in the matrix will be more confined. The fiber
diameter might also have an effect. For this, the authors cannot foresee the outcome. The
latter will be the subject of future work.
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