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Introduction
Acute myeloid leukemia (AML) is a molecularly and clinically 
heterogeneous disease (1). We recently identified BM microen-

vironmental transcriptomic profiles that stratify patients with 
newly diagnosed AML into immune-infiltrated and immune-de-
pleted subtypes and that refine the accuracy of overall survival 
(OS) prediction beyond that afforded by current prognosticators 
(2). Several aspects of T cell derangement affect AML response to 
standard-of-care chemotherapy, molecularly targeted therapies, 
and immunotherapies (2–7). In this respect, IFN-γ–related RNA 
profiles in baseline BM samples predict response of chemothera-
py-refractory AML to CD123×CD3-bispecific molecules (2, 8).

The degree of cytotoxic CD8+ T cell infiltration has been 
shown to correlate inversely with OS in select tumor types, includ-
ing AML, because of the establishment of highly dysfunctional 
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be functionally dissimilar (13). Exhausted T cells 
express inhibitory receptors, including PDCD1 
(encoding PD-1), CTLA4, HAVCR2 (encoding 
TIM3), CD160, and 2B4 (encoding CD244), and 
display an impaired ability to secrete effector cyto-
kines and to exert cytotoxic functions. Senescent T 
cells downregulate costimulatory molecules CD27 
and CD28, express senescence-associated surface 
markers B3GAT1 and KLRG1, as well as MAPK p38 
and γ-H2AX intracellular molecules, remain meta-
bolically active and continue to secrete proinflam-
matory cytokines (14, 15), but their cytotoxic antitu-
mor activity is unclear. While more is known about 
the role of T cell exhaustion in immunotherapy 
responses, the contribution of T cell senescence to 
anticancer immunity is less understood (13).

In the current study, we characterized how leuke-
mia promotes the generation of senescent-like CD8+ 
T cells and their prognostic relevance in patients 
with AML. We hypothesized that elucidation of an 
immune senescence transcriptional signature in the 
BM of newly diagnosed AML could both identify 
individuals who are more likely to respond to immu-
notherapy and predict outcomes. We generated 
RNA expression data sets from patients treated with 
conventional cytotoxic chemotherapy or with the 
hypomethylating agent azacitidine (AZA) in combi-
nation with immune checkpoint blockade (ICB) with 
pembrolizumab (a monoclonal antibody targeting 
PD-1) (designated as AZA+Pembro). We integrated 
these with publicly available gene expression data 
from multiple cohorts of children and adults with 
AML to validate our RNA metric of immune effector 
dysfunction (IED), and we analyzed BM samples col-
lected longitudinally at the time of AML onset and 
response assessment (Figure 1 and Supplemental 
Figure 1; supplemental material available online with 
this article; https://doi.org/10.1172/JCI159579DS1). 
The derived gene signatures of IED correlated with 
molecular features of leukemia stemness and with 
distinct clinical characteristics. IED gene sets served 
as a reliable biomarker to stratify OS after standard-
of-care therapy and ICB, both in AML and in mela-
noma (a paradigm for successful immunotherapy 
actualization) (16, 17).

Results
Functional and transcriptional signature of T cell senescence in AML. 
AML blasts are known to be an extrinsic modifier of T cell respons-
es (18–21). Initially, we aimed to experimentally evaluate whether 
AML blasts affect T cell proliferation, activation, and expression 
of phenotypic markers of senescence through direct contact or by 
secreting soluble mediators. Flow cytometry–sorted BM T cells 
and AML blasts from newly diagnosed patients were cocultured, 
either in direct contact or separated by Transwell inserts, and 
stimulated as previously described (10). We found that AML blasts 
induced expression of 2 well-characterized senescence markers,  

T cell states (2, 9). Phenotypic and transcriptomic analyses have 
shown that CD8+ T cells from patients with AML exhibit features 
of exhaustion and senescence. These studies have identified 
a gene signature that diverges between responders and nonre-
sponders to chemotherapy, with the former exhibiting upregula-
tion of costimulatory pathways and downregulation of apoptotic 
and coinhibatory T cell signaling pathways (10).

Exhaustion and senescence are dominant dysfunction-
al states of effector T cells that are increasingly recognized as 
major hurdles for the success of cancer immunotherapy (11, 
12). Senescence and exhaustion share properties, but they may 

Figure 1. Study workflow. Immune Signature Data Base (100); IED, immune effector  
dysfunction; NES, normalized enrichment score; FDR, false discovery rate; SOC,  
standard of care.
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T cells and those accumulating after chemotherapy might contrib-
ute to poor clinical outcomes.

Transcriptional profiling of the tumor microenvironment 
(TME) has been used to identify immunological signatures, char-
acterize biological processes, and develop predictors of protective 
immunity (25, 26). We therefore sought to derive gene expression 
signatures of T cell senescence in the AML BM microenviron-
ment. We compiled a manually curated senescence-related gene 
set that encompassed KLRG1, CD57 and other senescence mark-
ers (KLRC1, KLRC3, KLRD1, KLRF1, and CD158A) previously 
shown to be expressed by circulating CD8+ T cells from patients 
with AML (10) and to be upregulated on senescence-like T cells 
(27) and on dysfunctional chimeric antigen receptor (CAR) T cells 
(28). We used RNA-Seq data and related clinical information from 
the TCGA-AML and Beat-AML Master Trial (hereafter Beat-AML) 
cohorts (n = 157 and n = 264 unique patients, respectively) and cor-
related the expression of genes in the immunosenescence signa-
ture with markers of immune cells and leukemia blasts.

We found a positive correlation between immunosenescence 
genes and T cell markers — but not with markers of AML blasts 
(CD34, CD38, IL3RA, KIT), or with markers of accessory cells of 
the monocyte/macrophage lineage (CD14, CD68, CD163; Figure 2, 
E and F). The clustering of T cell exhaustion and senescence-asso-
ciated genes is consistent with our previous flow cytometry studies 
(10), suggesting that T cells in the AML microenvironment exhibit 
features of both biological processes (13). Overall, the above find-
ings indicate that cellular and transcriptional signatures of CD8+ T 
cell senescence are present in newly diagnosed AML patients, and 
that the abundance of senescent-like T cells may correlate with 
antileukemia responses and OS after induction chemotherapy.

Identification of a BM IED signature in 2 discovery AML 
cohorts. We hypothesized that probing ImmuneSigDB (https:// 
immunespace.org/announcements/home/thread.view?rowId=50) 
gene sets within the BM microenvironment might reveal core 
biological processes involved in antitumor immune responses 
and in therapeutic outcomes. To this end, both TCGA-AML and 
Beat-AML cases were split into quartiles based on average expres-
sion levels of the 7 T cell senescence-associated genes. Gene set 
enrichment analysis (GSEA) was used to identify core gene sets 
accounting for the enrichment signal in immunosenescencehi 
(highest quartile) versus immunosenescencelo cases (lowest quar-
tile). Among the 4,872 curated gene sets from the ImmuneSigDB, 
only gene sets with a FDR of less than 0.05 and a normalized 
enrichment score of more than 2.0 (n = 123 and n = 126 gene sets at 
the intersection of TCGA-AML and Beat-AML cases, respectively) 
were carried forward for leading-edge analysis. We reasoned that 
those genes contained in the leading edge would represent bio-
logically related genes enriched for a phenotype of interest (29). 
This analysis identified 172 genes that are common to multiple 
significantly enriched ImmuneSigDB gene sets and that contrib-
ute most to the enrichment signal (Supplemental Figure 3A and 
Supplemental Table 2). The uniform manifold approximation and 
projection (UMAP) of single-cell RNA-Seq (scRNA-Seq) data from 
8 patients in the Institute for Molecular Medicine Finland (FIMM) 
AML cohort (30) revealed that naive, central memory and effector 
memory CD4+ and CD8+ T cells, regulatory T cells, and NK cells 
were highly enriched in this signature (Supplemental Figure 3, B 

CD57 and γ-H2AX, on AML CD8+ T cells in both experimental 
conditions. Consistent with previous observations (10), direct con-
tact of AML blasts with T cells resulted in decreased expression of 
activation/proliferation markers CD25, ICOS, and Ki-67 (Figure 
2A). However, when T cells were separated from AML blasts by a 
Transwell insert, the expression of activation markers (CD25 and 
ICOS) and Ki-67 equaled that of CD8+ T cells stimulated in the 
absence of AML blasts. These findings suggest that interactions 
between leukemia blasts and T cells occurring in the local milieu 
impair T cell activation through direct contact and that induction 
of senescence markers occurs primarily through bystander modu-
lation. These effects seem to be AML blast–specific, since cocul-
ture with monocytes from healthy donors did not affect any of the 
markers examined (Figure 2B).

Given the high frequency of senescent-like T cells in the BM 
of patients with AML (10), we next investigated in vitro cytotox-
icity of flow-sorted, BM-derived senescent-like (CD3+CD8+CD57+ 

KLRG1+) and nonsenescent (CD3+CD8+CD57–KLRG1–) T cells 
against autologous AML blasts using an anti–CD3/CD33 bispe-
cific T cell engaging (BiTE) antibody construct (22, 23). As shown 
in Figure 2C, senescent-like T cells were significantly impaired 
in their ability to lyse AML blasts compared with their nonsenes-
cent counterparts. These findings could explain the inferior kill-
ing ability of the CD3/CD33 BiTE construct when using patient T 
cells versus those of healthy controls (24). Analysis of 43 patients 
with newly diagnosed AML (JHU1 cohort; Supplemental Table 
1) also revealed that a higher proportion of senescent-like (CD3+ 

CD8+CD57+KLRG1+) T cells in baseline BM samples was associ-
ated with significantly worse OS (P = 0.004) after treatment with 
standard chemotherapy (Figure 2D; optimal cut-point of CD3+ 

CD8+CD57+KLRG1+ T cells = 31.9%). Senescent-like T cells mea-
sured at time of response assessment in 22 patients from the JHU1 
cohort who achieved a CR also correlated with shorter OS (Supple-
mental Figure 2), suggesting that both preexisting senescent-like 

Figure 2. Markers of T cell senescence correlate with impaired T cell 
killing and poor clinical outcomes. (A) Flow-sorted AML blasts were cocul-
tured with autologous, patient-derived CD8+ T cells (n = 13 patients) for 5 
days. Data were compared using the Kruskal-Wallis test. TW = Transwell 
insert; BL = AML blasts; Mono = monocytes. (B) Flow-sorted healthy- 
donor monocytes were cocultured with patient-derived CD8+ T cells (n = 9 
patients) for 5 days. (C) In vitro killing of primary CD33+ CD34+ AML blasts 
(n = 10 patients) after 48-hour culture with autologous, flow-sorted T 
cells in the presence of anti-CD33/CD3 and control bispecific T cell engager 
(BiTE) antibody constructs (effector/target ratio = 1:5). T cell cytotoxic-
ity was determined by flow cytometry, as detailed in the Supplemental 
Methods. (D) Kaplan-Meier estimates of OS in patients (JHU1 cohort, n = 
43 patients) with senescent T cells above and below the optimal cut point, 
which was computed using the maxstat package in R. Survival curves were 
compared using a log-rank test. Median OS is indicated (color-coded by the 
optimal cut point of the proportion of CD3+CD8+CD57+KLRG1+ T cells). (E 
and F) Correlograms showing coexpression of NK and T cell markers in (E) 
TCGA-AML and (F) Beat-AML cases. The correlation matrix was reordered 
using the hclust function. Rectangles were drawn based on the results of 
hierarchical clustering (Euclidean distance, complete linkage). Inhibitory 
receptors (CD244, BTLA, CD160, TIGIT, LAG3, and PDCD1) are highlighted 
in red. NK cell, T cell, monocyte-macrophage (CD14, CD68, and CD163), and 
AML-associated markers (CD34, IL3RA, KIT, and THY1) were selected by 
integrating knowledge from multiple publications (10, 25, 101).
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and C). These findings were further validated in an independent 
single-cell RNA-Seq cohort from van Galen et al. (31) (Supple-
mental Figure 4 and Supplemental Figure 5). When mapping gene 
expression to an integrated scRNA-Seq data set including BM 
NK cells from healthy controls (32) and from patients with FIMM 
AML, we found that the 172 genes were predominantly expressed 
by functionally matured and adaptive NK cells (Supplemental Fig-
ures 6 and 7; marker genes from Yang et al., ref. 32 are provided 
in Supplemental Table 3). However, abnormalities — most often, 
RNA upregulation and/or gene amplification — in the top 15 genes 
defining the mature NK cluster, but not the adaptive NK cluster, 
were associated with worse survival in the TCGA-AML cohort 
(Supplemental Figure 7).

Flow cytometric and bulk RNA-Seq studies have suggested 
that features of cellular senescence are manifested by T cells in 
all differentiation states (27, 33). The 172 genes showed broad 
transcriptional overlap among multiple effector subsets and were 
enriched in markers associated with T and NK cell recruitment 
(CXCR3, CCR7, CXCR6), dysfunction and/or exhaustion (ID3, 
EOMES, and SLAMF6) (28), and senescence (SESN3, IFNG, and 
ETS1) (27). We hereafter refer to this IED gene set as the IED172 
signature. The IED172 genes were nonredundant with knowl-
edge-based transcriptional signatures of T cell exhaustion, CAR T 
cell dysfunction (28), solid tumor response to ICB (Supplemental 
Figure 8A and Supplemental Table 4) (34, 35), and IFN-γ–related 
RNA profiles carrying prognostic significance in AML (Figure 3A) 
(2). The semantic similarity between IED172 genes in the context 
of their chromosomal location is shown in Figure 3B. No genes in 

the IED172 signature were on chromosome 7, the loss of which 
has been associated with failure to respond to PD-1 blockade (36). 
Furthermore, IED172 genes were enriched in Kyoto Encyclopedia 
of Genes and Genomes pathways related to T helper differentia-
tion, T cell receptor (TCR) signaling, and T and NK cell–mediated 
cytotoxicity (Supplemental Table 5), as well as miRNAs implicated 
in cancer immune escape and immune metabolism (37–39) (Sup-
plemental Figure 8, B and C). Using a broad collection of immune 
gene sets (40–43), we found that IED states correlated with lym-
phoid cells, CD8+ T cell and NK cell infiltration, the tumor inflam-
mation signature score, and immune checkpoints TIGIT, CTLA4, 
and PD-L1 (Figure 3C). A principal component analysis with the 
dependent variables of publically available immune signatures 
and PARADIGM-integrated pathways further supported the 
association between IED states and immune infiltration. It also 
identified T cell and B cell scores, STAT1 signaling, and stemness- 
related pathways as the top discriminative features (Figure 3D and 
Supplemental Table 6).

We looked for correlations between the IED172 score and 
pretreatment variables in diagnostic samples from the TCGA-
AML and Beat-AML cohorts (Supplemental Table 7) (46). We 
found that the IED172 score did not correlate with patient age at 
diagnosis, 2017 European LeukemiaNet (ELN; https://www.leu-
kemia-net.org/home/) risk category, or mutation count (Supple-
mental Figure 9, A and B), and that it was higher in AML cases 
with low leukemia burden (Figure 3, E and F) or in those harbor-
ing TP53, RUNX1, ASXL1, and RAS mutations (Figure 3G). These 
findings are consistent with previous reports on the immune 
landscape of TP53- and RUNX1-mutated AML (47, 48) and on the 
inverse correlation between immune infiltration and percentage 
of blasts, i.e., tumor purity (49). The analysis of Beat-AML cases (n 
= 264, of which 195 have chemotherapy-response data) revealed 
significantly higher IED172 scores at baseline in patients with pri-
mary induction failure (PIF; n = 63) compared with those achiev-
ing complete remission (CR; n = 132; P = 0.0044; Supplemental 
Figure 10, A and B). When analyzing matched samples collected 
at baseline and after induction chemotherapy (available only for 
13 patients in the Beat-AML series), we found that the IED172 
score was significantly higher in BM samples obtained at the time 
of response assessment — CR with measurable residual disease 
and relapse — compared with the baseline (P = 0.0046; Sup-
plemental Figure 10, C and D). Immune cell type deconvolution 
with quanTIseq, which estimates an absolute score and therefore 
allows inter-sample comparisons (50), showed lack of statistical-
ly significant differences between baseline and post-chemother-
apy samples (Supplemental Figure 10, E and F), suggesting that 
increased IED scores do not merely reflect a larger fraction of T 
and NK cells after treatment. When analyzing scRNA-Seq pro-
files of 11 patients with AML from van Galen et al. (31) for whom 
serial BM samples were available, we observed significantly high-
er IED172 scores after chemotherapy, both in responders and in 
nonresponders (Supplemental Figure 11, A–C).

IED scores correlate with transcriptomic features of AML stem-
ness and stratify survival. The 17-gene leukemia stem cell (LSC17) 
score has previously been associated with poor clinical outcomes 
and with TP53 and RUNX1 mutational status in de novo AML (51, 
52). The LSC17 score discriminated survival outcomes in TCGA-

Figure 3. Signatures of immune effector dysfunction correlate with 
immune infiltration and with adverse-risk molecular features in the 
TCGA-AML and Beat-AML cohorts. (A) Overlap between the IED172 
signature genes from this study and published signatures that predict 
chemotherapy refractoriness as well as response to bispecific T cell 
engagers (2). IFN, interferon; IED, Immune effector dysfunction. (B) 
Semantic similarity between the IED172 genes in the context of their 
chromosomal location (XGR [eXploring Genomic Relations] web tool [ref. 
102]). The degree of similarity between genes is visualized by the color of 
the links, with light yellow representing a low degree of similarity and red 
representing more. The chromosomal locus of each gene is indicated by 
the numbers and colors along the outer rim of the diagram. GO:MF, gene 
ontology molecular functions. (C) Correlation between the IED172 score 
and previously published immune traits (n = 45) (2, 42) in TCGA-AML (n = 
157 patients). Signature scores are available through the original publica-
tions. (D) Correlation between the IED172 score and previously published 
immune traits and PARADIGM scores (n = 68; downloaded from the UCSC 
Xena data portal [https://xenabrowser.net/datapages/]; refs. 40, 44). The 
principal component analysis (PCA) plot was generated using the ggfortify 
and ggplot2 R packages. The top contributors to the first and second PC (n 
= 20) are shown as a bar graph. The dotted reference line in the bar graph 
indicates the expected value if the contribution were uniform. Any feature 
above the reference line can be considered as important in contributing 
to the dimension. (E) IED172 scores and percentage of blasts at diagnosis 
in TCGA-AML cases. Data were compared using the Mann-Whitney U test 
for unpaired determinations. PB = peripheral blood. (F) IED172 scores and 
leukemia burden at diagnosis in Beat-AML cases (n = 264). Data were 
compared using the Mann-Whitney U test for unpaired determinations. 
(G) Stacked bar graph showing the proportion of IED172hi and IED172lo cases 
harboring mutations of TP53, RUNX1, ASXL1, DNMT3A, NPM1, and FLT3–
internal tandem duplication (ITD). Mut, mutated.
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AML and in Beat-AML patient cohorts (Supplemental Figure 12, 
A and B). The LSC17 score was not colinear with previously pub-
lished immune cell type–specific gene signatures (42), immune 
checkpoints, and IFN-γ–related gene programs (Figure 4A) (53), 

and it was significantly higher in samples with above-median 
IED172 scores (Figure 4B). This finding was corroborated using 
xCELL, a single-sample GSEA-based tool that infers cellular con-
tent in the TME (Figure 4C) (54). When patients were stratified 

Figure 4. Covarying gene programs of immune effector dysfunction and stemness in the TCGA-AML cohort. (A) Pairwise correlation between transcrip-
tomic traits of immune infiltration and LSC17/IED172 scores. Nonsignificant P values are shown as blank boxes. Modules, including traits that are densely 
connected (hubs), are identified based on hierarchical clustering (Euclidean distance, complete linkage) and are shown in black boxes. The IED172 and 
LSC17 scores are highlighted in red. IED, Immune effector dysfunction. (B) LSC17 score in IED172hi and IED172lo TCGA cases (n = 157; median split). Data were 
compared using the Mann-Whitney U test for unpaired determinations. (C) Inferred relative frequency of hematopoietic stem cells (HSCs) in patients with 
IED172hi or IED172lo, as estimated by xCELL (54). Precalculated TCGA scores were downloaded from https://xcell.ucsf.edu/. (D) Kaplan-Meier estimates of 
overall survival (OS) in patients with IED172hi with above-median and below-median LSC17 scores. Survival curves were compared using a log-rank test. HR, 
hazard ratio. (E) Kaplan-Meier estimates of OS in patients with IED172lo with above-median and below-median LSC17 scores.
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tal Figure 13C) and was an independent predictor of OS with an 
area under the receiver operating characteristic (AUROC) value 
of 0.911 in the TCGA-AML cohort (Figure 5A and Supplemental 
Figure 13D). In multivariable analyses controlling for tumor purity 
— based on the percentage of BM blasts — and for patient age, the 
PI24 score was a more powerful predictor of OS than the LSC17 
score (52), the IFN-γ–related score (2), and other established AML 
prognosticators, including FLT3-ITD and NPM1-mutational status 
at diagnosis (Figure 5B). On stratifying patients above or below the 
median PI24 scores, we found that subjects with an above-median 

into IED172hi and IED172lo groups, the LSC17 score continued to 
predict OS (Figure 4, D and E).

To determine the parameters most predictive of OS in the 
IED172 signature, we used the least absolute shrinkage and selec-
tion operator (LASSO) statistical method to fit an L1-regularized 
linear model (55) that revealed a parsimonious set of 24 genes 
(Supplemental Table 2). We then generated a prognostic index 
(PI) using β values from Cox regression analyses of gene expres-
sion and OS (Supplemental Figure 13, A and B) (56). The 24-gene 
PI (PI24) scores inversely correlated with OS time (Supplemen-

Figure 5. Predictive ability of immune effector dysfunction gene programs in the TCGA-AML cohort. (A) Area under the receiver operating characteris-
tic (AUROC) curve measuring the predictive ability of the prognostic index (PI24) genes for overall survival (n = 157 TCGA cases). (B) Forest plot (ggforest 
function in survminer package in R) of pretreatment features (WBC count at diagnosis, percentage of bone marrow blasts, FLT3-ITD and NPM1 mutational 
status, patient age at diagnosis), and RNA-based scores associated with survival in multivariate Cox proportional hazard analyses (PI24, LSC17, and IFN 
scores; refs. 2, 47, 52). HR = hazard ratio for death. (C) Kaplan-Meier estimates of relapse-free survival (RFS) in patients with TCGA-AML with above- 
median and below-median PI24 scores, which were calculated using β values from Cox regression analyses of gene expression and patient survival (56). 
Survival curves were compared using the log-rank test. (D) Kaplan-Meier estimates of OS in TCGA-AML patients with above-median and below-median 
PI24 scores. Survival curves were compared using the log-rank test.
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natures (Supplemental Table 2). Both the IED172 and the IED68 
signatures showed enrichment in genes with annotated functions 
in cytokine and chemokine signaling, TCR signaling, costimula-
tion by the CD28 family, and PD-1/PD-L1 immune checkpoints in 
cancer (Figure 6A). As shown in Figure 6B and in agreement with 
earlier analyses, the IED68 signature was enhanced in tumors 
that were infiltrated with CD8+ and NK cells, characterized by the 
expression of inhibitory molecules, and inversely correlated with 
leukemia burden (Figure 6C). Overlaying the IED68 transcription-
al signatures onto the UMAP of scRNA-Seq data from Dufva et al. 
(Supplemental Figure 18; ref. 30) and from van Galen et al. (Sup-
plemental Figure 19, A and B; ref. 31) revealed that, similar to the 
IED172 score, the IED68 gene set largely mapped to cytotoxic T 
lymphocyte (CTL) and NK cell clusters, both in AML samples and 
in BM specimens from healthy controls.

Using LASSO-penalized regression for feature selection and 
colinearity reduction, we identified 20 genes in the NanoString 
IED68 signature that were most predictive of OS and that showed 
minimal overlap with the PI24 genes (Supplemental Figure 13B). 
We therefore computed a 20-gene PI (PI20) using gene expression 
values and β coefficients previously derived from Cox proportion-
al hazards (PH) models of the TCGA-AML discovery cohort. The 
PI20 score was associated with PIF in response to standard che-
motherapy (Figure 6D) and with significantly shorter RFS and OS 
in the PMCC cohort (P < 0.001 for both; Figure 6, E and F). Over-
all, the PI20 score predicted OS with greater accuracy (AUROC 
value of 0.847) than the 2017-ELN cytogenetic risk classifier 
(AUROC value of 0.643; Figure 6G and Supplemental Figure 20). 
These observations were validated in an independent AML series 
including participants with PIF, enrolled in the AMLCG-2008 
study (GSE106291; n = 250 patients; Supplemental Figure 21; opti-
mal cut point = 0.1) (57).

Similar to the recently defined IFN-γ gene signature (59), the 
PI20 score significantly separated survival in patients with inter-
mediate and high ELN risk (Supplemental Figure 22A), as well as 
after censoring at the time of hematopoietic stem cell transplan-
tation (Supplemental Figure 22B). The latter finding suggests that 
differences in clinical outcomes between PI20hi and PI20lo cases 
were not merely attributable to treatment intensity.

We calculated the LSC17 score for the PMCC cohort using 
publicly available gene expression data (GSE76004) and the same 
weights as those provided in the original publication (Supplemental 
Figure 23, A and B) (52). In line with TCGA data, the LSC17 score 
separated RFS and OS in both PI20lo and PI20hi cases (Supple-
mental Figure 23, C–F). Specifically, patients with PI20hi, a group 
with a 5-year OS of 11% (Figure 6), were further dichotomized 
into a subgroup of LSC17lo individuals with an improved 5-year 
OS probability of 55% (Supplemental Figure 23F). Furthermore, 
when stratifying patients in the LSC17hi and LSC17lo subgroup by 
the PI20 scores, we identified a subset of LSC17hi participants with 
very-poor-prognosis AML, who had 5-year RFS and OS rates of 
only 10% and 3.5%, respectively (Supplemental Figure 23, G–J).

We formally tested the interaction between senescence- and 
stemness-related pathways by a multiplication term in the Cox PH 
model. As shown by the Wald χ2 statistics (Supplemental Table 8), 
the PI20 score was substantially more predictive of OS (P < 0.001) 
in this modeling framework than the LSC17 score (P = 0.001). In 

PI24 score experienced significantly shorter relapse-free surviv-
al (RFS) and OS (P < 0.0001 for both; Figure 5, C and D). Other 
gene sets related to NK cells and/or capturing cytolytic activity 
and senescence-associated genes enriched in terminally differen-
tiated CD8+ T cells from healthy individuals (27, 30) were unable 
to stratify survival in TCGA cases (Supplemental Figure 14). High 
PI24 scores were also associated with significantly inferior OS 
compared with patients with low PI24 scores in the Beat-AML 
cohort (P = 0.012; Supplemental Figure 15A). In agreement with 
TCGA data, the PI24 score was a good predictor of OS, with an 
AUROC value of 0.805 (Supplemental Figure 15B).

As shown in Supplemental Figure 16, A–D, an optimal PI24 
cut point of 1.73 parsed the TCGA population into subgroups with 
maximally different survival probabilities. Furthermore, patients 
in the highest quartile of PI24 values had poor clinical outcomes 
(1-year RFS and OS rates of 0% and 3%, respectively) compared 
with patients in the lowest quartile (1-year RFS and OS rates of 
74% and 97%, respectively). These findings were validated in the 
Beat-AML cohort (Supplemental Figure 16, E and F; optimal cut 
point = 0.94) and in another large cohort of 562 adult subjects with 
AML treated on the German AMLCG 1999 trial (GSE37642; Sup-
plemental Figure 17, A and B; optimal cut-points for Affymetrix 
series GPL570 and GPL96 = 3.84 and 3.67, respectively) (57).

Validation of IED scores in relation to immune infiltration, stem-
ness, chemotherapy refractoriness, and patient outcome in independent 
AML cohorts. Benefiting from our previous work that harnessed 
large numbers of clinically annotated AML samples (2, 10) and 
with the aim to develop a gene expression assay that can be rap-
idly implemented in clinical practice, we turned to the nCounter 
platform (NanoString Technologies) (52, 58). We initially mined 
our published AML data set (GSE134589; Princess Margaret Can-
cer Center [PMCC] cohort encompassing 290 patients with newly 
diagnosed AML) and identified 68 genes that were shared between 
the RNA-Seq–based IED172 and NanoString panel (IED68) sig-

Figure 6. Immune effector dysfunction scores correlate with immune 
infiltration, stemness, primary induction failure, and patient outcome 
in an external AML cohort. (A) Bubble plot depicting enriched REACTOME 
pathways (https://reactome.org/) in IED172 and IED68 signature genes 
(clusterProfiler package in R), which were ranked based on the gene ratio 
(gene count divided by set size). IED, immune effector dysfunction. (B) 
Correlation between the IED68 score and previously published immune 
traits (n = 45; refs. 2, 42) in the PMCC cohort (n = 290 patients). Signature 
scores are available in the original publications. (C) Correlation between 
IED68 scores and leukemia burden at diagnosis in the PMCC cohort. Data 
were compared using the Mann-Whitney U test for unpaired determina-
tions. BM, bone marrow; PB, peripheral blood. (D) Response to induction 
chemotherapy in patients with above-median and below-median prognos-
tic index (PI20) scores in the PMCC cohort. PIF, primary induction failure 
following a standard 1 or 2 cycles of induction chemotherapy. CR, complete 
remission (defined as <5% BM blasts). (E) Kaplan-Meier estimates of 
relapse-free survival (RFS) in PMCC patients with above-median and 
below-median PI20 scores. Survival curves were compared using a log-rank 
test. HR, hazard ratio. (F) Kaplan-Meier estimates of overall survival (OS) 
in PMCC patients with higher than median and lower-than-median PI20 
scores. Survival curves were compared using a log-rank test. (G) Area 
under the receiver operating characteristic (AUROC) curve measuring the 
predictive ability of the PI20 and the ELN cytogenetic risk classifier for OS. 
CI, confidence interval.
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scores, we generated nCounter gene expression data using seri-
al BM samples from a large number of donors with newly diag-
nosed AML (the Studien Allianz Leukämie [SAL] and Johns 
Hopkins University 2 [JHU2] cohorts), totaling 90 patients and 
183 BM specimens that were longitudinally collected at time of 
diagnosis and response assessment) (Supplemental Table 1). The 
IED68 scores were significantly higher after chemotherapy, both 
in patients who achieved CR and in those who experienced PIF 
or had an early relapse of AML (relapse before 6 months after 
the achievement of CR; Figure 8, A and B). As expected, the PI20 
score separated both RFS (P = 0.011; Figure 8C) and OS (P = 
0.0015; Figure 8D) in this cohort.

Differential expression analysis revealed upregulation of 
genes involved in T and NK cell biology (CD3G, CD8A, CD8B, 
CD28, GZMK, and GZMB), cosignaling molecules (KLRC2, KLRB1, 
TIGIT, CD40L, and ICOS), myeloid (LCN2, LTF, and S100A12) 
and dendritic cell differentiation (CHIT1, CLEC4C), and in che-
moattraction (CXCL5, CXCL12, CCL2, PPBP, and XCL2) after 
chemotherapy (Figure 8E). As expected, genes associated with 
AML proliferation (FLT3, KIT), leukemia stem cells (CD34, CD38, 
and IL1RAP), and candidate genes overexpressed in AML (CD99, 
CD200, and LAMP2) were downregulated after chemotherapy, 
consistent with recent scRNA-Seq and immunohistochemistry 
data (31). GSEA on the C2 (curated) and C7 (immunologic signa-
ture) gene sets from the MSigDB revealed overrepresentation of T 
cell subsets, NK cells, and antigen-presenting cell signatures (Fig-
ure 8F) and clearance of leukemia signatures after chemotherapy 
(Supplemental Figure 24A). Furthermore, oncogenic pathways 
were downregulated, while immune signatures were enriched at 
time of response assessment (Supplemental Figure 24B).

IED genes define ICB-unresponsive TMEs in AML. We assessed 
the relevance of IED scores in relation to therapeutic response 
to ICB. We profiled primary BM samples from 33 adult patients 
with newly diagnosed or relapsed/refractory AML who were 
treated with AZA+Pembro (ClinicalTrials.gov NCT02845297); 
Supplemental Table 9; GSE178926). We examined differential-
ly expressed genes (DEGs) at baseline between patients who 
subsequently achieved CR and those who were nonresponders. 
Using unsupervised hierarchical clustering of DEGs (Figure 7A), 
we observed 2 patient clusters. Cluster 1 (C1 in Figure 7A) was 
enriched for patients who achieved CR (approximately 63%) and 
for patients with PI20 scores below the median (approximately 
63%). In contrast, only approximately 14% of patients in Cluster 
2 (C2 in Figure 9A) achieved CR, and approximately 21% of them 
had below-median PI20 scores (AUROC = 0.823; Figure 9B). 
Notably, patients with low PI20 scores experienced prolonged OS 
(median of 15.6 months compared with 4.1 months in patients with 
high PI20 scores; P = 0.01; optimal cut point = 2.44; Figure 9C). 
We also observed heightened expression of type I and type II IFN 
signaling genes (IRF8, IFNA1, IFNA17, CXCL10, and CCL20) in 
the PIlo group, prompting us to examine the ability of a published 
IFN signature to predict OS (2). As shown in Figure 9D, high IFN 
scores were associated with prolonged OS (P = 0.01; optimal cut-
point = 6.39). The analysis of scRNA-Seq data from 8 patients with 
relapsed/refractory AML treated with AZA + nivolumab (36) con-
firmed enrichment of IED68 scores on CD4+ and CD8+ T cells, NK 
cells, and NK/T cell precursors (Supplemental Figure 25A). In line 

addition, the interaction between the 2 continuous variables was 
statistically significant (P = 0.013), indicating that a higher PI20 
value will increase the association between the LSC17 score and 
OS. Taken together, these analyses suggest that the PI20 score and 
its integration with the LSC17 score could provide accurate prog-
nostic risk stratification.

IED scores predict survival in independent pediatric AML cohorts. 
Microenvironmental immune gene sets are known to be differen-
tially expressed between children and adults with AML (2, 60), 
which may in part be due to differences in pediatric versus adult 
AML biology (61–64). Furthermore, immunosenescence, a process 
of remodeling of immune functions upon chronic antigen expo-
sure, is associated with physiologic aging (65, 66). We thus exam-
ined the relevance and applicability of the IED score to childhood 
AML and first analyzed diagnostic BM samples from 145 pediat-
ric patients with de novo AML in the Children’s Oncology Group- 
TARGET (COG-TARGET) AML cohort for whom RNA-Seq data 
are publicly available (61). The IED172 score correlated inverse-
ly with leukemia burden (Figure 7, A and B) and was significantly 
higher at time of relapse (n = 31 paired BM samples; Figure 7C). 
Importantly, an above-median PI24 score predicted significant-
ly worse RFS (P = 0.0044) and OS (P = 0.018; Figure 7, D and E). 
We then retrieved NanoString transcriptomic data from an addi-
tional cohort of pediatric participants with AML (CHOP series, n = 
40 patients: GSE134589) (2). In line with previous results in adult 
AML, the IED68 score was higher in children with an immune- 
infiltrated/activated AML (Figure 7F) and in BM samples obtained 
at time of response assessment compared with disease onset (Fig-
ure 7G). Finally, the PI20 score separated patients into subgroups 
with different RFS and OS probabilities (Figure 7, H and I). These 
data support the applicability of IED scores in childhood AML.

IED scores are increased at time of response assessment. To 
further examine the effect of induction chemotherapy on IED 

Figure 7. Immune effector dysfunction scores correlate with immune 
infiltration and separate survival in pediatric AML cohorts. (A) Leukemia 
burden in COG-TARGET AML cases (n = 145) with above-median and 
below-median IED172 scores. Data were compared using the Mann-Whit-
ney U test for unpaired determinations. BM, bone marrow; PB, peripheral 
blood; IED, immune effector dysfunction. (B) WBC count at diagnosis in 
COG-TARGET AML cases with above-median and below-median IED172 
scores. Data were compared using the Mann-Whitney U test for unpaired 
determinations. (C) IED172 scores at time of AML diagnosis and response 
assessment (bulk RNA-Seq data from matched BM samples available 
in 31 COG-TARGET AML cases). (D) Kaplan-Meier estimate of relapse-
free survival (RFS) in patients from the COG-TARGET AML cohort with 
above-median and below-median prognostic index (PI24) scores. Survival 
curves were compared using a log-rank test (survminer package in R). HR, 
hazard ratio. (E) Kaplan-Meier estimate of overall survival (OS) in patients 
from the COG-TARGET AML cohort with above-median and below- 
median PI24 scores. (F) Correlation between the IED68 score and previ-
ously published immune traits (n = 45) in the CHOP AML series (n = 40). 
Signature scores are available through the original publications (2, 42). (G) 
IED68 scores in samples from the CHOP AML series collected at time of 
diagnosis and response assessment (n = 14 matched BM samples). Data 
were compared using the Wilcoxon’s matched-pairs signed-rank test. (H) 
Kaplan-Meier estimates of RFS in patients from the CHOP AML cohort 
with above-median and below-median PI20 scores. (I) Kaplan-Meier 
estimate of OS in patients from the CHOP cohort with above-median and 
below-median PI20 scores.
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IED genes define ICB-unresponsive TMEs in melanoma. To 
investigate whether these findings can be generalized for ICB- 
responsive solid tumor types, we conducted an exploratory anal-
ysis of IED and its correlation with response to ICB in melanoma. 
We calculated the PI24 value for patients in the TCGA Pan-Cancer 
Atlas profiling project (441 subjects with resected primary and/or 
metastatic melanoma who received no previous systemic therapy) 
(68). The PI24 score was not correlated with patient age or tumor 
mutation count (Supplemental Figure 26, A and B) and was low-
er in patients with an immune-enriched (IE) TME, as defined by 
Bagaev et al. (25), and with high expression of immune-associated 
functional gene signatures (Supplemental Figure 26, C and D). As 
observed above in AML, PFS and OS rates were lower for mela-
noma cases with high PI24 scores (Figure 10, A and B). Interest-
ingly, the PI24 score refined the ability of the IE, ICB-responsive 
TME profile — but not the depleted TME subtype (25) — to strat-
ify patient survival (Supplemental Figure 26, E and F; optimal cut 
points = 1.33 and 0.9, respectively). Compared with PI24lo cases, 
patients in the PI24hi group had lower numbers of lymphocyte clus-
ters and tumor infiltrating lymphocyte (TIL) patches and higher 
myeloid/macrophage RNA scores (Supplemental Figure 27, A and 
B; ref. 69). Furthermore, TIL spatial patterns were significantly 
different between PI24hi and PI24lo melanoma samples, with the 
latter showing diffusely infiltrative TILs scattered throughout 30% 
or more of the tumor area (referred to as a “brisk, diffuse” subtype 
(69); P = 0.0006, Fisher’s exact test; Supplemental Figure 27C). 
These data are consistent with the established role of TILs in con-
trolling tumor growth in untreated melanoma (70). The analysis 
of scRNA-Seq profiles from malignant, immune, and stromal cells 
isolated from 19 melanoma samples (71), indicated that PI24 genes 
were predominantly expressed by NK and T cells but also by a clus-
ter of “undefined” cells with fibroblast-associated genes (LGALS1, 
CALD1, TIMP1, EGR1, and SPARC; Supplemental Figure 28, A–C).

We analyzed publicly available RNA-Seq data from 73 melano-
ma patients treated with standard-of-care single-agent nivolumab 
or pembrolizumab (n = 41) or combination anti-PD-1 + anti-CTLA-4  
(n = 32; PRJEB23709; Supplemental Table 10) (72). In this series, 
patients with above-median PI24 scores showed enrichment in 
melanocyte-associated markers (MLANA, TYR, and PMEL; Fig-
ure 10C) and poor response to ICB based on response evaluation 
criteria in solid tumors (RECIST) (Figure 10D). The ability of PI24 
genes to predict lack of response to ICB (AUROC = 0.93) is shown 
in Figure 10E. As with TCGA Pan-Cancer Atlas data, patients 
with below-median PI24 scores expressed high levels of immu-
noglobulin genes, CD8A, and chemokine genes (CCL4, CCL5, 
and CXCL10), and had significantly higher PFS and OS rates (P = 
0.00041 and P = 0.0011, respectively; Figure 10F).

Finally, an unsupervised analysis of scRNA-Seq profiles of 
immune cells isolated from 48 tumor biopsies taken either at 
baseline or during treatment with ICB (73) confirmed enrichment 
of PI24 scores in immune cells (NK cells, effector memory, and 
central memory CD4+ and CD8+ T cells) from pretherapy lesions 
of nonresponders, i.e., patients with progressive or stable disease, 
compared with responders (complete or partial response; Supple-
mental Figure 29, A and B). Overall, these findings suggest that 
signatures of IED might also be applied as potential biomarkers of 
response to ICB in melanoma.

with findings in the AZA+Pembro cohort, the IED68 score was 
significantly lower at baseline in responders to nivolumab-based 
immunotherapy; Supplemental Figure 25B). Compared with base-
line, CD8+ T cells, CD4+ T cells, and conventional and plasmacy-
toid DCs from on-treatment BM samples expressed significantly 
lower IED68 scores (Supplemental Figure 25C). Taken together, 
these data reveal the unique ability of IED genes to define both 
chemotherapy- and ICB-unresponsive AML TMEs. By contrast, 
IFN-γ–related genes have been previously shown to be associated 
with chemotherapy resistance while also predicting response to T 
cell engagers (2, 8).

We sought to identify genes at the intersection of respons-
es to chemotherapy and AZA+Pembro. We examined DEGs 
between matched posttreatment (available in 31 patients after 
cycle 2) and pretreatment BM samples in the immunotherapy 
cohort. Treatment with AZA+Pembro resulted in upregulation 
genes associated with immune effectors (GZMA, GZMB, PRF1, 
KLRD1, and NCR1), T cell and NK cell cosignaling molecules 
(CTLA4, KLRB1, KLRC1, KLRC2, and KLRK1), cytokine receptors 
(IL7R, IL2RB), IFN responsiveness (ISG20), and T cell signaling 
(CD274, ITK, CD7, and ZAP70) (Figure 9E). As with the chemo-
therapy cohort (Figure 8E), AZA+Pembro treatment was associ-
ated with downregulation of leukemia-associated genes (FLT3, 
CD34). We identified 43 genes that were significantly differen-
tially expressed in both postchemotherapy and post-AZA+Pem-
bro BM samples (Figure 9F), and we then assessed the semantic 
distance between gene ontologies (GOs) corresponding to these 
43 genes using the GOSemSim Bioconductor R package (67). 
This procedure measures GO and gene similarity, thereby mini-
mizing the redundancy of GO categorization. It identified shared 
nodes that included GO terms linked to immune functions as 
well as a prominent “macro-cluster” unique to the chemothera-
py setting; and encompassed GO terms and genes related to IFN 
and cytokine receptor signaling (Figure 9F).

Figure 8. Immune effector dysfunction scores increase at time of 
response assessment and predict outcomes in additional external AML 
cohorts. (A) Expression of the IED68 genes in patients from the SAL 
and JHU cohorts (n = 183 BM samples from 90 patients). The heatmap 
annotation track shows sample collection time points (baseline and 
post-chemotherapy response assessment). (B) IED68 score at time of 
diagnosis and response assessment (Kruskal-Wallis test with correction 
for multiple comparisons). Nonsignificant P values are not shown. CR = 
complete remission; PIF = primary induction failure; ER = early relapse 
(<6 months after the achievement of CR); LR = late relapse (>6) months 
after the achievement of CR); IED = immune effector dysfunction. (C) 
Kaplan-Meier estimate of relapse-free survival (RFS; data available in 56 
subjects) in higher-than-median and lower-than-median PI20 groups. 
HR = hazard ratio. (D) Kaplan-Meier estimate of overall survival (OS; data 
available in 90 subjects) in higher-than-median and lower-than-median 
PI20 groups. (E) Volcano plot showing differentially expressed genes 
(DEGs) between samples collected at baseline and post-chemotherapy 
(post-CT) response assessment (EnhancedVolcano package in R). Genes 
discussed in the paper are named. (F) Graphical summary of over-rep-
resentation analysis (clusterProfiler package in R) showing the overlap 
between DEGs (post-chemotherapy versus baseline) and curated cell 
type signature gene sets (C8 collection), which were retrieved from the 
MSigDB (http://www.gsea-msigdb.org/gsea/index.jsp). Gene ratio = 
gene count divided by set size.
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It has also been shown that chemotherapy-induced senes-
cence confers higher tumor-initiating potential to AML and solid 
tumor cell lines compared with nonsenescent tumor cells (77, 78). 
While we observed an association between stemness and effector 
senescence programs, an important question to be addressed is 
whether crosstalk between senescent-like AML cells and immune 
effectors could amplify immunosuppressive circuits, leading to 
failed control of residual disease. Senescent-like cells are known 
to secrete inflammatory chemokines, cytokines, and growth 
factors in a paracrine fashion, promoting the reprogramming of 
neighboring cells (79–81). Furthermore, the humoral commu-
nication via senescence-associated secretory phenotype fac-
tors might accelerate tumor progression by maintaining chronic 
inflammation (82). In accord with this model, we show that IED 
signatures that are shared between central memory and effec-
tor memory CD4+ and CD8+ T cells and functionally matured 
NK cells are enhanced after chemotherapy, both in bulk and in 
scRNA-Seq data sets. In contrast to T cell exhaustion, immunose-
nescence states are maintained by intrinsic signaling induced by 
DNA damage or other stress responses (75, 83, 84). While a sub-
set of the IED signature comprised exhaustion genes, the overlap 
between the IED score and published T cell exhaustion gene sets 
was minimal (34, 85).

Enhancing T cell–mediated clearance of AML is an attrac-
tive therapeutic strategy, but some ICB trials and BiTE con-
struct trials have met with only limited success (86–88). Multiple 
mechanisms have been proposed to explain AML resistance to 
therapeutic attempts to reverse T cell exhaustion by ICB. These 
include upregulation of alternative checkpoint receptors or 
diminished T cell infiltration in patients with advanced disease 
(3, 89). Our data suggest that senescent-like T cells in pretreat-
ment BM samples are unable to lyse AML blasts when activat-
ed with the CD3/CD33 BiTE construct. Consistent with this, a 
higher proportion of senescent-like CD8+ T cells in the BM and 
blood was associated with lower response rates to pembrolizum-
ab sequenced after high-dose cytarabine in relapsed/refractory 
AML (7). Therefore, this T cell population may underpin resis-
tance to immunotherapy.

Our study also shows that the initially defined immunosenes-
cence signature in AML also predicts worse outcomes in patients 
receiving AZA+Pembro or nivolumab immunotherapy, and sug-
gests that senescence reversal could be pursued as a strategy to 
functionally reinvigorate T cells and to improve response rates to 
ICB and other T cell–targeting immunotherapies (7, 8). The poten-
tial clinical utility of senolytics is currently being tested in animal 
models (82). By analyzing the immune transcriptome of pretreat-
ment samples from the AZA+Pembro cohort, we identified gene 
sets and biological functions that were enriched in responders. In 
contrast to the IED score, the IFN-γ signature score was associated 
with response to ICB. A plausible explanation for this observation 
is that stemness states negatively affect type I IFN signaling and 
anticancer immunity, ultimately leading to poor AML cell kill-
ing (49). In melanoma — a tumor type known to derive durable 
clinical benefit from ICB (72, 90–92) — the IED-related gene set 
was also expressed by a cluster of cells with fibroblast features, in 
addition to CD8+, CD4+, and NK cells. Furthermore, it predict-
ed long-term outcomes and objective responses to single-agent 

Discussion
An unanswered question in AML is whether deranged T cell 
functions affect the likelihood of therapeutic response to che-
motherapy and/or immunotherapy. Our prior efforts to charac-
terize the AML immune TME using transcriptomic and spatial 
profiling approaches led to the discovery of an IFN-γ–dominant 
and inflamed BM milieu (2, 8, 74). In the present study, features 
of deranged T cell function were identified in multiple indepen-
dent cohorts of adult and pediatric patients with AML (n = 1,896) 
and were found to be associated with leukemia stemness and with 
poor response to induction chemotherapy. OS prediction afford-
ed by validated clinical cytogenetic categories and experimental 
LSC17 signatures (1, 52) was improved by the derived IED gene 
set, which also defined ICB-unresponsive microenvironments.

Determining how dysfunctional T cell states modulate ther-
apeutic response or resistance in AML remains a challenge, part-
ly due to a lack of selective markers that parse exhaustion from 
senescence (11, 13). We previously detected increased numbers 
of circulating senescent-like T cells in AML, which were associ-
ated with a low likelihood of response to induction chemotherapy 
(10). Some reports suggest that tumors induce T cell senescence 
via cancer cell–derived soluble molecules, while other studies 
implicate CD4+ regulatory T cells in this process (75, 76). Here-
in, we found that AML blasts influence T cell activation and pro-
liferation through direct contact and bystander effects, whereas 
induction of CD8+ T cell senescence appears primarily depen-
dent on the latter. These mechanisms are particularly relevant 
for hematologic malignancies such as AML, since leukemia blasts 
are proximate to circulating T cells and, as such, their potential to 
promote T cell senescence is expected to be greater than periph-
erally located solid tumors.

Figure 9. Immune effector dysfunction scores predict response to 
AZA+Pembro in clinical trial NCT02845297. (A) Differentially expressed 
genes (DEGs) at baseline associated with complete response (CResp) to 
AZA+Pembro (n = 33 patients). The heatmap annotation track shows the 
prognostic index (PI20) group and response status (complete remission 
[CR] and nonresponder [NR]) after 2 cycles of azacitidine and pembroli-
zumab. Complete response was defined as CR, CR with partial hematologic 
recovery (CRh), CR with incomplete hematologic recovery (CRi), or mor-
phological leukemia-free state (MLFS) at the end of cycle 2. Patients with 
partial response (PR; >50% decrease in bone marrow blasts from baseline 
to 5%–25% at the end of cycle 1) were categorized as NRs. C, cluster. (B) 
Area under the receiver operating characteristic (AUROC) curve measuring 
the predictive ability of IED68 genes for response to AZA+Pembro. CI, 
confidence interval. (C) Kaplan-Meier estimate of overall survival (OS) in 
patients with above-median and below-median PI20. Survival curves were 
compared using the Gehan-Breslow-Wilcoxon’s test, a generalization of 
the Wilcoxon’s rank-sum test that attributes more weight to deaths at 
early time points. HR, hazard ratio. (D) Kaplan-Meier estimate of OS in 
patients with above-median and below-median IFN scores, which were 
computed as previously published (2). Survival curves were compared 
using the Gehan-Breslow-Wilcoxon’s test. (E) Volcano plot showing DEGs 
between baseline and end-of-cycle 2 (EO2) bone marrow samples. The top 
20 DEGs are named. (F) The overlap between DEGs post-reatment versus 
baseline in the chemotherapy (CT; SAL and JHU2) and AZA+Pembro patient 
series is shown as a Venn diagram. Nonredundant, enriched gene ontolo-
gies in DEGs between the CT and AZA+Pembro cohorts were visualized as 
a network diagram (cnetplot) with color nodes using the cnetplot function 
of the GOSemSim package in R (67).
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from the donors in accordance with the Declaration of Helsinki on 
research protocols approved by the Ethics Committee of TU Dresden 
and Studienallianz Leukämie, Germany (EK98032010), and by the 
Institutional Review Boards of the Children’s Hospital of Philadelphia 
(no. 10-007767) and Johns Hopkins University.
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nivolumab or pembrolizumab, or to combination anti–PD-1 + anti–
CTLA-4. Prospective immunotherapy clinical trials are warranted 
to validate the translational relevance of the IED signature in solid 
tumors other than melanoma.

One limitation of our study is that we focused primarily on 
gene sets pertaining to immune biology. However, efforts to link 
immunology with genomic subtypes, therapeutic response, and 
clinical outcomes in AML are in their infancy (2, 30, 47, 93, 94). 
In contrast, genome-wide transcriptomic approaches and high-di-
mensional single-cell analyses have been extensively employed to 
resolve the molecular heterogeneity and clonal diversity of malig-
nant AML cells (31, 95–98). Both scDNA-Seq and scRNA-Seq 
studies would be required to explore the relationships among T 
cell differentiation stages, clonal complexity, and AML hierarchies 
(31, 98); however, a major challenge is the difficulty of acquiring 
adequate numbers of T cells from the TMEs in which cells of the 
myeloid lineage are predominant. Future studies will also have to 
comprehensively characterize the molecular mechanisms under-
lying the induction of T cell senescence in the AML TME.

Overall, our findings indicate that IED scores offer advantages 
over signatures of T cell exhaustion which are solely predictive of 
response to ICB (58, 73, 99). Our approach elucidates the immune 
contexture of AML in both chemotherapy and ICB settings, 
enables refinement of risk stratification, and generates hypothe-
ses for further investigation and clinical exploration of strategies 
to overcome T cell senescence.

Methods
Full details are provided in Supplemental Methods.

Study approval. Primary specimens (nonpromyelocytic AML) and 
associated clinical data were obtained with written informed consent 

Figure 10. Immune effector dysfunction (IED) scores predict immuno-
therapy response in melanoma. (A) Progression-free survival (PFS) in 
427 patients with melanoma from the TCGA Pan-Cancer Atlas profiling 
project. Participants were stratified based on an optimal cut point of the 
prognostic index (PI24) (value, 0.862). Survival curves were compared using 
a log-rank test. RNA-Seq and outcomes data were retrieved through the 
cBioPortal for Cancer Genomics (https://www.cbioportal.org/). HR, hazard 
ratio. (B) Overall survival (OS) in patients with melanoma from the TCGA 
Pan-Cancer Atlas cohort. (C) Volcano plot showing differentially expressed 
genes (DEGs) between patients with PI24hi or PI24lo in the PRJEB23709 
immunotherapy cohort (73 participants with melanoma treated with stan-
dard-of-care single-agent nivolumab or pembrolizumab (n = 41) or combi-
nation anti–PD-1 + anti–CTLA-4 (n = 32; Supplemental Table 10). RNA-Seq 
and outcome data were retrieved through the original publication (72) and 
the Tumor Immune Dysfunction and Exclusion (TIDE) portal (http://tide.
dfci.harvard.edu/login/) (58). The top 15 DEGs are named. (D) Number of 
responders and nonresponders with above-median and below-median 
PI24 scores in the PRJEB23709 immunotherapy cohort. Fisher’s exact test. 
CR = complete response; PR, partial response. In the original publication 
(72), responders are defined as individuals with complete response, partial 
response, or stable disease of greater than 6 months with no progres-
sion, whereas nonresponders are defined as progressive disease or stable 
disease for less than or equal to 6 months before disease progression. (E) 
AUROC curve measuring the predictive ability of PI24 genes for response to 
ICB-based therapies in the PRJEB23709 cohort. CI, confidence interval. (F) 
PFS and OS in patients with melanoma in the PRJEB23709 immunotherapy 
cohort. Patients were dichotomized based on an optimal cut point of PI24 
values (0.12 and 0.344 for PFS and OS, respectively).
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