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Structure-based virtual screening (VS) is a widely used approach that employs the
knowledge of the three-dimensional structure of the target of interest in the design
of new lead compounds from large-scale molecular docking experiments. Through
the prediction of the binding mode and affinity of a small molecule within the binding
site of the target of interest, it is possible to understand important properties related
to the binding process. Empirical scoring functions are widely used for pose and
affinity prediction. Although pose prediction is performed with satisfactory accuracy,
the correct prediction of binding affinity is still a challenging task and crucial for the
success of structure-based VS experiments. There are several efforts in distinct fronts
to develop even more sophisticated and accurate models for filtering and ranking large
libraries of compounds. This paper will cover some recent successful applications
and methodological advances, including strategies to explore the ligand entropy and
solvent effects, training with sophisticated machine-learning techniques, and the use
of quantum mechanics. Particular emphasis will be given to the discussion of critical
aspects and further directions for the development of more accurate empirical scoring
functions.

Keywords: structure-based drug design, molecular docking, virtual screening, scoring function, binding affinity
prediction, machine learning

INTRODUCTION

The drug discovery process required to enable a new compound to reach the market as an
innovative therapeutic entity is significantly expensive and time-consuming (Mullard, 2014;
DiMasi et al., 2016; Mignani et al., 2016). In this context, research groups and pharmaceutical
industry have extensively included computer-aided drug design (CADD) approaches in their drug
discovery pipeline to increase the potential of finding newer and safer drug candidates (Ban
et al., 2017; Barril, 2017; Usha et al., 2017). Structure-based drug design (SBDD) methods, which
require the three-dimensional structure of the macromolecular target, have been widely employed
in successful campaigns (Bortolato et al., 2012; Danishuddin and Khan, 2015; Rognan, 2017).
Although important challenges and some limitations have been addressed, many efforts have been
made aiming the improvement of existing methods and the development of innovative approaches.
Molecular docking is one of the most used SBDD approaches with several reviews published at the
present time (Guedes et al., 2014; Ferreira et al., 2015; Yuriev et al., 2015; Pagadala et al., 2017;
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Dos Santos et al., 2018), and has been continuously explored
by the scientific community to develop more sophisticated and
accurate strategies. Docking aims to predict binding modes and
affinity of a small molecule within the binding site of the receptor
target of interest, supporting the researcher in the understanding
of the main physicochemical features related to the binding
process. Docking-based virtual screening (VS) consists of large-
scale docking with a growing number of success cases reported
(Villoutreix et al., 2009; Matter and Sotriffer, 2011; Rognan,
2017). Examples of docking programs are AutoDockVina (Trott
and Olson, 2010), UCSF DOCK (Allen et al., 2015), GOLD (Jones
et al., 1997), and Glide (Friesner et al., 2004, 2006a). Beyond the
standalone software, web servers such as the DockThor Portal1

(de Magalhães et al., 2014), MTiOpenScreen2 (Labbé et al., 2015),
HADDOCK3 (van Zundert et al., 2016), and DOCK Blaster4

(Irwin et al., 2009) provide to the scientific community friendly
user interface and satisfactory time response of docking results.

The fast evaluation of docking poses generated by the search
method and the accurate prediction of binding affinity of top-
ranked poses is essential in VS protocols. In this context,
scoring functions emerge as a straightforward and fast strategy
despite limited accuracy, remaining as the main alternative to be
applied in VS experiments (Huang et al., 2010). Moreover, the
development of more accurate scoring functions is strategic in the
field of SBDD and remains a challenging task, especially in the
hit-to-lead optimization (Enyedy and Egan, 2008) and de novo
design (Liu et al., 2017). Although there is no universal scoring
function with significant reliability for all molecular systems,
some important strategies were explored. Examples of free online
resources for predicting protein-ligand binding affinities without
the dependency a docking program are BAPPL server5 (Jain and
Jayaram, 2005) CSM-lig6 (Pires and Ascher, 2016) and KDEEP

7

(Jiménez Luna et al., 2018).
The development of an empirical scoring function requires

three components (Pason and Sotriffer, 2016): (i) descriptors
that describe the binding event, (ii) a dataset composed of
three-dimensional structure of diverse protein–ligand complexes
associated with the corresponding experimental affinity data,
and (iii) a regression or classification algorithm to calibrate the
model establishing a relationship between the descriptors and the
experimental affinity. The empirical models differ in the number
and type of descriptors; the algorithm adopted for training the
model; and the number, the diversity, and the quality data
of protein–ligand complexes used during the parameterization
process.

According to the algorithm used for training, the scoring
function can be linear (i.e., sum of weighted terms) or nonlinear
(i.e., nonlinear relationship between the descriptors). It is
important to highlight that even the multiple linear regression

1http://www.dockthor.lncc.br
2http://bioserv.rpbs.univ-paris-diderot.fr/services/MTiOpenScreen/
3http://haddock.science.uu.nl/services/HADDOCK2.2
4http://blaster.docking.org/
5www.scfbio-iitd.res.in/software/drugdesign/bappl.jsp
6structure.bioc.cam.ac.uk/csm_lig
7playmolecule.org/Kdeep

(MLR) algorithm, frequently used to calibrate linear scoring
functions, is also a machine-learning technique. However,
the term “machine-learning-based” scoring function is usually
defined in the literature to refer to complex/nonlinear models
developed using sophisticated machine-learning techniques to
approximate nonlinear problems, such as random forests
(RF), support-vector machines (SVM), and deep learning (DL)
methods. The linear scoring functions are also referred as
“classical” scoring functions. However, we will not adopt
the “classical” nomenclature to avoid confusion with scoring
functions based on classical force fields. In this work, we will
adopt the nomenclature “linear” for the MLR scoring functions
and “nonlinear” for models trained with more complex machine-
learning techniques.

GOALS OF SCORING FUNCTIONS

During the docking process, the search algorithm investigates
a vast amount of conformations for each molecule of the
compound library. In this step, the scoring functions evaluate
the quality of these docking poses, guiding the search methods
toward relevant ligand conformations. The first requirement
for a useful scoring function is to be able to distinguish the
experimentally observed binding modes – associating them with
the lowest binding energies of the energy landscape – from all
the other poses found by the search algorithm (pose prediction).
The second goal is to classify active and inactive compounds (VS),
and the third is the prediction of the absolute binding affinity,
ranking compounds correctly according to their potency (binding
affinity prediction) (Jain and Nicholls, 2008; Cheng et al., 2009; Li
et al., 2014c). The last one is the most challenging task, mainly
in de novo design and lead optimization, since small differences
in the compound could lead to drastic changes in binding
affinity (Schneider and Fechner, 2005). An ideal scoring function
would be able to perform the three tasks. However, given several
limitations of current scoring functions, they exhibit different
accuracies on distinct tasks due to modeling assumptions and
simplifications made during their development phase, being
intrinsically associated with the main purpose of the evaluated
scoring function (Li et al., 2014b). In this context, docking
protocols can adopt different scoring functions for each step, e.g.,
one can use a fast scoring function to predict binding modes and
further predict affinities employing a more sophisticated scoring
function specific for affinity prediction.

Current docking methods and the associated scoring functions
exhibit good pose prediction power if one assumes an adequate
preparation of the system and if the target flexibility does not
play a significant role (Corbeil et al., 2012; Chaput and Mouawad,
2017). However, the detection of active compounds among a
set of decoy compounds and the accurate prediction of binding
affinity remain challenging tasks, even when induced fit and
entropy effects are not important for binding (Gohlke and Klebe,
2002; Damm-Ganamet et al., 2013; Yuriev and Ramsland, 2013;
Grinter and Zou, 2014; Smith et al., 2016). In VS experiments,
it is mandatory the use of a scoring function capable of, at least,
discriminating active from inactive molecules.
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Scoring functions are typically divided into three main
classes (Wang et al., 2003): force field-based, knowledge-based,
and empirical. Liu and Wang (2015) recently proposed a
new classification scheme, suggesting classifying current scoring
functions as physics-based, regression-based, potential of mean
force, and descriptor-based. Herein we will follow the traditional
classification proposed by Wang et al. (2002) since we believe
it is more general and is capable to classify adequately
scoring functions according to the main development strategy
adopted.

Force field-based functions consist of a sum of energy terms
from a classical force field, usually considering the interaction
energies of the protein–ligand complex (non-bonded terms) and
the internal ligand energy (bonded and non-bonded terms),
whereas the solvation energy can be computed by continuum
solvation models such as the Poisson–Boltzmann (PB) or the
related Generalized Born (GB) (Gilson et al., 1997; Zou and
Kuntz, 1999). Examples of force field-based scoring functions
include DOCK (Meng et al., 1992) and DockThor (de Magalhães
et al., 2014).

Knowledge-based scoring functions are based on the statistical
analysis of interacting atom pairs from protein–ligand complexes
with available three-dimensional structures. These pairwise-atom
data are converted into a pseudopotential, also known as a
mean force potential, that describes the preferred geometries of
the protein–ligand pairwise atoms. Examples include DrugScore
(Velec et al., 2005) and PMF (Muegge, 2006).

Empirical scoring functions are developed to reproduce
experimental affinity data (Pason and Sotriffer, 2016) based on
the idea that it is possible to correlate the free energy of binding
to a set of non-related variables. The coefficients associated
with the functional terms are obtained through regression
analysis using known binding affinity data of experimentally
determined structures. LUDI was the first empirical scoring
function developed in the pioneering work of Böhm (1992)
for predicting the absolute binding free energy from atomic
(3D) structures of protein–ligand complexes. Other examples of
empirical scoring functions include ChemScore (Eldridge et al.,
1997), ID-Score (Li et al., 2013), and GlideScore (Friesner et al.,
2004, 2006a). Some empirical scoring functions (also referred as
hybrid scoring functions) were developed using a mixture of force
field-based, contact-based, and knowledge-based descriptors,
such as DockTScore from the DockThor program (empirical and
force-field based) (de Magalhães et al., 2014; Guedes et al., 2016),
SMoG2016 (empirical and knowledge-based) (Debroise et al.,
2017), and GalaxyDock BP2 Score (empirical, knowledge-based,
and force-field based) (Baek et al., 2017).

The main focus of this review is the state-of-the-art
concerning empirical scoring functions motivated by two main
reasons. First, the methodology behind this type of scoring
function could be fast enough to be used in large-scale structure-
based VS and de novo design studies. Secondly, the use of
modern sophisticated machine-learning techniques and the
increasing availability of protein–ligand structures and measured
binding affinity data could increase considerably the accuracy of
empirical scoring functions to be useful in computer-aided SBDD
experiments. In the following sections, we will discuss crucial

aspects concerning their development, successful applications,
limitations, and future perspectives.

DESCRIPTORS OF EMPIRICAL
SCORING FUNCTIONS

Intermolecular Interactions
Empirical scoring functions have implemented specific terms
accounting for intermolecular interactions, such as van der Waals
and electrostatic potentials. For example, the Lennard-Jones
potential describes the attractive forces (e.g., dispersion forces)
and the intrinsic repulsive force between two separated atoms as
a function of the interatomic distances (Jones, 1924a,b). Examples
of empirical scoring functions using Lennard-Jones potentials are
ID-Score (Li et al., 2013) and LISA (Zheng and Merz, 2011).
X-Score (Wang et al., 2002) is an example of a scoring function
that adopts a softened version of the Lennard-Jones potential
instead of the conventional 12-6 potential.

Although all interatomic forces are of electrostatic or
electromagnetic origin, the name “electrostatic” is conventionally
used to describe forces between polar atoms and is usually
represented by the Coulomb potential in both force field-based
and empirical scoring functions. Glide (Friesner et al., 2006a) and
DockThor (de Magalhães et al., 2014) are examples of scoring
functions that implement the Coulomb potential for computing
electrostatic interactions.

Some scoring functions include a specific term for hydrogen
bonds interactions, commonly through two approaches: (i) by
using specific force field-based parameters associated to the van
der Waals and electrostatic energy potentials; (ii) by using a
directional term, where the hydrogen bond contribution is a
function of the deviation of the geometric parameters from those
of an ideal hydrogen bond.

GlideScore employs the approach (i) to calculate hydrogen
bonds between polar atom pairs, while the Glide XP Score
applies the strategy (ii) to account for distinct categories of
hydrogen bonds such as neutral–neutral, charged–charged, and
neutral–charged interactions (Friesner et al., 2004, 2006b). The
DockThor scoring function, which is based on the MMFF94S
force field, has also implemented the strategy (i), reducing the
size of the polar hydrogen atom when it is involved in hydrogen-
bonding interactions (i.e., interacting with a hydrogen bond
acceptor) (Halgren, 1996). X-Score adopts the approach (ii) and
does not consider explicitly the hydrogen atoms, adopting a
concept of “root” atom. In the LUDI implementation of the
approach (ii), there are specific parameters for neutral hydrogen
bonds and salt bridges (Böhm, 1994). However, some empirical
functions do not differentiate hydrogen bonds between charged
and neutral atom pairs, e.g., X-Score (Wang et al., 2002) and
FlexX (Rarey et al., 1996). ID-Score is an example of a scoring
function that uses both approaches: (i) to account for electrostatic
interactions between charged groups and (ii) for hydrogen-
bonding interactions (Li et al., 2013). The AutoDock4 scoring
function employs a directional term based on a 10/12 potential
(similar to the Lennard-Jones potential) dependent of the angle
deviation from an ideal H-bond interaction with the protein.

Frontiers in Pharmacology | www.frontiersin.org 3 September 2018 | Volume 9 | Article 1089

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-01089 September 20, 2018 Time: 13:51 # 4

Guedes et al. Empirical Scoring Functions for SBVS

Besides the improvement in affinity predictions, the inclusion of
a polar desolvation might be crucial to avoid overestimation of
hydrogen bonds, since the H-bond formation is directly related
with the desolvation of polar atoms.

Despite the importance in considering metal ions, it can be
also a source of inaccuracy when using non-specific scoring
functions, since the real contribution of interaction metal ions
can be underestimated – in the case of simple counting of
metal-atom interacting pairs – or overestimated – when using
Coulomb potential with formal charges. For example, LUDI
(Böhm, 1994), ChemScore (Eldridge et al., 1997), and SFCscore
(Sotriffer et al., 2008) implement a contact-based term that
attributes 1 to each pair metal–ligand atom within a distance
criteria, and lower scores when the distance becomes larger than
the specified criteria until an upper limit of distance, attributing
the score 0 for larger distances. AutoDock4Zn has implemented
a specific force-field-based potential for the zinc ion to consider
both geometric and energetic components of the metal–ligand
interaction, achieving better performance for pose prediction in
redocking experiments (Santos-Martins et al., 2014).

Many studies have highlighted the influence of halogen bonds
(X-bonds) on enhancing binding affinity against several targets
and the computational methods developed so far (Desiraju et al.,
2013; Ford and Ho, 2016). Given the importance of this specific
interaction in the hit and lead identification, some scoring
functions have incorporated special treatment for X-bonds, such
as XBScore (Zimmermann et al., 2015), ScorpionScore (Kuhn
et al., 2011), and AutoDockVinaXB (Koebel et al., 2016).

Desolvation
The desolvation contribution to the binding affinity arising from
the formation of the protein–ligand complex with the release
of water molecules to the bulk solvent can be separated into
two distinct effects: the nonpolar and the polar desolvation.
The nonpolar desolvation, favorable to binding, is related to
the hydrophobic effect when transferring nonpolar molecular
surface from the bulk water to a medium that is nonpolar, as
is the case of many protein binding cavities (Tanford, 1980;
Williams and Bardsley, 1999; Freire, 2008). At the same time,
the desolvation of polar or charged groups of the protein or
ligand is unfavorable to binding when the formed solute–solvent
interactions are not effectively satisfied upon the protein–ligand
binding (Blaber et al., 1993; Kar et al., 2013). In this context,
many scoring functions have implemented desolvation terms to
introduce the hydrophobic effect and/or penalize buried and not
interacting polar/charged atoms after protein–ligand binding to
improve binding affinity predictions.

The X-Score is a consensus scoring (CS) function based on
three distinct strategies to represent the favorable contribution
of the desolvation event related to the hydrophobic effect:
hydrophobic surface (X-ScoreHS), hydrophobic matching (X-
ScoreHM), and hydrophobic contact algorithms (X-ScoreHC)
(Wang et al., 2002). The first one is the hydrophobic
surface algorithm (X-ScoreHS), where the hydrophobic effect
is proportional to the ligand hydrophobic surface in contact
with the solvent accessible surface of the protein. The second
is the hydrophobic matching algorithm (X-ScoreHM), the same

algorithm adopted in the SCORE function (Wang et al., 1998)
that calculates the hydrophobic contribution as a function of
the logP of each ligand atom and the respective lipophilicity
of surrounding protein atoms. The third and simplest method
is the hydrophobic contact algorithm (X-ScoreHC), which
approximates the hydrophobic effect through the contact
between protein–ligand pairs of lipophilic atoms.

LUDI adopts an approach similar to the X-ScoreHS (Böhm,
1994), while ChemScore (Eldridge et al., 1997) implements the
algorithm similar to the X-ScoreHC. Fresno scoring function
(Rognan et al., 1999) implements a more sophisticated method
using the resolution of the linear form of the PB equation using
finite difference methods. Cyscore (Cao and Li, 2014) considers
the protein shape through a curvature-dependent surface-area
term for hydrophobic free energy calculation, leading to a
significant improvement on affinity prediction performance on
PDBbind benchmarking sets.

The unfavorable desolvation effect from burying polar groups
after ligand binding also plays an important role in the binding
event, but it is commonly neglected by most scoring functions
(Kar et al., 2013; Li et al., 2014c; Cramer et al., 2017). Some
efforts have been made to implement specific penalization terms
developed with distinct approaches to account for the polar
desolvation, such as in the scoring functions ICM (Abagyan et al.,
1994; Totrov and Abagyan, 1999; Fernández-Recio et al., 2004),
XP GlideScore (Friesner et al., 2006a), LigScore (Krammer et al.,
2005), and DockTScore (de Magalhães et al., 2014; Guedes et al.,
2016).

The use of more sophisticated methods based on molecular
dynamics (MD), such as MM-PBSA and MM-GBSA, have
been used in conjunction with empirical scoring functions to
predict binding affinities. MM-PBSA and the related MM-GBSA,
considered as “end-point” approaches since all calculations are
based on the initial and final states of the simulation, rely on MD
simulations to compute the polar and nonpolar contributions
of the protein–ligand binding event. A classical force field is
utilized to compute the potential energy, and the solvation energy
is calculated with an implicit solvation model. PB and GB are
continuum electrostatic models used to calculate the electrostatic
part of the solvation energy that treats the protein and the
ligand as low-dielectric regions while considering the aqueous
solvent as a high-dielectric medium (Honig et al., 1993). When
associated with a surface-area-dependent term (SA), they lead
to the implicit solvation models PB (PBSA) (Sitkoff et al., 1994)
and Generalized Born (GBSA) (Still et al., 1990; Qiu et al.,
1997). Sun et al. (2014) evaluated the performance of MM-
PBSA and MM-GBSA methods using several protocols with
1864 protein–ligand complexes from PDBbind v2011 dataset.
They concluded that although similar results were observed,
MM-GBSA is less sensitive to the investigated systems and is
more suitable to be used in general cases (e.g., reverse docking,
which is widely used to predict the receptor target(s) of a
compound). Inspired by the promising results obtained with
GBSA, Zou and Kuntz (1999) implemented a GBSA scheme
into the DOCK program as an alternative scoring function and
obtained improved binding affinity predictions due to a better
description of electrostatic and desolvation effects. More recently,
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Zhang X. et al. (2017) also obtained significant improvement
on binding affinity prediction of antithrombin ligands when
rescoring the top-scored docking poses from VinaLC docking
engine with MM-GBSA. Spiliotopoulos et al. (2016) successfully
integrated a damped version of MM-PBSA with the HADDOCK
scoring function to predict binding poses and affinity of protein–
peptide complexes.

Ligand Entropy
Configurational entropy is related to the loss of flexibility of
the ligand upon binding. It can be represented as a sum of
the conformational (Sconf) and the vibrational (So

vib) entropies
(Schäfer et al., 2002; Chang et al., 2007). In the energy landscape
framework of the protein–ligand binding event, the former
reflects the number of occupied energy wells and the last express
the average width of the occupied wells. Sconf is related to the
reduction of the number of ligand accessible conformations
upon binding, while So

vib is mainly caused by the restriction of
rotational amplitude inside the binding site when compared to
the unbounded state (Chang et al., 2007; Gilson and Zhou, 2007).

Given the difficulty in modeling entropic effects for 1Gbind,
scoring functions generally neglect their contributions or
adopt simplified algorithms to approximate entropies in a
straightforward manner (Jain, 2006). Scoring functions such as
LUDI (Böhm, 1994) and X-Score (Wang et al., 2002) consider the
entropic loss due to the restriction of rotational and translational
degrees of freedom implicitly in the regression constant 1G0.
Surflex approximates such entropic loss as the logarithm of the
ligand molecular weight multiplied by a scale factor related to
the rough mass dependence of the translational and rotational
entropies (Jain, 1996).

The restriction of the rotatable bonds of the ligand after
the formation of the protein–ligand complex also promotes an
entropic loss (Sconf) that is unfavorable to the binding affinity.
Some scoring functions have implemented specific terms in
a rough approximation to account for entropic contributions
of the ligand, as the most used strategies: (i) proportional
to the number of rotatable bonds, and (ii) considering the
environment of each rotatable bond, i.e., only penalize rotatable
bonds that are in contact with the protein. LUDI (Böhm, 1994)
and Fresno (Rognan et al., 1999) implement the approach (i)
while ChemScore (Eldridge et al., 1997) and ID-Score (Li et al.,
2013) use variations of the strategy (ii).

Inspired by the successful application of the energy landscape
theory in protein folding and biomolecular binding (Jackson and
Fersht, 1991; Miller and Dill, 1997; Baker, 2000), researchers
make use of the multiple binding modes predicted by docking
programs to describe the binding energy landscape. For example,
Wei et al. (2010) developed two new parameters extracted from
the multiple binding modes, generated by the AutoDock 3.05
program, and combined them for classification purposes using
logistic regression to distinguish true binders among high-scored
decoys. The new proposed scheme considered the energy gap
(i.e., the difference between the binding energy of the native
binding mode and the average binding energy of other binding
modes – the thermodynamic stability of the native state) and
the number of local binding wells (kinetic accessibility). This

strategy was successfully applied in the neuraminidase and
cyclooxygenase-2 systems from the DUD database, with even
improved accuracy when associated with the docking scores.
Grigoryan et al. (2012) also successfully applied the energy gap
to distinguish true binders from decoys in several protein targets
from DUD on single and multiple-receptor VS experiments,
achieving superior performance than the ICM scoring function.

Descriptors Based on the Counting of
Atom Pairs
With the advance of sophisticated machine-learning algorithms,
an increasing number of scoring functions based on a pool of
simplistic descriptors have emerged, such as the counting of
protein–ligand atom pairs and ligand-based properties. In the
literature, such scoring functions are also known as “descriptor-
based” or “machine-learning based.” It is important to note that
this kind of scoring functions are also empirical models, since
(i) the algorithms commonly used to derive the models, such
as the classical MLR or the robust RF, are machine-learning
methods8, (ii) the attributes used to describe the binding event
are, in fact, descriptors, independently of their functional form,
physical meaning, and complexity degree.

The success of descriptors based on the simple counting
of atom pairs is associated with two important aspects: (i)
amount and definition not limited by complex implementations
or physical meaning assumptions, and (ii) practically eliminate
the necessity of a detailed preparation of the structures,
correct assignment of atom types, and physical quantities (e.g.,
atomic partial charges). Many papers in the recent literature
describe outstanding results for binding affinity prediction and
active/inactive classification using this more pragmatic approach
(Ballester and Mitchell, 2010; Pereira et al., 2016; Wójcikowski
et al., 2017). However, the conjunction of nonlinear models and
more straightforward atom counting descriptors is subjected to
significant criticisms (Gabel et al., 2014). Among the main critics
we can highlight: (i) insensitiveness to the protonation state of
the ligands and receptor residues; (ii) insensitiveness to the ligand
pose; and (iii) facilitate the inclusion of methodological artifacts
due to overtraining even when using large training sets.

TRAINING AND TEST SETS

Datasets
The availability of protein–ligand structures with measured
binding data has been increased due to efforts on data collection,
such as PDBbind-CN (Liu et al., 2015, 2017), DUD-E (Mysinger
et al., 2012), and DEKOIS (Bauer et al., 2013) projects.

PDBbind-CN is a source of biomolecular complexes with
protein–ligand structure determined experimentally with the
associated binding data manually collected from their original
reference (Liu et al., 2015). The current release (version 2017)

8Indeed, according to the IUPAC Recommendations 2015, the term “machine
learning” refers to a computer algorithm that generate empirical models, (...), that
is derived from the analysis of a training set for which all the necessary data are
available (Martin et al., 2016).
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contains 17,900 structures (14,761 protein–ligand complexes)
and is annually updated to keep up with the growth of the
Protein Data Bank (Berman et al., 2000). The “refined set” is a
subset composed of high-quality datasets constructed according
to several criteria concerning the quality of the structures, the
affinity data, and the nature of the complex, being considered one
of the largest datasets of structures available for the development
and validation of docking methodologies and scoring functions.
Collected affinities comprise a large interval of values, ranging
from 1.2 pM (1.2 × 10−12 M) to 10 mM (1.0 × 10−3 M).
Also, PDBbind-CN provides a benchmarking named “core set”
widely used for comparative assessment of scoring functions in
predicting affinities (Li Y. et al., 2018). The core set is a subset
of the refined set constructed using the following protocol: (i)
firstly, protein structures with identity of sequence higher than
90% were grouped leading to 65 clusters associated with different
protein families; (ii) only the clusters composed of at least five
members were considered to construct the core set; and (iii)
for each of these clusters, only the complexes with the lowest,
the medium, and the highest affinities were selected to the final
composition of the core set. A significant drawback of PDBbind-
CN datasets is the insufficient information regarding negative
data (i.e., experimentally confirmed inactive compounds).

The DUD-E dataset is an enhanced version of the original
DUD set and has been widely used to train and validate scoring
functions (Huang et al., 2006; Mysinger et al., 2012). It is
composed of 102 targets with corresponding active, inactive,
marginal, and decoy compounds. Although the number of
ligands (i.e., active compounds) significantly varies for each
target, a proportion of 50 decoys per ligand is kept for all
102 macromolecules. Decoys are presumed, not experimentally
verified, to be inactive compounds since they are chosen to
be topologically distinct from ligands but exhibiting similar
physicochemical properties. The use of decoys instead of
validated inactive compounds remains a major drawback for
most datasets since no experimental activity are reported for
them, and the number of confirmed inactive molecules is too
scarce (Lagarde et al., 2015; Chaput et al., 2016b; Réau et al.,
2018).

DEKOIS 2.0 is composed of 81 benchmarking sets
for 80 protein targets of therapeutic relevance, including
nonconventional targets such as protein–protein interaction
complexes (Bauer et al., 2013). Active compounds and the
associated binding affinity were retrieved from BindingDB
applying several filters to remove pan assay interference (PAINS)
compounds, weak binders, reactive groups, and undefined
stereocenters. To derive a structurally diverse data set, for each
protein target the active compounds were clustered into 40
groups according to the Tanimoto structural similarity and only
the most potent compound of each cluster was selected. For each
active molecule, 30 structurally diverse decoys molecules from
ZINC database were selected according to an improved protocol
to that used in the first version of DEKOIS dataset (Vogel et al.,
2011), including the detection and removing of latent actives in
the decoy set (LADS). Although DUD-E and DEKOIS 2.0 share
a common structure of active and decoys compounds, they are
complementary since there is a small overlap between them: only

four protein targets present in DEKOIS 2.0 overlaps with the
DUD-E dataset.

Scoring functions can be developed based on either
experimental structures (i.e., protein–ligand structure
experimentally determined) or conformations predicted with
docking programs. The structure source (i.e., experimental
or docked) is an important point to consider. The use
of benchmarking sets such as DUD-E and DEKOIS2.0 is
directly dependent on the docking program adopted since the
experimental structures of the protein–ligand complexes are not
available as in the PDBbind datasets. In fact, the scoring function
training or validation in VS experiments using these datasets is
performed with no warranty that the ligand poses were correctly
predicted.

Training, Validation, and Test Sets
The dataset is commonly separated into three subsets without
overlapping structures: (i) the training set, (ii) the validation set,
and (iii) the test set (also known as “external validation set”).

The training set is utilized to calibrate the parameters of
the scoring function and to learn the rules that establish
a quantitative relationship between the descriptors and the
experimental affinity. The validation is used to assess the
generalization error9 guiding the model tuning and selection.
Once the best model is chosen, it is then applied to the test set
to evaluate the real predictive capacity of the model.

There is a tradeoff between the size of the training
and validation/test sets. Whereas the use of an extensive
validation/test set is useful in providing a better estimate of the
generalization error, this usually implicates in a smaller dataset
to be utilized in the training phase (Abu-Mostafa et al., 2012).
Studies evaluating the influence of the training size for the
performance of linear and nonlinear scoring functions for affinity
prediction demonstrated that MLR becomes insensitive to the
growth of the training size whereas larger training sets can lead
to an overall better accuracy of nonlinear scoring functions (Ding
et al., 2013; Ain et al., 2015; Li et al., 2015a,b; Li H. et al., 2018).

In this context, cross-validation emerges as an alternative
strategy to estimate the generalization error without strictly
changing the training set size. Cross-validation experiments
consist of continuously splitting the original training set of size N
into two parts K times (K-fold cross-validation): a smaller set of
size V for validation (V = N/K) and a larger set of the remaining
T instances (T = N−V) for training (e.g., leave-one-out cross-
validation considers V = 1). Different schemes of cross-validation
have been adopted and explored to train linear and nonlinear
models (Shao, 1993; Golbraikh and Tropsha, 2002; Kramer and
Gedeck, 2010; Ballester and Mitchell, 2011; Wójcikowski et al.,
2017). For example, in the recent work of Wójcikowski et al.
(2017), they performed fivefold cross-validations using the DUD-
E dataset. Three distinct splitting strategies were considered:
horizontal, vertical, and per-target. In the horizontal split, all folds
necessarily contain protein–ligand complexes from all protein

9Generalization error is the expected error when the scoring function is evaluated
on a dataset composed of new protein–ligand complexes (i.e., structures not used
in the training step).
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targets (i.e., each protein target is present in both training and
test sets). In the vertical split, the protein targets present in the
test set do not have representative structures in the training set.
This evaluation simulates those cases where the protein target
of interest was not present during the training phase. Finally,
in the per-target split, the training and test are performed for
each protein target (i.e., 102 unique machine-learning models
relative to the 102 DUD-E targets), simulating the construction
and validation of target-specific scoring functions.

It is important to keep in mind that training, validation, and
test sets must never have protein–ligand complexes in common
at the same time. Furthermore, the test set must be composed
of instances not used in the training process at any moment.
Thus, the test set must be used only for evaluating the predictive
performance of different scoring functions, and no decision
should be taken based on the performance for this dataset to
avoid useless comparisons due to artificially high correlations.

Benchmarking and Evaluation Metrics
Standard benchmarks are of great importance for an objective
assessment of scoring functions providing a reproducible and
reliable way to compare different methods. PDBbind (Liu et al.,
2015), DUD-E (Mysinger et al., 2012), and DEKOIS 2.0 (Bauer
et al., 2013) are examples of widely used benchmarks for
evaluating scoring functions.

Many evaluation metrics are used to quantify the performance
of scoring functions in pose prediction, active/inactive
classification, and affinity prediction. A special issue on
Evaluation of Computational Methods collects several high-
quality papers covering the main aspects of the problem in
evaluating and comparing distinct methodologies, highlighting
the strengths and weakness of widely used metrics (Stouch, 2008).
Recently, Huang and Wong (2016) developed an inexpensive
method – the screening performance index (SPI) – to evaluate VS
methods that correlate with BEDROC with less computational
cost, since it discards the necessity of docking decoy compounds
(i.e., only considers the docking of active molecules).

Scoring functions are generally evaluated regarding
four aspects related to the three goals of scoring functions
aforementioned (Liu et al., 2017):

Docking power: the ability of a scoring function in detecting
the native binding mode from decoy poses as the top-ranked
solution. The root-mean square deviation (RMSD) is the most
commonly used metric to assess the docking power performance.

Screening power: the ability of a scoring function in correctly
distinguishing active compounds from inactive molecules. The
screening power test does not require that the scoring function
correctly predict the absolute binding affinity. The screening
power is usually quantified by BEDROC and enrichment factor
(EF).

Ranking power: the ability of a scoring function in rank
correctly the compounds according to the binding affinities
against the same target protein. The Spearman correlation
coefficient (RS) and Kendall’s tau are metrics widely used for
assessing the ranking power of scoring functions.

Scoring power: the ability of a scoring function in rank
correctly the compounds according to the binding affinities

against distinct target proteins. It is important to note that the
scoring power test considers the absolute value of the affinity
prediction, requiring that the predicted and experimentally
observed binding affinities have a linear correlation. This
performance is widely assessed by the Pearson correlation
coefficient (RP), and the root-mean squared error (RMSE).

The predictive performance of scoring functions may vary
between different benchmarking experiments due to factors
such as: (i) composition of the dataset, (ii) structural quality
of the complexes, (iii) level of experience of the researches
performing the experiments, and (iv) protocol of preparation of
the complexes (Yuriev and Ramsland, 2013). Although ranking
scoring functions according to their performances for affinity
prediction on benchmark sets highlights the more competitive
models, it is important to observe that small differences in
the calculated performances are generally insufficient to state
which scoring function performs better than other when
comparing the top-ranked models. Since most benchmarking
studies evaluate scoring functions on a few hundred complexes,
small differences in Spearman correlation coefficient between
0.05 and 0.15, for example, lack statistical significance (Carlson,
2013, 2016). Thus, larger benchmarking sets composed of high-
quality protein–ligand complexes structures are required for
a reliable comparison of docking methodologies and scoring
functions.

In addition to the well-known benchmarking sets, prospective
evaluations are of substantial importance since the blinded
predictions simulate real experiments of VS campaigns.
Drug Design Data Resource (D3R10) periodically provide
pharmaceutical-related benchmark datasets and a Grand
Challenge as a blinded community challenge with unpublished
data (Gathiaka et al., 2016). According to the results obtained
in the Grand Challenge 2, it is clear that the pose prediction
task is well performed for many methodologies, but scoring is
still a very challenging task, even when the crystal structures are
provided (Gaieb et al., 2018). Even with the crystal structures of
36 complexes at Stage 2, the maximum Kendall’s tau achieved
was 0.46, reinforcing the great deal in correctly ranking a set
of compounds. Performances and detailed description of the
protocols adopted are provided at the D3R Grand Challenge 2
website11 and on the scientific reports published on a special
issue of Journal of Computer-Aided Molecular Design (Gaieb
et al., 2018).

In the last version, D3R Grand Challenge 3 (GC3), the
participants had also to deal with even more challenging tasks,
such as the selectivity identification for kinases, assessing the
ability of the scoring functions in identifying large changes in
affinity due to small structural changes in the ligand (kinase
activity cliff ), and the influence of kinase mutations on protein–
ligand affinity (kinase mutants).

The broad profile of the D3R Grand Challenges, regarding
chemical space diversity and affinity data carefully collected,
makes their datasets one of the more reliable sources to evaluate
docking and scoring methods, providing useful guidelines and

10http://www.drugdesigndata.org
11https://drugdesigndata.org//about/grand-challenge-2-evaluation-results
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best practices for further VS campaigns and methodological
improvements.

The Accuracy of Input Structural and
Binding Data
Important issues regarding the quality of structural and affinity
data must be considered for the development, validation, and
application of scoring functions in VS experiments. Reliable
protein–ligand structures usually comply these criteria: good
resolution (2.5 Å or better), fully resolved electron density for
the entire ligand and the surrounding binding-site residues,
and without significant influences from crystal packing on the
observed binding mode (Cole et al., 2011).

The correct assignment of both protein and ligand
protonation/tautomeric states with respect to the experimental
pH, Asn/Gln/His flips, and defined stereocenters of the
compounds are crucial, requiring a careful inspection of the
structures (Kalliokoski et al., 2009; Martin, 2009; Petukh
et al., 2013; Sastry et al., 2013). Indeed, the preparation of
protein–ligand complexes has a direct influence on training and
evaluation of scoring functions, mainly for scoring functions
based on force-field descriptors. For example, the initial
automatic preparation of the structures performed by PDBbind
did not provide an optimized hydrogen bond network and
appropriate assignment of protonation/tautomeric states of the
α-amylase and MeG2-GHIL complex [Figure 1, PDB code 1U33;
Numao et al., 2004]. The careful inspection and correction of
such complexes comprise a time-consuming and challenging
task, but they are particularly important when hydrogen atoms
are considered explicitly. In such cases, the wrong orientation
of hydrogen atoms can lead to high van der Waals energies,
underestimation of hydrogen bond interactions, and incorrect
electrostatic repulsions between charged/polar groups. Despite
many efforts made for collecting even more extensive and better
quality datasets, little attention has been paid to the careful
preparation of the protein–ligand structures, usually relying on
automatic procedures (Bauer et al., 2013). In this context, scoring
functions mainly composed of simple contact-based descriptors
(element–element pair counting) emerge to circumvent the
complicated preparation required in large datasets for VS.

Especially for affinity prediction purposes, the use of datasets
with curated affinity data is essential for reliable predictions and
benchmarking. For example, the PDBbind refined set follows
several criteria concerning the bioactivity manually collected
from the original reference (Liu et al., 2015): (i) only complexes
with known dissociation constants (Kd) or inhibition constants
(K i) are allowed, (ii) no complexes with extremely low (Kd or
K i > 10 mM) or extremely high (Kd or K i < 1 pM) affinities are
accepted, and (iii) estimated values are rejected, e.g., Kd ∼ 1 nM
or K i > 10 µM. Despite the efforts in collecting high-quality
affinity data, many factors such as the inherent experimental error
can be a source of inaccuracies, limiting the average prediction
error achievable on large datasets (Shoichet, 2006; Ferreira
et al., 2009; Sotriffer and Matter, 2011; Kramer et al., 2012).
Furthermore, the use of decoys instead of confirmed inactive
compounds has important impacts in training and measuring

the performance of scoring functions (Chaput et al., 2016b; Réau
et al., 2018).

MACHINE LEARNING

Regression and Classification
Scoring functions can be developed using regression methods to
reproduce continuous (e.g., binding constants) or classification
methods to reproduce binary affinity data (e.g., active/inactive).
It is possible to use scoring functions trained with regression
methods to classify active and inactive molecules given a
predetermined range of affinity data for defining active and
inactive compounds (Ain et al., 2015). It is also possible to
use both classification and regression approaches to deal with
the same problem of binding affinity prediction. For example,
Pason and Sotriffer (2016) used a strategy of classifying the
complexes using algorithms such as KNN and further generating
linear regression models for each cluster achieving predictive
performances comparable to that obtained by the nonlinear
scoring function trained with RF. Many sophisticated machine-
learning techniques automatically generate local models for
similar training points (e.g., locally weighted regression), being
able to classify the new instances automatically and use different
regression models according to specific properties without
explicitly defining classes based on such descriptors.

Linear Versus Nonlinear Scoring
Functions
Scoring functions can also be classified as “linear” and
“nonlinear” models (Artemenko, 2008).

Linear regression is one of the simplest learning algorithms
and is widely used as a starting point in the development of
nonlinear regression models (Bishop, 2006). A linear empirical
scoring function can be written as a sum of independent terms
such as:

1Gbinding = c0 + c11GvdW + c21Ghbond + c31Gentropy

where ci is the weighting coefficients of the respective 1Gi terms,
adjusted to reproduce affinity data based on the training set. In
the example, 1GvdW is a van der Waals potential, 1Ghbond is a
specific term accounting for hydrogen bonds, and 1Gentropy is
related to the ligand entropic loss upon binding.

The most crucial difference between linear and nonlinear
scoring functions is that the former requires a predefined
functional form (e.g., the sum of terms in the case of linear
scoring functions), whereas the latter implicitly derives the
mathematical relationship between the descriptors, allowing the
combination of variables and higher order exponents for the
terms. This advantage of nonlinear scoring functions partially
circumvents the problematic modeling assumptions of linear
models (Dill, 1997; Baum et al., 2010; Sotriffer, 2012).

Linear scoring functions developed to date have shown
moderate correlations (RP ∼ 0.6), whereas nonlinear models
achieved significantly better correlations (RP > 0.7) on
benchmarking studies (Ashtawy and Mahapatra, 2012;
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FIGURE 1 | The structure of α-amylase complexed with the inhibitor MeG2-GHIL (PDB code 1U33) as (A) provided by PDBbind and (B) after manual preparation.
Bad and favorable polar contacts are highlighted in orange and green dashes, respectively. D, aspartate; E, glutamate or glutamic acid; H, histidine; R, arginine.

Khamis and Gomaa, 2015; Wang and Zhang, 2017; Wójcikowski
et al., 2017). RF, SVM, and more recently, DL, are nonlinear
algorithms widely used to develop scoring functions.

The superiority of nonlinear models has also been confirmed
through the rebuild of linear scoring functions using nonlinear
algorithms, i.e., scoring functions trained with the same original
descriptors of the correspondent linear model but with a
different regression method. As an example, Zilian and Sotriffer
(2013) trained a RF scoring function using the same SFCscore
descriptors (named SFCscoreRF) and found a much improved
model, with R = 0.779 significantly higher than those correlations
obtained for the SFScore linear models (Pason and Sotriffer,
2016). Li et al. (2014a) investigated the replacement of MLR
by RF for regression using the same Cyscore descriptors
and found that the nonlinear model improved the affinity
prediction. Furthermore, they also observed that larger training
sets and describing the complexes with more descriptors
have a positive impact in the predictive performance of the
nonlinear models. Pason and Sotriffer (2016) demonstrated
that it is possible to achieve similar high performances of
nonlinear models through the development of a set of linear
scoring functions trained using clustered – smaller and more
homogeneous – datasets of protein–ligand complexes. In fact,
many machine-learning techniques are based in this approach.
For example, locally weighted linear regression automatically
generate distinct “local” linear models weighting the training
points according to their similarity with the instance to be
predicted.

DL is considered as a promising approach to diverse
drug discovery projects guided by the successes obtained in
image and speech recognition problems (Zhang L. et al.,
2017). Such methods take advantage of the recent increase
in computational power and the ever-expanding availability of
structural and binding data. DL methods are neural networks
with many hidden layers, being capable to automatically learn
the complicated relationship between the descriptors related to
the protein–ligand binding. Recently, DL has been applied for
pose/affinity prediction and active/inactive detection, exhibiting

an outstanding performance when compared with several
well-performing scoring functions developed with both linear
and nonlinear approaches (Wallach et al., 2015; Khamis et al.,
2016; Pereira et al., 2016; Ragoza et al., 2017; Jiménez Luna et al.,
2018; Nguyen et al., 2018).

Despite nonlinear scoring functions have the main advantage
of discarding the necessity of a pre-defined functional form,
their main drawback is that they work as “black boxes” since
the relationship between the descriptors is often vague, requiring
careful use to avoid meaningless interpretations (Gabel et al.,
2014). Together with the use of a significant amount of
descriptors lacking physical meaning, nonlinear models offer
the risk of producing excellent performance indexes due to
overfitting and/or bias to the training set construction (e.g.,
capturing the rules adopted during the selection of active
and decoy compounds) (Hawkins, 2004; Abu-Mostafa et al.,
2012).

CHALLENGING TOPICS AND
PROMISING STRATEGIES

Protein Flexibility
Protein flexibility is still a great challenge for docking programs
and scoring functions (Cavasotto and Singh, 2008; Tuffery
and Derreumaux, 2012; Buonfiglio et al., 2015; Spyrakis and
Cavasotto, 2015; Kurkcuoglu et al., 2018). Most docking
methodologies adopt a single, rigid conformation of the
receptor, due to the high computational cost and methodological
limitations proportional to the increase in the degree of
flexibility. However, over the last decades, many strategies
have been implemented in docking programs to consider some
degree of flexibility in the targeted, such as soft potentials
and ensemble docking. In this context, the development of
scoring functions adapted for flexible receptor docking is crucial
to achieve real improvements in pose and affinity prediction
(Totrov and Abagyan, 1997; Wei et al., 2002; Fischer et al.,
2014; Ravindranath et al., 2015; Lam et al., 2017; Kong
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et al., 2018). Ferrari et al. (2004) implemented the fast and
methodologically simple soft-docking strategy into the DOCK
program, softening the repulsive term of the Lennard-Jones
potential, allowing small overlaps between the protein and
the ligand atoms. They also validated the methodology in
VS studies of potential ligands of the T4 lysozyme and the
aldol reductase and obtained better results than using regular
docking strategies. Ensemble docking implicitly considers the
receptor flexibility by docking the ligand on a set of protein
conformations instead of a single conformation, being capable
to simulate large-scale receptor flexibility (Korb et al., 2012).
Recently, Fischer et al. (2014) successfully identified new
ligands targeting specific receptor conformations of cytochrome
c peroxidase using a flexible docking method that samples
and weights protein conformations guided by experimentally
derived conformations, integrating the Boltzmann-weighted
energy penalties related with the protein flexibility to the
DOCK3.7 scoring function. Despite the many efforts made to
include the protein flexibility in VS experiments, the complex
and multifactorial framework of flexible protein–ligand binding
is still a great challenge (Bottegoni et al., 2011; Nunes-Alves
and Arantes, 2014; Antunes et al., 2015; Buonfiglio et al.,
2015; Kong et al., 2018). Whereas the high computational cost
related with sampling protein conformations and docking large
compound libraries can be overcome with the use of high-
performance computing platforms, weighing such conformations
and integrating them with the scoring functions remains a
hindrance for accurate estimation of binding affinities on flexible
systems.

Solvation
Water molecules play an essential role in the ligand–protein
binding process. Besides the hydrophobic and desolvation
effects, individual water molecules can stabilize the ligand
binding mode through the formation of water bridges or
a water-mediated hydrogen-bond network (Poornima and
Dean, 1995; Levy and Onuchic, 2006). The correct prediction
of the free energy of binding associated to the ligand
displacement of water molecules is a key challenge for the
currently available docking scoring functions (Riniker et al.,
2012; Spyrakis and Cavasotto, 2015; Bodnarchuk, 2016). An
interesting approach is the use of a water-mapping protocol
based on the post trajectory analysis of explicit solvent
MD. This analysis is based on the inhomogeneous solvation
theory and tries to predict the free energy cost of moving
a water molecule from a protein hydration site into the
bulk solvent (Yang et al., 2013). For instance, in the WScore
docking methodology, the location and thermodynamics of
explicit waters are predicted using WaterMap and integrated
to the scoring function together with a desolvation term to
penalize the associated desolvation of polar or uncharged
groups of protein or ligand (Murphy et al., 2016). Many
solvent mapping methods were evaluated on real drug design
studies in a recent paper (Bucher et al., 2018), showing
that solvent mapping methods could be important to help
ligand optimization and to correctly rank compounds to assist
synthetic prioritization. However, these approaches only calculate

the solvent contribution to the free energy and must be
combined with other methods to be used for lead optimization
or VS.

Recently, Bodnarchuk (2016) published an extensive
review of water-placement methods helpful for locating
conserved water molecules within the protein binding site to
be considered explicitly during the docking simulation. Once
the water molecules are identified, some docking engines have
implemented strategies to treat water molecules explicitly with
adapted scoring functions. The GOLD program considers
all-atom and flexible water model able to rotate around its
three principal axes, and rewards water displacement in
the GoldScore or ChemScore scoring functions according
to a balance between the loss of rigid-body entropy and
the change in the interaction energies on binding to the
protein cavity (Verdonk et al., 2005). In AutoDock4, explicit
water molecules of the first hydration shell as represented as
uncharged spheres directly attached to the ligand, whereas
a hydration force field accounting for the entropic and
enthalpic contributions, automatically predicts their potential
in mediating protein–ligand interactions (Forli and Olson,
2012).

Covalent Docking
All the discussion made in this review assumes that we are dealing
with non-covalent inhibitors. In such cases, the identification and
development of computer-aided strategies to identify or improve
lead compounds are based on the identification of non-covalent
interactions (e.g., electrostatic, van der Waals, hydrophobic
interactions) to improve potency or increase selectivity. However,
there is a whole class of inhibitors that form a covalent bond with
their enzyme/receptor target (De Cesco et al., 2017). Covalent
inhibitors can further be divided into two different categories
according to whether inhibition is reversible or irreversible
(Tuley and Fast, 2018). The development of covalent-docking
methodologies capable of dealing with such type of inhibition
is very important due to the potential advantages associated
with covalent inhibitors (De Cesco et al., 2017), including (i)
sustained duration of action leading to less frequent dosing, (ii)
increased ligand efficiency, (iii) ability to inhibit targets with
shallow binding sites previously categorized as “undruggable,”
and (iv) increased ability to overcome resistant mutations, among
others. The development of non-covalent inhibitors in a drug-
design study is usually guided by the optimization of the
affinity or dissociation constants (i.e., K i, Kd, IC50). However,
dealing with covalent inhibition is even more complex, and
in order to address the full potential of a covalent-inhibitor
we need not only to measure their affinities but also kinetic
binding parameters (e.g., residence time tr, the average time
that a ligand remains bound in the binding site) (De Cesco
et al., 2017; Trani et al., 2018). The development of docking
methodologies to predict poses and binding affinities of ligands
that bind covalently to the receptor is a challenging task.
Due to the increasing interest in covalent drugs, many non-
covalent docking programs have developed covalent versions
and some new docking programs focused on covalent ligands
have been developed (Kumalo et al., 2015; Awoonor-Williams
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et al., 2017; De Cesco et al., 2017). GOLD (Jones et al., 1997),
Autodock4 (Bianco et al., 2016), CovalentDock (Ouyang et al.,
2013), CovDock (Zhu et al., 2014), DOCKovalent (London et al.,
2014), and DOCK-TITE (Scholz et al., 2015) are some examples
of docking programs that developed specific methodologies
to deal with covalent-docking. These methodologies were
discussed in recent reviews addressing covalent-inhibitors and
covalent docking (Kumalo et al., 2015; Awoonor-Williams et al.,
2017; De Cesco et al., 2017). Some of these methods try to
include the complexity of the covalent inhibition introducing
modifications into their non-covalent scoring functions. For
example, the introduction of a Morse potential to describe the
energy associated with the bond formation (CovalentDock). Two
critical aspects in the future development of covalent scoring
functions are the capacity to predict the kinetics of ligand
binding (e.g., residence times) and the intrinsic reactivity of
electrophilic and nucleophilic pairs of atoms (De Cesco et al.,
2017).

Quantum Mechanics
The use of quantum mechanical methods can improve the
description of protein–ligand interactions and, in principle,
could provide a more accurate binding affinity (Raha and Merz,
2005; Chaskar et al., 2017; Crespo et al., 2017; Cavasotto et al.,
2018). This is particularly true when dealing with systems
where the molecular recognition involves bond formation,
π-stacking, cation-π, halogen bonding (i.e., σ-hole bonding), and
polarization and charge transfer effects (Christensen et al., 2016).
These non-classical interactions/effects are beyond the limits of
classical methods and represent a significant challenge to the
development of scoring functions to be used in computational
drug design experiments. In particular, metal ions interactions
are essential when dealing with metalloproteins and, due to the
large changes in the electronic structure under ligand binding,
are also a great challenge. In the last 10 years, important
advances were made in computing hardware (e.g., Graphics
Processing Units – GPUs), in the development of quantum
algorithms to compute molecular wave functions (Dixon and
Merz, 1997; Birgin et al., 2013), the development of more
reliable semi-empirical quantum methods (Christensen et al.,
2016; Yilmazer and Korth, 2016), and development of new hybrid
QM/MM methods (Chaskar et al., 2017; Melo et al., 2018).
These advances were essential to overcome the bottleneck of
the high computational cost and are allowing the increasing
use of QM methods in the prediction of protein–ligand binding
affinities (Crespo et al., 2017). Recent high-quality reviews cover
applications of explicit QM calculations in lead identification
and optimization (Adeniyi and Soliman, 2017; Crespo et al.,
2017; Cavasotto et al., 2018), development of QM methods
for ligand binding affinity calculations (Ryde and Söderhjelm,
2016), and development of semi-empirical QM methods for non-
covalent interactions (Christensen et al., 2016; Yilmazer and
Korth, 2016).

The results obtained using QM or hybrid QM/MM-based
methods are very encouraging when compared to the standard
scoring functions, principally when dealing with metalloproteins
(Chaskar et al., 2017; Pecina et al., 2018). Wang et al. (2011)

rebuild the AutoDock4 scoring function using ligand partial
charges calculated with QM methods and protein charges from
the Amber99SB instead of the Gasteiger method, improving
both pose and affinity predictions. Moreover, the results from
the 2016 D3R Grand Challenge indicate that the use of
QM/MM scoring could be a powerful strategy (Gao et al., 2018).
Yang et al. (2015) developed and introduced the quantum
mechanics-based term XBScoreQM as a combination of van
der Waals and electrostatic potentials to describe the X-bond
interactions into the AutoDock4 scoring function. The new
scoring function achieved good performances on both pose and
affinity prediction when compared against 12 diverse scoring
functions, and increase predictive capacity to deal with protein–
ligand complexes with X-bond interactions. Nevertheless, it
is important to note that it is not guaranteed that QM-
based approaches will always outperform standard scoring
functions (Crespo et al., 2017) and they still face the same
problems associated with the correct estimation of the solvent
and other entropic effects to the protein–ligand binding free
energy.

Consensus Scoring
The combination of different scoring functions on a scoring
scheme (CS) is considered as a promising data fusion strategy to
improve VS enrichment, pose, and affinity prediction (Charifson
et al., 1999; Bissantz et al., 2000; Yang et al., 2005; Kaserer
et al., 2015; Chaput et al., 2016a; Chaput and Mouawad, 2017;
Ericksen et al., 2017). The CS strategy could overcome to some
extent the limitations faced by the single-scoring approach, for
example, the inconsistent performances across different protein
targets and chemical classes (Moitessier et al., 2009). Moreover,
CS is frequently used in some extent together with ensemble
docking methodology, where different scores are predicted for
different conformations of the protein target under investigation
(Park et al., 2009, 2010; Paulsen and Anderson, 2009; Kelemen
et al., 2016; Baumgartner and Evans, 2018; Li D.-D. et al.,
2018).

Since the pioneering work of Charifson et al. (1999), many
consensus strategies were developed and assessed on several
target proteins, such as cyclooxygenases (Kaserer et al., 2015), and
β-secretases (Liu et al., 2012). For instance, Kaserer et al. (2015)
applied CS on prospective VS studies against cyclooxygenases
1 and 2 and found that the chance of a compound to be truly
active increases when more tools predicted it as active. In the
very interesting work of Wang and Wang (2001), they provided a
theoretical basis for the effectiveness of CS on affinity prediction.
They demonstrated that CS works due to a simple statistical
reason related to the law of large numbers: the mean value found
by repeated independent predictions tends toward the real and
expected value.

Traditional CS approaches combine the predictions of the
scoring functions using statistical methods (e.g., arithmetic
mean) or voting schemes (i.e., a vote replaces the absolute
score predicted by each scoring function) (Terp et al., 2001;
Wang and Wang, 2001; Wang et al., 2002; Bar-Haim et al.,
2009; Ericksen et al., 2017). Nonlinear CS models were also
developed to improve pose prediction and ranking compounds
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in VS experiments (Betzi et al., 2006; Teramoto and Fukunishi,
2007; Ashtawy and Mahapatra, 2015; Ericksen et al., 2017).
For example, Ericksen et al. (2017) developed machine-learning
CS using discrete mixture models and gradient boosting to
combine the scores from eight docking programs and obtained
improved performances than individual scoring functions on 21
targets from DUD-E dataset. In addition, they compared their
machine-learning-based CS with individual scoring functions
and traditional CS schemed, confirming that CS excel individual
scoring functions performances in docking-based VS, being less
sensitive to protein target variation.

Tailored Scoring Functions for Protein
Targets and Classes
Significant improvements in docking and VS accuracies are
reported when employing target-specific scoring functions rather
than non-specific models, using as training datasets protein–
ligand complexes comprising specific molecular targets instead
of a general dataset. Hence, it is expected that they could be more
efficient in accounting for specific interactions and particular
binding characteristics associated with a target class of interest
(Seifert, 2009).

For instance, Logean et al. (2001) adapted the Fresno empirical
scoring function to the class I MHC HLA-B∗2705 protein
with a significant improvement in affinity prediction over six
different traditional scoring functions. The GOLD program also
implements a modified version of the ChemScore function, with
an additional term that accounts for weak hydrogen bonds that
claimed to be relevant for some kinase inhibitor binding (Pierce
et al., 2002; Verdonk et al., 2004). The HADDOCKPPI is a
linear scoring function specifically developed to predict binding
affinities of inhibitors of protein–protein interactions (iPPIs),
which interact in uncommon binding cavities characterized
by higher hydrophobicity, aromaticity, and molecular weight
compared to enzyme inhibitors, as usually interacting within
flatter, larger, and more hydrophobic binding sites than the
enzyme catalytic sites (Morelli et al., 2011; Kuenemann et al.,
2014). In a more recent work, a scoring function specific to
Heat Shock Protein 90 (HSP90) was successfully designed and
applied in VS (Santos-Martins, 2016). In general, nonlinear
scoring functions specific for protein classes/targets also achieved
superior performance than the generic models (Wang et al.,
2015; Ashtawy and Mahapatra, 2018). Still, in the recent work of
Wójcikowski et al. (2017), the target-specific scoring functions
trained with RF only performed slightly better than generic
models, with two-third of them increasing the EF1% less than
10%. As an intriguing result, they found that tailored scoring
functions are more beneficial for the protein targets with less
active compounds than the others containing more actives, where
the target-specific scoring functions exhibit similar performances
to the generic model.

Despite encouraging results obtained for target-specific
scoring functions, it is important to highlight that the
requirement of a large training set to derive a robust scoring
function might become a significant hindrance and source of
inaccuracy. To overcome the lack of a sufficient amount of
experimental structures, protein–ligand conformations used for

training target-specific scoring functions are commonly obtained
from docking experiments.

CONCLUSION

The development of accurate empirical scoring functions to
predict protein–ligand binding affinities is a key aspect in
SBDD. In recent years, the increasing availability of protein–
ligand structures with measured binding affinities and data
sets containing active, decoy, and true inactive compounds are
boosting the use of sophisticated machine-learning techniques to
obtain better performing scoring functions. In the coming years,
it is expected that the combination of larger training datasets,
non-physical/simplified descriptors, and DL techniques will be
a very promising research line to improve scoring functions for
structure-based VS. Methodological advances will be dependent
to the size and quality of the available datasets for training and
benchmarking, and great care will be necessary to avoid artificial
performances due to the increased capacity of these nonlinear
methods to capture bias present in the training data. In this
sense, blinded community challenges with unpublished data (e.g.,
D3R challenge) are essential to address the real performance of
scoring functions and docking protocols. Looking to the other
side of the methodological spectrum, it is exciting to note that the
advance in computing power, the development of new algorithms
to introduce protein flexibility and solvation/desolvation effects,
and more reliable semi-empirical quantum methods are enabling
the development and use of new methodological advances for
challenging tasks, such as QM/MM-based methods and entropy
estimation.

The full potential of scoring functions will be achieved when
models accurate enough to be useful in hit-to-lead optimization
and de novo design studies are developed. To reach this goal,
a scoring function must be sensitive to the docking pose, right
for the right reasons (Kolb and Irwin, 2009). Reliable predictions
of ligand binding affinity remain a big challenge, but we expect
that in the next years important advances associated to distinct
methodological approaches will be achieved and, probably, will
be combined into more effective computer-based drug design
protocols.
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