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Covalent patterning of graphene opens many application possibilities in the field of
photonics, electronics, sensors, and catalysis due to order-dependent optical
properties, band structure engineering, and processibility and reactivity improvement.
Owing to the low reactivity of the graphene basal plane, harsh reagents (e.g., radicals) used
for covalent functionalization normally result in poor spatial control, which largely
compromises the intrinsic properties of graphene. Therefore, precisely spatial control
on covalent patterning of graphene is of great importance. Herein, we summarize recent
advances for covalent patterning of graphene from the microscale to nanoscale resolution
using different techniques such as laser or electrochemical writing, template-directed
growth, and tip-induced nanoshaving.
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INTRODUCTION

Graphene is a two-dimensional (2D) nanomaterial with sp2 hybridized carbon atoms arranged in a
honeycomb structure. Since its first mechanical exfoliation as a freestanding single-layer sheet from
graphite by Novoselov and Geim in 2004 (Novoselov et al., 2004), graphene has been attracting
tremendous scientific attention because of its outstanding mechanical, optical, thermal, and
electronic properties, which surpass most of the existing materials. Most importantly, graphene
can be considered as a zero-band-gap semiconductor or semi-metal, and its conduction and valence
bands intersect at six Dirac points, around which the energy dispersion is linear (Novoselov et al.,
2005; Zhang et al., 2005). The unique band structure, on one hand, grants high-speed data processing
ability to graphene-based transistors. However, the absence of the band gap, on the other hand, is a
large obstacle to turn off the current flow of graphene transistors. Furthermore, the poor
processibility and the basal plane reactivity of graphene are also the main problems for potential
applications.

One of many effective ways to solve the aforementioned issues is the chemical functionalization of
graphene. Graphene surface modification can be achieved via both non-covalent and covalent
methods. The non-covalent method of graphene functionalization has limited stability. The
physisorbed networks, held together through weak non-covalent interactions, hinder its
application in graphene-based electronics. In contrast, covalent functionalization is rather robust
by forming stable covalent bonds between functional moieties and graphene surfaces. Covalent
functionalization of graphene has been proven to be able to open up its band gap (Zhang et al., 2011;
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FIGURE 1 | Covalent patterning of graphene with a microscale patterning resolution. (A) Schematic representation of the local electrochemical reduction of
diazonium modification at an HOPG electrode surface using a scanning electrochemical cell microscopy (SECCM) setup, resulting in the an sp3 carbon in the HOPG
surface layer and the corresponding AFM image of covalent patterning on the HOPG surface. Panel adapted with permission from Kirkman et al., (2013). Copyright:
American Chemical Society. (B) The interference reflection microscopy, AFM images, and the corresponding line profile of template-assisted laser writing for
covalent patterning of graphene, achieving ~400 nm patterning resolution. Scale bar = 2 µm. Panel adapted with permission from Li et al., (2019). Copyright: American
Chemical Society. (C) Schematic illustration of the reactionmechanism for the template-assisted covalent patterningmonolayer graphene via electron-beam lithography.
The diameter of a dot is 5 μm, and the length and width of the FAU logo are 20 and 30 μm, respectively. Panel adapted with permission fromWei et al., (2020). Copyright:
JohnWiley and Sons. (D) Schematic illustration for the sequential covalent patterning of graphene with multiple diazonium components using the combined technique of
electron beam lithography and self-limiting diazonium chemistry. Panel adapted with permission from González et al., (2021). Copyright: American Chemical Society.

Frontiers in Chemistry | www.frontiersin.org March 2022 | Volume 10 | Article 8296142

Li et al. Covalent Patterning of Graphene

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Shih et al., 2013), enhance its chemical reactivity (Bissett et al.,
2013), and improve its processibility (Englert et al., 2011).
However, highly reactive reagents (e.g., radicals) must be used
for covalent modification of the inert basal plane of graphene,
generally leading to poor spatial control (Kariuki and
McDermott, 1999; Greenwood et al., 2015). Fan et al.
demonstrated that covalent modification of graphene with 4-
nitrobenzenediazonium salt led to a significant degradation of its
electron transfer characteristics such as reduction in the
minimum conductivity, breakdown of electron-hole mobility
symmetry, and decrease in the electron-hole mobility (Fan
et al., 2010). Current challenges accordingly lie in
simultaneously functionalizing graphene and maintaining its
excellent properties. Through the density functional theory
(DFT), parameterized tight-binding model, and real-space
Kubo-Greenwood formalism, it was theoretically predicted that
covalent nanopatterning of graphene effectively created
nanostripped structures with a tunable band gap, and the
electron transport remained unaffected and confined in the so-
created quasi-one-dimensional semiconducting channels (Lian
et al., 2016). Therefore, efficiently controlling the long-range
orderness of covalent functionalization of graphene is of major
importance for fundamental research studies and potential
applications.

In this mini-review, we discuss the recent progress achieved in
the field of spatially controlled covalent nanopatterning of
graphitic substrates via radical chemistry. We focus on the
state-of-art diverse fashions on covalent patterning of graphitic
surfaces from micrometer to nanometer precision.

COVALENT PATTERNING WITH
MICROSCALE PERIODICITY

Some decent efforts have been devoted to the scalable patterning
of graphene substrates via covalent chemistry, including
electrochemical or laser “writing” and locally and globally
template-assisted lithography. For example, Kirkman et al.,
(2013) achieved covalent patterning of a highly oriented
pyrolytic graphite (HOPG) surface via periodically moving a
scanning electrochemical cell microscopy (SECCM) setup after
conducting local functionalization with in situ generated radicals
from electrochemical reduction of diazonium salt (Figure 1A).
The diameter of each dot and its thickness can be controlled by
the size of the cell and the duration of electrochemical activation,
respectively. The resulting resolution of covalent patterning was
at a micrometer scale. Laser activation is also another efficient
method for covalent patterning of graphene. Li et al., (2019)
demonstrated a direct covalent patterning method via light-
induced reduction of diazonium salts on graphene with the
assistance of a photoresist template. A photoresist-masked
graphene sample was first immersed in an aqueous solution of
4-nitrobenzenediazonium tetrafluoroborate, followed by
exposure to blue light for 120 s. Figure 1B shows the
interference reflection microscopy and AFM images of
covalent patterning of graphene with pattern “300.” The AFM
line profile disclosed that the patterning resolution was about

400 nm based on the full width at a half-maximum of three peaks
(371, 419, and 408 nm). Wei et al., (2020) proposed another
efficient laser-writing protocol for reducing diazonium salts on
graphene to conduct covalent patterning of graphene at the
micrometer scale (Figure 1C). In this research, the SiO2/Si-
supported graphene surface was initially covered by a thin
polymethylmethacrylate (PMMA) template with desired
patterns, followed by the reductive activation of the regions of
unprotected graphene with a Na/K alloy electron beam.
Afterward, the sample was exposed to the nitro- or bromo-
benzenediazonium salt dissolved in ethanol for covalent
functionalization. After removing the excess reagent and the
PMMA template, covalent patterning of graphene was
successfully achieved with a resolution of few micrometers. By
applying thermal treatment of the sample at 400°C, the graphene
surface was totally recovered by the complete defunctionalization
process, which realized a complete write/store/erase cycle for the
management of chemical information. Recently, multifunctional
graphene was achieved by stepwise covalent patterning of
graphene with multiple diazonium components using a
combined technique of electron beam lithography and self-
limiting diazonium grafting (González et al., 2021). Figure 1D
shows the sequential fabrication process for the covalent
patterning of graphene with multiple components using the
self-limiting diazonium grafting method. SiO2-supported
graphene was first covered by a PMMA template via the spin-
coating process, followed by electron beam lithography to form
the first pattern with 5 μm × 5 μm for each corral. Afterward,
adding the first diazonium solution onto the ascorbic acid-
precovered patterned graphene led to the covalent patterning
of graphene with the first component. After removing the
physisorbed species and the PMMA residues, covalent
patterning of graphene with the second diazonium component
started over by creating patterns in the unmodified areas. It is
worth mentioning that the alignment markers in the SiO2

substrate can avoid the overlap of each pattern. The third
diazonium component was added to covalently functionalize
the rest of the graphene surface, thus leading to generate
covalently patterned graphene with three functional
components. Besides using diazonium salts as radical sources,
hypervalent iodine compounds have also been applied for
covalent functionalization of graphene. Bao et al., (2021)
applied a laser-writing process for covalent patterning of the
graphene substrate. A drop of hypervalent iodine solution was
first deposited on a SiO2/Si-supported graphene. Afterward, a
green laser light was used to decompose the hypervalent iodine
reagents for the generation of highly reactive radicals, which
locally modified the graphene surface by forming covalent bonds.
Desired patterns with micrometer resolution can be achieved by a
step moving of the laser source. Cleavage of dibenzoylperoxide
(DBPO) via thermal or photoactivation was also an efficient way
to produce radicals for graphene covalent functionalization. Gao
et al., (2016) demonstrated an effective method of covalent
functionalization of graphene via heat-initiated cleavage of
DBPO with the assistance of a polydimethylsiloxane (PDMS)
template. The DBPO decomposed at around 80°C to aryl radicals,
which subsequently attached the exposed surface of graphene,
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forming covalent patterns at the micrometer scale. Four years
later, Edelthalhammer et al., (2020) modified the method by
locally cleaving the DBPO compounds on a graphene substrate
via laser-writing activation, achieving a pattering resolution of
2 μm. Surprisingly, the covalent functionalization process was
totally reversible, which allowed the write/read/erase control over
the covalent chemical information stored on the graphene
surface. In other words, applying a 532 nm laser source on the
DBPO precovered graphene enabled writing of chemical
information on the substrate. Switching the wavelength of the
laser light to 633 nm showed better Raman imaging resolution,
providing an excellent opportunity of reading the chemical
information of the 2D-patterned graphene. The erasing
process was simply performed by thermally removing the
covalently attached molecules at high temperatures.

COVALENT PATTERNING WITH
NANOSCALE PERIODICITY

Patterning graphene at the nanoscale resolution is of critical
importance to meet the requirement of the modern
electronics. Some brilliant methods were applied to the
covalent functionalization of the graphene surface with the
resolution at a few nanometers. Van Gorp et al., (2018)
applied the colloid assembly method of forming an ordered
template with polystyrene beads, which was then transferred
onto a graphite surface as the mask for periodic covalent
functionalization. The beads floated at the air–liquid interface
and were left undisturbed for 4 h to form a template via self-
assembly (Figure 2A). The assembled beads were then
transferred to the HOPG substrate by a careful scooping

FIGURE 2 | Covalent patterning of graphene with a nanoscale patterning resolution. (A) Schematic demonstration of the colloidal lithography method to generate
covalently formed nanocorrals on the HOPG substrate for confined molecular self-assembly. Panel adapted with permission from Van Gorp et al., (2018). Copyright:
American Chemical Society. (B) Covalent patterning of graphitic substrates with the assistance of electrochemically in situ-generated products and nanobubbles as the
template. Panel adapted with permission from Phan et al., (2019). Copyright: American Chemical Society. (C) Schematic illustration of covalent patterning on
graphitic surfaces via the pre-assembled monolayer of p-(n-octadecyloxy) benzene diazonium, followed by electrochemical activation. Panel adapted with permission
from Xia et al., (2016). Copyright: American Chemical Society. (D) Schematic illustration of covalent patterning of HOPG using self-assembledmonolayers of alkanes with
tunable length as templates and corresponding STM images with Fourier transforms. Panel adapted with permission from Tahara et al., (2018). Copyright: American
Chemical Society.
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method to achieve a monolayer template. After drying with
Ar, the bead-masked HOPG was then covalently
functionalized in a three-electrode electrochemical cell via
electrochemical reduction of diazonium. After removing the
physisorbed molecules and the beads, covalently
functionalized nanocorrals with 290 nm in diameter were
fabricated on the HOPG surface. Surprisingly, a composite
of in situ-generated side-products and nanobubbles is also
able to achieve covalent patterning of graphitic substrates
with nanoscale periodicity over large areas. Phan et al., (2019)
demonstrated a convenient covalent functionalization
approach for nanopatterning graphite and graphene
substrates by electrochemically activated dediazotization of
a mixture of two aryl diazonium compounds (Figure 2B). The
mechanism was based on the electrochemical formation of
side-product-stabilized nanobubbles that worked as templates
for covalent nanopatterning of graphitic substrates. The
average diameter of the nanobubbles can be controlled in
the range between 45 and 130 nm via adjusting the overall
concentration, the ratio of two aryl diazonium compounds, or
the applied potential. Sub-10 nm patterning resolution was
also realized with the assistance of the molecular self-assembly
process. Xia et al., (2016) presented a versatile two-step
approach for covalent patterning of graphene at the
nanometer scale (Figure 2C). An ordered molecular
monolayer of 4-docosyloxy-benzenediazonium was first
formed via a self-assembly process at the solid–liquid
interface on the graphene surface. After removing the
organic solvent, the ordered 4-docosyloxy-
benzenediazonium monolayer was immobilized on the
graphene surface. Applying an electrochemically reductive
impulse activated the diazonium groups to radicals, which
subsequently attached the graphene surface to form covalent
bonds. The resulting periodicity of the covalent
functionalization sites remained the same to the pre-
programmed periodicity determined by the length of the
alkoxyl chain of 4-docosyloxy-benzenediazonium.
Therefore, it is possible to control the periodicity of the
covalent patterning of graphene via adjusting the alkoxyl
chain length. The template-assisted method is also feasible
for covalent nanopatterning of graphitic substrates. After
realizing that an ultra-thin single layer of self-assembled
n-alkanes can prevent the underneath graphitic substrates
from being attacked by radicals, Li et al., (2017) and Tahara
et al., (2018) employed self-assembled monolayers of
n-alkanes as linear masks for directing covalent
functionalization of graphitic substrates with a lateral
periodicity of 5 or 7 nm according to the length of the
n-alkanes (Figure 2D). Different from the previous
approach (Xia et al., 2016) that requires programmed
diazonium molecules with long alkoxyl chains, this method
is feasible for covalently functionalizing graphitic substrates
with all sorts of diazonium molecules. Lee et al., (2011)
successfully created a patterned graphene with a 35 nm
channel for the fabrication of graphene-based field-effect
transistors. A thin film of polystyrene was first deposited
on the graphene substrate as a mask by scanning probe

lithography, followed by exposing the masked sample to
XeF2 gas for fluorination. The unmasked part of graphene
was converted to insulating fluorographene, while leaving a
35 nm channel of pristine graphene. Importantly, this
fluorination strategy did not compromise the carrier
mobility of the graphene channel, reaching 2,692 cm2/(Vs).

TIP-INDUCED COVALENT PATTERNING

Besides the aforementioned bottom-up approach for covalent
nanopatterning, the top-down method is also feasible for creating
nanopatterns on the pre-grafted graphitic substrates. At the
earliest, Xu and Liu, (1997) demonstrated that the grafted
thiol molecules were able to be removed from the Au surface
by nanoshaving with an AFM tip. When the AFM tip was
scanning on the Au surface, molecules were removed to create
an empty area depending on the scanning dimensions.
Greenwood et al., (2015) demonstrated the feasibility of
recovering graphitic substrates by removing covalently grafted
molecules from the graphitic surfaces via nanoshaving with the
tip of the scanning tunneling microscope (STM). A “nano-man”
was created by adjusting the nanoshaving angle and the
dimensions. Following this method, Verstraete et al., (2016),
applied the covalently nanopatterned surface to the study of
molecular self-assembly behavior under nano-confinement
conditions. The authors found that the slow nanoshaving
direction can induce the molecular alignment direction in the
in situ pattern, while the multiple directions were observed during
the molecular self-assembly process in the ex situ pattern. This
finding provides a possibility of controlling molecular
crystallization in the desired alignment direction. The corral
size of patterns can be controlled by the STM scanning area
ranging from 11 to 67 nm.

DISCUSSION

Covalent functionalization of graphene has been intensively studied
in order to widen the application range and improve the chemical
reactivity and processibility of graphene. However, precise spatial
control on the covalent patterning of graphene has been a challenge.
This work provides the overview of covalent patterning of graphene
from the microscale to nanoscale including laser or electrochemical
writing, template-directed growth, and tip-induced nanoshaving,
which shows a great potential for achieving decent resolution even
down to few nanometers. This offers an opportunity toward a wide
range of applications. For example, the nano-corrals generated on
graphitic substrates can be used as microelectrodes for catalytic uses,
such as biosensors, or for molecular recognition. Studying the in situ
growth process of themolecular self-assembly is possible by STM tip-
induced nanoshaving. The covalently patterned arrays can potentially
introduce a band gap in graphene by maintaining one-dimensional
high-speed electron channels. Moreover, further grafting another
type of molecule in the empty spaces in the nanopatterned graphene
can lead to heterogeneous functionalities for creating
hydrophilicity–hydrophobicity or electron donating–electron
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withdrawing heterostructures for electronic and optoelectronic
applications.
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