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ABSTRACT: The condensational growth of submicrometer
aerosol particles to climate relevant sizes is sensitive to their

ability to accommodate vapor molecules, which is described by 2=100-1000 nm gas phase
the mass accommodation coefficient. However, the underlying o
. g
processes are not yfzt fully understood. We have simulated the gas phase N near-surface
mass accommodation and evaporation processes of water Jaaes o gas phase

using molecular dynamics, and the results are compared to the sorption layer ‘

condensation equations derived from the kinetic gas theory to
shed light on the compatibility of the two. Molecular dynamics
simulations were performed for a planar TIP4P-Ew water
surface at four temperatures in the range 268—300 K as well as
two droplets, with radii of 1.92 and 4.14 nm at T = 273.15 K
The evaporation flux from molecular dynamics was found to be in good qualitative agreement with that predicted by the simple
kinetic condensation equations. Water droplet growth was also modeled with the kinetic multilayer model KM-GAP of Shiraiwa
et al. [Atmos. Chem. Phys. 2012, 12, 2777]. It was found that, due to the fast transport across the interface, the growth of a pure
water droplet is controlled by gas phase diffusion. These facts indicate that the simple kinetic treatment is sufficient in describing
pure water condensation and evaporation. The droplet size was found to have minimal effect on the value of the mass
accommodation coefficient. The mass accommodation coefficient was found to be unity (within 0.004) for all studied surfaces,
which is in agreement with previous simulation work. Additionally, the simulated evaporation fluxes imply that the evaporation
coefficient is also unity. Comparing the evaporation rates of the mass accommodation and evaporation simulations indicated that
the high collision flux, corresponding to high supersaturation, present in typical molecular dynamics mass accommodation
simulations can under certain conditions lead to an increase in the evaporation rate. Consequently, in such situations the mass
accommodation coefficient can be overestimated, but in the present cases the corrected values were still close to unity with the
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lowest value at ~0.99.

1. INTRODUCTION

Atmospheric aerosol particles influence the global climate
through their two-fold impact on Earth’s radiative balance.
They scatter incoming solar radiation directly, but they also
affect the climate indirectly by acting as condensation nuclei for
cloud droplets (CCN), therefore affecting the radiative
properties and lifetime of clouds."”” The CCN grow to become
cloud droplets by condensation of water vapor, and this growth
is controlled by the ability of the droplets to uptake the
condensing water vapor molecules. Therefore an understanding
of the underlying condensational growth process is necessary to
achieve correct concentrations of cloud droplets in climate
models.’™> The key quantity controlling the growth of
submicrometer aerosol particles is the mass accommodation
coefficient @, which is defined as the fraction of vapor
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molecules hitting the particle surface that will be accommo-
dated by the condensed phase.®”

The mass accommodation of water molecules on water
surfaces has been extensively studied both experimentally and
with molecular dynamics (MD) simulations.*>' However, the
value of a,, reported by different experimental studies has
varied in the range 0.01—1.%""" A recent sensitivity analysis of
results measured by a number of ensemble and single particle
techniques has suggested that the values of the mass
accommodation coefficients retrieved from these studies are
consistent with a value larger than 0.5."> The wide range of
experimental values is contrasted by MD simulations which
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Figure 1. Schematic figure illustrating the different levels of theory from kinetic condensation models through KM-GAP to MD. The adsorption flux
in KM-GAP (J,4) is equivalent with the condensation flux of the general kinetic condensation model, and the KM-GAP desorption flux (Jg,) is

equivalent with the evaporation flux.

have consistently resulted in a unity mass accommodation
coefficient for water."®™*! Part of the difficulty in determining
the mass accommodation coefficient is linked to the fact that
the coeflicient can be defined in different ways. While the
definition given above seems simple, the mass accommodation
coefficient can be understood in at least two ways: either as
surface accommodation where all molecules that are not
directly scattered are considered to be accommodated or as
bulk accommodation where mass accommodation is defined as
the fraction of the molecules arriving at the surface that are
absorbed to the bulk.’ The latter definition thus requires a
separate definition of bulk and surface.

The experimental results on mass accommodation and
evaporation are usually interpreted with the aid of various
condensation models.”****> These models are generally based
on a combination of the kinetic gas theory and macroscopic
mass and heat transfer theories. In this work we compare MD
simulations to these kinetic condensation models to shed light
on how compatible the two approaches actually are for the
accommodation of water molecules onto water surfaces. One of
the key complications in the interpretation of the laboratory
experiments is that they always probe net condensation or
evaporation processes, thus requiring quantification of simulta-
neous evaporation and condensation processes. MD simu-
lations, on the other hand, provide a means to study these two
processes separately, and at constant temperature.

Basic kinetic condensation models estimate the condensa-
tional flux from the kinetic theory of gases,'' correcting for
diffusional effects in the gas phase, where needed.” The
description considers the flux as occurring directly between the
gas and condensed phases (see Figure 1) without any specific
consideration of the processes occurring in the surface region.
The condensational flux consists of molecules arriving at the
surface from a distance that is of the order of the molecular
mean free path A. In these kinetic models the mass
accommodation coefficient is present as the condensation
coeflicient, multiplying the maximum kinetic collision rate to
the liquid surface. Based on the equality of the net
condensation and evaporation fluxes in equilibrium, the
condensation coeflicient is typically considered to be equal to
the evaporation coefficient.'’ As a next step from these simple
theoretical considerations, more sophisticated models which
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also explicitly include the surface processes have been
presented.** Recently Shiraiwa et al. developed a new kinetic
multilayer model for gas—particle interactions in aerosols and
clouds (KM-GAP).”> In KM-GAP the aerosol—gas system is
divided into several layers (Figure 1), with corresponding fluxes
between each layer. The mass accommodation coeflicient is
present as separately defined surface and bulk accommodation
coeflicients that appear as parameters of the model. MD
simulations provide a means to investigate these descriptions of
the condensation/evaporation process on a molecular basis
(Figure 1).

MD simulations provide a straightforward way to determine
a,,, as the trajectories of individual molecules can be followed
throughout a simulation and the fraction of accommodated
molecules can be simply evaluated. The MD mass accom-
modation simulations consist of shooting individual gas phase
molecules toward a surface and determining the subsequent
fate of those molecules (see section 2.4). To our knowledge, so
far in pure water mass accommodation MD the surface in
question has always been a planar surface. At typical
atmospheric conditions, however, only the growth of the
smallest nanodroplets (of submicrometer size) are in fact
sensitive to mass accommodation processes.'® Droplets in the
few-nanometers range are accessible for present-day MD, and
the surface curvature could have an effect on the mass
accommodation process, being especially important for small
atmospheric droplets. We study the potential effect of surface
curvature by conducting MD simulations on the accommoda-
tion of water on nanodroplets and comparing the results to
similar simulations for a planar surface.

A further complication related to a MD mass accommoda-
tion coeflicient, and in fact to a molecular level o, in general, is
the fact that a fraction of the evaporating molecules observed
during the mass accommodation simulations can be due to the
incoming molecules inducing an “exchange evaporation” of a
surface molecule.'®*® If this phenomenon has a nonnegligible
effect, the assumed equality of the condensation and
evaporation coefficients may not hold. While the exchange
evaporation cases should also be considered as nonaccommo-
dation, lacking any clear temporal and spatial definition on
when the evaporation is induced by the incoming molecules, it
is impossible to assign an individual evaporation event to either
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exchange or thermal evaporation. However, the thermal
evaporation rate is independent of the properties of the
surrounding vapor phase, and it can be determined by
simulating evaporation from the liquid into a vacuum.”® We
compare the evaporative flux into a full vacuum with that of a
mass accommodation simulation to yield estimates on what
fraction of the evaporated molecules should be counted as
exchange evaporation—and thus inducing a feedback between
the condensation and evaporation processes.

2. METHODS

2.1. Molecular Dynamics Simulation Details. The MD
simulations were performed using the GROMACS molecular
dynamics software.”” The TIP4P-Ew water potential®® was
used. The simulation time step was 1 fs, the temperature was
controlled through the Bussi thermostat,”® and particle-mesh
Ewald summation was used for the long-range part of the
Coulombic interactions. The initial configurations consisted of
either a liquid slab with the surfaces in the xy-plane and the
simulation box elongated in the z-direction, or a liquid droplet
located at the center of the simulation box. Periodic boundary
conditions were used for all simulation boxes. The various
simulation configurations are collected in Table 1. For each

Table 1. Various Simulation Setups of This Work®

target droplet radius box dimensions
surface molecules T (K) (nm) (nm®)
droplet 1000 273.15 1.92 10.0 X 10.0 x 10.0
droplet 10000 273.15 4.14 21.6 X 21.6 X 21.6
planar 1000 273.1S 3.1 X 3.1 X 10.0
planar 1000 268 3.1 X 3.1 X 10.0
planar 1000 290 3.1 X 3.1 X 10.0
planar 1000 300 3.1 X 3.1 X 10.0

“The number of molecules denotes the molecules in the target bulk
liquid at the start of the simulation.

initial condition a total of 1000 incident molecules were
generated at 10 ps intervals at a distance of about 1.5 nm from
the target surface and were assigned velocities from the
Maxwell—Boltzmann velocity distribution corresponding to the
temperature in question. For the planar cases, the incident
molecules were introduced at alternating sides of the slab at
random x,y-coordinates and the center of mass velocity of the
molecule was set toward the center of the surface.
Consequently, the procedure results in a variety of incident
angles and orientations. For the droplet cases, the incident
molecules were placed at randomly selected locations around
the droplet and the initial velocity was set toward the center of
mass of the droplet. After the generation of the tenth incident
molecule the simulation was continued for a further 20 ps
before the simulation was terminated and a new mass
accommodation simulation was started with a fresh starting
configuration. The total simulation time for a single condition
was thus 11 ns, the setup following the steps of Morita et al.'®
The necessity of restarts becomes especially clear in the case of
the droplet simulations, as the droplet radius needs to be
constant.

We have also performed simulations without the impacting
molecules present, that is, simulations where the system only
consists of the slab or droplet, in order to study the evaporation
from the surface without incoming gas phase molecules
affecting the situation. This is not a true vacuum case as the
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evaporated molecules are allowed to travel across the periodic
boundary of the simulation box and, thus, eventually return to
the liquid. However, the resulting evaporation flux should
represent a reasonable approximation of the evaporation flux to
a true vacuum when considering the small amount of
evaporating molecules in the studied temperature range.
These runs were performed for 20 ns of simulation time for
all conditions used in the mass accommodation simulation
except for the larger droplet, which is omitted because of the
relatively high computational cost of a 10 000 water molecule
system.

2.2. Condensation Models. The kinetic gas theory can be
used for modeling the net condensation/evaporation to/from
an aerosol particle if the Knudsen number Kn, which is the ratio
between the mean free path of the vapor molecules 4 and the
particle radius r,, is considerably larger than 1. In this free
molecular regime, the net condensational mass flux (in
molecules per second) to a droplet with surface area A (m?)
is thus given by>**'

v
- ]evap,kin = AaZ(Coo - Ca)

]net,kin = ]cond,kin

(1)
where 7 is the average thermal velocity of a molecule (m/s), ¢,
is the gas phase density (1/m?) far from the droplet (about one
mean free path away and further), and c, is the gas density at
the droplet surface. The a here is the condensation coeflicient,
which is equal to the evaporation coefficient in an equilibrium
case."! This equality is usually assumed to hold in general, thus
yielding the form of eq 1, where the first term refers to the
forward condensation flux to the particle and the second term
refers to the evaporation from it. The condensation coeflicient
can also be called the mass accommodation coefficient, as it is
by definition the ratio of the actual condensational mass flux
and the collision flux. At this level of theory (see Figure 1), it is
not possible to address whether the condensation coeflicient
requires that the colliding molecule should end up in the bulk
or merely stick to the surface as the surface is not treated
explicitly.

Based on the collision flux and the requirement for the net
flux between the gas and liquid phases to be zero at equilibrium,
the evaporative flux from a surface with an area A is given by

kv
kT 4 )

where p,. is the equilibrium vapor pressure (Pa), k is the
Boltzmann constant (J/K), and T is the temperature (K).
Equation 2 is derived from considering an equilibrium situation
between the condensed and vapor phases, but as the thermal
evaporation rate is a property of only the condensed phase, the
equation is usually assumed to be valid regardless of the vapor
conditions above the surface.

As mentioned above, the free molecular regime equations
hold if Kn > 1, while as the Knudsen number approaches unity
and diminishes to values considerably less than 1, the flux
expressions need to be corrected for gas phase diffusional
effects. This is done in practice by multiplying the free
molecular regime flux by a correction factor, yielding a general
flux expression of the form

Joet = 3)

One of the most widely used transition regime correction
factors was derived by Fuchs and Sutugin,®* and is given by
(see, e.g., ref 7)

] evapkin

B] net,kin
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1
0.75 + 0.283Kn
Kn(1 + Kn)

B =
1+ a (4)
This factor follows from a fit to a numerical solution to the
Boltzmann equation for a condition where the diffusing species
is lighter than the background gas.
Figure 2a illustrates the kinetic collision flux density, that is
Jeondin/A with @ = 1, as a function of water vapor pressure. For
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Figure 2. (a, top) Molecular flux density as a function of vapor
pressure at T = 268 K. Other temperatures used in this work are
omitted as they result in overlapping lines. The circles correspond to
the equilibrium vapor pressure for the various temperatures. Dashed
lines show the flux densities in the MD simulations. (b, bottom) Mean
free path as a function of temperature. Circles correspond again to the
equilibrium vapor pressures at the various temperatures, while the
squares correspond to the MD simulation conditions.

the four different temperatures used in this study (268, 273.15,
290, and 300 K) the lines lie practically on top of each other, so
for clarity only the line corresponding to the lowest
temperature is included. The circles highlight the equilibrium
vapor pressure for the different temperatures. The dashed lines
show the flux densities corresponding to the conditions in our
mass accommodation simulations, with the squares highlighting
the corresponding pressures. As can be seen, the generation of
incident molecules every 10 ps effectively corresponds to a
range of very high supersaturations of ~10—200. Figure 2b
shows the mean free path of water molecules as a function of
pressure. Again, the lines corresponding to the three highest
temperatures are omitted for clarity. The circles denote the
equilibrium vapor pressures at our model temperatures, while
the squares indicate the mean free paths corresponding to the
“effective” pressure created by the incident molecules. As can be
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seen, even with the relatively high supersaturations represented
by these simulations the mean free paths are orders of
magnitude longer than the 1.5 nm distance from where the
incident molecules begin their trajectory to the surface. The
corresponding Knudsen numbers for our simulated conditions
are thus on the order of about 30 to a few hundred, thus
justifying the use of the free molecular regime condensation
equations for our comparisons. In general, there are two
possible approaches to set up the mass accommodation MD
simulations: the one employed here (and in, e.g., ref 18) where
several molecules are generated before restarting, or restarting
for every incident molecule (e.g, ref 21). Because of
computational limitations, both necessarily represent a high
ratio of collisions/simulation time and thus correspond to high
supersaturations. In the latter case, however, the surface is
refreshed and is thus not subject to continuous “bombard-
ment”.

While the kinetic condensation models assume that the
molecules arriving at the surface originate on average from the
distance of the mean free path, creating the incident molecules
in MD closer to the surface does not hamper the determination
of the mass accommodation coefficient in any way; for this
purpose only the fate of the molecules at the surface is needed,
not the long journey beforehand.

2.3. Condensation in the KM-GAP Model. The KM-
GAP model® is based on the kinetic model framework of
Poschl, Rudich, and Ammann®* and treats explicitly the steps of
mass transfer from gas to condensed phase including gas
diffusion, surface—bulk exchange, and bulk diffusion of water
molecules (see Figure 1). The model divides the gas phase and
the bulk condensed phase into a number of layers, and the
surface is described by two layers: the quasistatic surface layer
and the sorption layer. The flux between the aerosol and the gas
phase occur only between the sorption layer and the near-
surface gas phase. Compared to the simplified picture of section
2.2 (Figure 1, left), where mass transfer is only described by the
condensation and evaporation fluxes between the condensed
and gas phases, KM-GAP adds a comprehensive set of
additional fluxes to the picture with an additional pair of fluxes
describing the transport between each layer (Figure 1). The
transport from the near-surface gas phase to the first (near-
surface) bulk layer is not only controlled by the condensational
flux to the sorption layer, but also by the transport between the
sorption and quasi-static surface layers and between the quasi-
static surface layer and the near-surface bulk.

Determining the condensational flux to the surface in KM-
GAP follows from the collision flux in the same way as for the
simple kinetic models, and for gas molecules of a given species
the collision flux is given by

] coll = Cgs

)

NN

where ¢, is the near-surface gas phase concentration of the
species in question. Uptake of the gas molecules will cause a
depletion in the near-surface gas phase, establishing a
concentration gradient in the gas phase, and thus uptake will
be influenced by gas phase diffusion. This is addressed by
adjusting the concentration with a diffusion correction factor B,
= cgs/ Cqr Following the Fuchs and Sutugin transition regime

: . i 24
correction, the correction factor is given by

dx.doi.org/10.1021/jp310594e | J. Phys. Chem. A 2013, 117, 410—420



The Journal of Physical Chemistry A

| Article |

1
- 0.75 + 0.28Kn

L+ Y T (6)

where Kn is the Knudsen number and y is the uptake
coefficient, defined as the ratio of the net flux between the gas
and the condensed phases (as defined by eq 1) and the collision
flux. Finally, the adsorption flux (corresponding to the
condensation flux in eq 1) in KM-GAP can be written as

]ads = aJcoll

where @ is the surface accommodation coefficient.

The surface accommodation coefficient in eq 7 is formally
identical to the definition of the condensation coefficient given
in section 2.2. KM-GAP also provides a bulk accommodation
coefficient @, as an output parameter which describes the
probability of a gas phase molecule entering the bulk. However,
as outlined above, o, does not enter the equations arising from
gas phase kinetics in the KM-GAP treatment.

2.4. Determining the Mass Accommodation Coef-
ficient in MD. Unlike the kinetic models where the mass
accommodation coeflicient appears in equations concerning
mass fluxes, in MD the coefficient is determined by studying
the fates of individual molecules arriving on a surface. The
possible fates of gas phase molecules arriving at the surface can
be roughly divided into four outcomes,'”**>* which are
scattering, desorption, adsorption, and absorption. Both
scattered and desorbed molecules return to the gas phase, the
difference being that desorbed molecules spend some time on
the surface before doing so. Adsorbed and absorbed molecules
remain in the liquid, with absorbed molecules ending up in the
bulk liquid and adsorbed molecules on the surface. There are a
few ways in which the mass accommodation coefficient can be
defined with this classification. It is clear that the scattered
molecules cannot be considered accommodated in any
definition. Lacking any definite criteria on the time an incoming
molecule has to stay on the surface, the definition for a surface
accommodation coefficient is

(7)

number of incoming molecules that did not scatter

S . .
all incoming molecules

(8)
This definition is in agreement with the surface accommodation
coefficient as it appears in KM-GAP.
However, if the mass accommodation coefficient is under-
stood as the fraction of incoming molecules that are absorbed
into the bulk liquid, we might use the formula"

Mabsorb + p k Madsorb

. =
° Mabsorb + Madsorb + Mdesorb + Mscatter (9)
where the correction factor py is
p = Mabsorb
: Mabsorb + MNdesorb (10)

This correction factor is introduced because the limited
simulation time prevents following the trajectories of the
adsorbed molecules until they are either absorbed or desorbed.
In the case for water, both in our present work and in for
example ref 19, no occurrences of desorption of the incoming
molecules is observed. This makes the two definitions
presented above identical over the time scales of our MD
simulations.
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From the classification above it is clear that these definitions
consider only the fate of incoming molecules, and the possible
exchange evaporation, that is, the evaporation of a surface
molecule induced by an incoming molecule, is not taken into
account. However, from the point of view of the mass fluxes to
and from the surface, it is irrelevant if the outgoing molecule is
the same as the incoming one. In principle the exchange
evaporation could be taken into account in the above
definitions by assigning to this new category what would
otherwise be classified as absorption or adsorption, but the
problem remains that these events would need to be
distinguished from thermal evaporation governed by eq 2.
Indeed, even performing a separate set of evaporation
simulations to observe differences in the evaporation rate
provides only an idea of the magnitude of this effect, not a way
to classify individual evaporation occurrences.

3. RESULTS AND DISCUSSION

3.1. Evaporation Rates: Comparison of Kinetic
Condensation Models and MD. The MD simulated
evaporation rates for the planar surfaces are plotted as a
function of temperature in Figure 3 for both the evaporation
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Figure 3. Evaporation rate as a function of temperature.

and mass accommodation simulations. For comparison, Figure
3 shows the theoretical prediction given by eq 2, with the
equilibrium vapor pressures based on the simulated values for
TIP4P-Ew water reported by Vega et al.>* While Vega et al.
report values for p, down to 245.5 K, their reported fit for p,
with the form In(p) = A + B/(T + C) is for temperatures above
300 K. We have therefore for our purposes fitted the lower
temperature end (<400 K) of their simulated pressures using
the same functional form. The values used are given in Table 2.
The value for the mass accommodation, or evaporation,
coeflicient in eq 2 is set to 1. Figure 4 shows the evaporation
rates for different droplet sizes at T = 273.15 K. The droplet
radii given, 1.92 and 4.14 nm for the 1000 and 10 000 molecule
droplets respectively, are the equimolar radii of the droplets.
For equilibrium vapor pressures above a curved surface, the
Kelvin effect must be accounted for, which requires knowledge
of the liquid density and surface tension. We have used the
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Table 2. Quantities Used To Calculate the Theoretical
Predictions of Evaporation Rates in Figures 3—5¢

T (K) pe (Pa) y (mN/m) P (kg/m?)
268 103 - -
273.15 159 67.8 997
290 572 - -

300 1130 - -

“Equilibrium vapor pressures p, from our fit to data from ref 34 (see
text), and surface tension y and liquid density p; from ref 3S.

T=273.15K
0.03 T T
T O Mass accommodation simulations
O Evaporation simulations
0.025F Theoretical prediction using TIP4P-Ew |
(] equilibrium vapor pressure

o
o
]
T
.

o
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—a—
o
o
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Evaporation rate (1/(ns"nm2)
o
2
(4]

0.005F ] 1

0 . . .
r=1.92 nm r=4.14 nm planar
Figure 4. Evaporation rate as a function of droplet size at T = 273.15

K

recent values given by Sakamaki et al.** at 273 K for the TIP4P-
Ew model. For convenience these values are also listed in Table
2.

For comparison, Figure 3 shows also the prediction of eq 2
when the equilibrium vapor pressure of real water is used.' It
should be stressed that for a meaningful comparison between
simulated rates and the prediction of eq 2 one must look at the
points obtained using the simulated p,, not the experimental
one.

In order to get an error estimate from the MD simulations,
we note that the evaporation process is a Poisson process,21 and
we calculate the 1o error for the observed number of
evaporation events during the total simulation time. If there
is exchange evaporation taking place within the mass
accommodation simulations, the observed evaporation is a
combination of two processes and this error treatment is too
simplified. The error bars shown are nonetheless found by
treating both simulation sets in the same manner, since this will
help clarify whether the differences seen could just be a product
of the shorter simulation time in the mass accommodation
simulations.

Figures 3 and 4 show that the theoretical evaporation rate
from eq 2 results in values that are reasonably close to the
evaporation rates seen in simulations. Moreover, the same
qualitative behavior as a function of temperature and droplet
size is seen in both simulation and theory. A notable exception
would appear to be the dip seen when going from 268 to
273.15 K in the mass accommodation simulations. However,
considering both the theoretically expected evaporation rates
that are quite close to each other for the two temperatures and
the relatively large and overlapping error bars which follow
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from the small number of evaporation events (see Table 3), it is
strongly suggested that the dip follows from poor statistics
rather than an actual feature of the temperature dependence of
the evaporation rate.

Table 3. Number of Evaporated and Scattered Molecules
during Mass Accommodation Simulations

radius T (K) no. of scattered no. of evaporated
1.92 nm 273.15 4 9
4.14 nm 273.15 2 29
planar 273.15 0 2
planar 268 0 4
planar 290 1 9
planar 300 2 18

The differences between the evaporation rates from mass
accommodation and evaporation simulations appear to mostly
be within statistical uncertainty for the lower temperatures,
implying that the exchange evaporation does not have a
significant role in these simulation conditions. For the higher
temperatures, however, the evaporation simulations start to
exhibit notably lower evaporation rates, remaining closer to the
theoretical prediction which describes only thermal evapo-
ration. It is therefore conceivable that a fraction of the
evaporating molecules in the mass accommodation MD
simulations at higher temperatures could be attributed to
exchange evaporation. As was seen from Figure 2, the mass
accommodation simulations correspond to very high super-
saturations as a consequence of the relatively frequent
generation of incident molecules. Thus, the assumption that
the evaporation flux is independent of the condensation flux
can be considered to be a good one for most, if not all, realistic
natural situations for water. However, the exchange evaporation
apparent in Figure 3 is notable only at the higher temperatures,
which actually correspond to lower supersaturations than the
lower temperature cases (see Figure 2). We conclude that the
supersaturation where the effect becomes nonnegligible is
temperature dependent, and the importance of exchange
evaporation for other types of molecules should be further
investigated.

Although the agreement between theory and simulation is
fairly good (within a factor of ~2), the theoretical prediction
consistently underestimates the simulated evaporation rate. The
error bars in the simulated values are of course quite large, but
the sensitivity of eq 2 to the input values should also be
considered. As « is already set to 1, changing the value of the
evaporation coeflicient will only make the agreement worse
(i.e., the value cannot exceed unity). Our MD simulations are
thus in line with an evaporation coefficient of unity. The
temperature and surface area are fixed in the simulations, so we
are left with a possible underestimation of p, as a source for the
discrepancy. In Figure S the equilibrium vapor pressures of
Vega et al.>* are compared to values obtained by solving p,
from eq 2 using the MD simulated evaporation rate. We stress
that the validity of the equilibrium vapor pressures of Vega et
al.** is not questioned, Figure 5 merely illustrates the change in
pe. that would be required to have the simulated and theoretical
evaporation rates in Figures 3 and 4 agree. The equilibrium
vapor pressure obtained through eq 2 is off by a factor of 2.7 for
T = 268 K and by less than a factor of 2 for the other
temperatures, equivalent to a difference of a few hundred
pascals. The error bars are also in the range of a few hundred
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Figure S. Comparison of simulated equilibrium vapor pressure of
TIP4P-Ew water with approximated value obtained through the
evaporation rate.

pascals, but as the pressures from eq 2 result consistently in an
overestimation, it is unlikely that a longer simulation time and
improved evaporation statistics would result in the vapor
pressures coming into better agreement.

For the droplet cases, errors in the surface tension and bulk
liquid density might also explain some of the disagreement
between the theoretical and simulated evaporation rates. For
the value of surface tension an error estimate of 0.4 mN/m has
been given,>® which translates to about a 0.5—1 Pa uncertainty
in the droplet p.. No error estimates were given for the liquid
density, but even when considering a very generous error
estimate of 10 kg/m?, a change in p, of only about 0.5—1.5 Pa
would result. Thus, the errors in surface tension and bulk liquid
density do not improve the consistency between theoretical and
simulated evaporation rates for the droplets.

3.2. KM-GAP Sorption Layer and Desorption Lifetime.
The surface region can be identified from a density profile in a
MD simulation as the part where the density changes from the
bulk liquid value to the gas phase value; see Figure 6. As a more
rigorous definition for the surface, the region where the density
is between 90 and 10% of the liquid value is commonly
used.'”*® This “90—10” region is denoted by the red lines in
Figure 6. The KM-GAP model*® on the other hand describes
the surface with two layers, the quasistatic surface layer and the
sorption layer (see Figure 1). The rate of evaporation is
described by the desorption lifetime 7,4, which is the mean time
an evaporating molecule spends in the sorption layer before
evaporating into the gas phase. As a test case in ref 23, the KM-
GAP model was used to simulate the experimental water vapor
condensation and droplet growth in the expansion chamber
work of Winkler et al."’ In their experiments, monodisperse Ag
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Figure 6. Example density profile (T = 300 K) where the area between
black vertical lines is the KM-GAP sorption layer. The red lines denote
where the density falls to 90% and 10% of the bulk liquid value.

particles with a diameter of 9 nm and particle number
concentration of 4381 cm™ were used as condensation nuclei
and humidified under an initial supersaturation of 37.5% at 268
K and 737 Torr. A value of 74 = 35S ps was used in ref 23 for the
desorption lifetime, based on earlier MD simulations.'”>® The
value is, however, based on only a handful of desorption events
of incoming molecules, of which not all were water molecules,
and which were obtained using the 90—10 surface definition.

To identify where the location of the sorption layer is in
terms of the MD density profile, we take advantage of the
quantity denoted by 0, in the KM-GAP model. 6, is the ratio
between the actual surface concentration of the sorption layer
and the maximum surface concentration of water molecules.
We take the outer limit of the sorption layer to be located at the
distance where the density has fallen to the fraction of the
corresponding bulk liquid value that is indicated by 6,, which
for the water condensation example in ref 23 is 6, ~ 7 X 107°.
The thickness of the sorption layer is set to 0.3 nm, since in
KM-GAP the sorption layer has a fixed width of one molecular
diameter. The black lines in Figure 6 show the region of the
MD density profile that corresponds to the KM-GAP sorption
layer. As can be seen, the outer limit of the sorption layer is
quite far from the bulk liquid phase and the sorption layer lies
entirely outside the 90—10 surface region. This was to be
expected, as the KM-GAP surface region includes also the
quasi-static surface layer located between the sorption layer and
bulk condensed phase. Due to the dense vapor that follows
from the frequently generated incoming molecules, the density
does not fall in the mass accommodation simulations of the
planar interface to the small value indicated by 6. This is
however not a problem in the evaporation simulations, and the
location identified from the evaporation simulations is used also
for the mass accommodation simulations when calculating the
74 related to the sorption layer.

Table 4 collects the values for the mean lifetime before
evaporation when the 90—10 surface definition is used. The
times the evaporating molecules spend in the surface are
calculated starting from the last time the molecules enter the
surface before evaporation without entering the bulk in
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Table 4. Desorption Lifetime 7; (Mean Value) When the Surface Follows the 90—10 Definition, and Also Median, Minimum,

and Maximum Observed Desorption Lifetimes”

radius T (K) mean (ps) median (ps) min (ps) max (ps) evaporations
1.92 nm 273.15 10.5 + 10.5 S 1.5 38.5 30
4.14 nm 273.15 12.1 + 8.7 9 2 35 27
planar 273.15 149 + 12.7 12.5 2 36 6
planar 268 5.8 + 6.3 3 1 19 8
planar 290 7.5+ 59 S.5 1.5 24 22
planar 300 6.2 + 39 5.5 1.5 16.5 38

“The number of events listed here is not exactly the same as the total number of evaporations since on three occasions the molecule was in the

surface from the start of the simulation until evaporating.

between. Evaporation is here taken to occur when the molecule
enters the constant density vapor phase. We find that, while
individual evaporating molecules occasionally spend 35 ps or
even longer in the 90—10 surface region, the mean lifetime is
around 10 ps or less. To be consistent with KM-GAP, 74 should
be calculated using the sorption layer. This results in a 74 that is
on average below 1 ps for all of the various simulated
conditions. The longest time observed is only about 2 ps, but
these are a minority among the evaporation events with only six
such occurrences among the total number of 134 evaporation
events observed throughout all of the simulations.

To examine the effect of the value of 74 on the predictions of
KM-GAP, we have simulated water vapor condensation using
KM-GAP with various 74 values, again in comparison to
experimental data from Winkler et al.'® We investigate the
impact of 74 on droplet growth with 74 values of 1, 10, and 100
ps. The surface accommodation coeflicient is set to 1. Figure 7
shows the results of such simulations. As shown in Figure 7a,
KM-GAP reproduces the observed growth very well and the
exact value of 74 has practically no effect on particle growth.
This is because particle growth is limited by gas phase diffusion
and subsequent surface accommodation. However, 74 does have
a critical effect on the surface coverage of water molecule d; as
shown in Figure 7b. Increase of 74 by an order of magnitude
leads to roughly an order of magnitude increase in 6,: 0, is X2
X 107 with 74 = 1 ps, increasing to ~2 X 10™* with 7, = 100 ps.

Figure 7c shows the temporal evolution of the surface and
bulk mass accommodation coefficients (¢, and @) and uptake
coefficient (7). @ stays at 1 whereas a, &~ 0.998, which means
that about 99.8% of water molecules that collide with the
surface eventually enter the bulk. The almost exact agreement
between the values of o, and @, indicates that the transport of
water molecules from surface to bulk is a very fast process due
to the high bulk diffusivity of water molecules of ~107® cm?®s™".
y drops from 1 to ~0.1 very quickly and afterward continues
decreasing to ~0.01, corresponding to a slowing down of
particle growth. Water molecules are always desorbing from the
surface, and the balance between adsorption and desorption of
water molecules determines the y value. As time progresses, the
net flux decreases and the uptake coefficient decreases. Thus,
for water, the surface and the bulk accommodation coefficient
values as predicted by KM-GAP are nearly identical, and the
problem reduces to the simple kinetic condensation problem.

When identifying the equivalent of the KM-GAP sorption
layer within the MD simulations, we used the value of the
sorption layer surface coverage 0, taken from the KM-GAP runs
of ref 23. Figure 7b shows, however, that the value of 6, changes
when 7, is changed, and the location of the sorption layer
should be moved accordingly. This makes it impossible to
determine a definite location for the sorption layer in MD, and
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Figure 7. Temporal evolution of water vapor condensation simulated
by KM-GAP. (a) Water droplet growth curve with different desorption
lifetimes of H,O (z4) (1, 10, and 100 ps) in comparison with the
experimental data by ref 10. (b) Surface coverage of H,O. (c) Surface
and bulk mass accommodation coefficients (@, and ay; left axis) and
uptake coefficient of H,O (y; right axis) with 74 = 1 ps.

therefore also 7,4: a new value of 74 will then again change the
value of 6, calculated from KM-GAP. In practice, however, we
can be quite confident that 74 should be around 1 ps. While
they are orders of magnitude different from each other, all of
the 6, values seen in Figure 7b are small. Thus, when used to
determine the MD equivalent of the sorption layer, each results
in a sorption layer located close to the bulk gas and completely
outside the 90—10 surface region. Then, for any of these values
of 0, the sorption layer is located so far from the bulk liquid
that an evaporating molecule in a MD simulation will not spend
more time in the sorption layer than is required to cross it, of
the order of 1 ps.

dx.doi.org/10.1021/jp310594e | J. Phys. Chem. A 2013, 117, 410—420



The Journal of Physical Chemistry A

The introduction of the MD equivalent of the KM-GAP
sorption layer was done here for the purpose of connecting the
MD picture to KM-GAP terminology, and therefore the MD
sorption layer is utilized only in this section.

3.3. Mass Accommodation Coefficient. Using eq 9 to
determine the mass accommodation coefficient requires one to
choose a definition for the surface. For this purpose we adopt
the 90—10 definition (Figure 6), which is consistent with
previous mass accommodation MD work. We find that the
water mass accommodation coeficient, as defined by eq 9, is
close to unity not only for the planar surfaces but also for the
droplet surfaces, as is seen in Figure 8. The number of scattered

1 L |
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g 0.996 1
3
0.994 1
—6— From scattered only
From scattered and from
0.992 difference in evaporation rate ]
099 1 L L 1 1 1 1
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T(K)
1 L |
0.999+ 1
g 0.998 1
3
0.997 1
0.996 - 1
0.995 . . .
r=1.92 nm r=4.14 nm planar

Figure 8. Mass accommodation coefficient as a function of
temperature (top) and droplet size (bottom). The circles in the top
follow from only counting scattered molecules as nonaccommodated;
the triangles take also into account the difference in evaporation rate
between mass accommodation and evaporation simulations.

molecules is particularly small (see Table 3), to the extent that
we see no scattered molecules among the 1000 incoming
molecules for the planar surface in simulations at the two
lowest temperatures. The triangles in Figure 8 are calculated
when taking the exchange evaporation into account where the
number of evaporated molecules that are assigned to the
exchange evaporation are determined from the ratio of
evaporation rates from the evaporation and mass accommoda-
tion simulations. For completeness the results using the
exchange evaporation are plotted also for the two lower
temperatures, even though the difference in evaporation rates
could clearly be accounted for by statistical error in these two
cases (see Figure 3). There seems to be a slight decrease in & as
the temperature grows and a slight increase as the droplet size
grows. The decreasing trend as temperature rises is in line with
earlier experimental results®**” and with simulation results.***®
This behavior is also predicted by transition state theory.>® This
behavior is intuitively expected as higher temperature
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corresponds to on average more energetic incoming molecules.
Note that the region where the accommodation coefficient
drops to values considerably below unity in refs 26 and 38 is at
temperatures close to the critical temperature, that is, at
temperatures much higher than those in the present study or in
experiments.g’g‘37

The mass accommodation coefficient remains practically
unity even when the exchange evaporation is taken into
account. However, it is interesting to note that for T = 300 K
the number of nonaccommodated molecules due to exchange
evaporation is about 4 times the number of scattered molecules,
making the exchange evaporation the dominant type of
nonaccommodation under these conditions. However, trans-
lating these findings to other substances with mass accom-
modation coefficients smaller than 1 is speculative. If the
magnitude of the evaporation events caused by the incoming
molecules is similar to what it is for water, the number of
scattered molecules could outnumber the evaporated by a clear
margin. On the other hand, it might be that the exchange
evaporation is also enhanced in these situations. For
accommodation of a molecule on a surface that consists of a
different molecular species, it seems natural to only take into
account the fate of the incoming molecular species when
calculating the mass accommodation coefficient, even if the
adsorption leads to an increase in the evaporation of the surface
species.

While it might seem worthwhile to use the sorption layer also
when determining a,, the fact that the MD sorption layer is
here so removed from the condensed phase makes it ill-suited
for the task. According to the definitions in section 2.4, an
incoming molecule that has passed through the surface is
classified as absorbed into the bulk liquid, but from Figure 6 it
is clear that any molecule that has just traveled past the MD
sorption layer can hardly be considered to reside in the bulk

liquid phase.
4. CONCLUSIONS

We have performed molecular dynamics simulations of water
mass accommodation on both planar and droplet surfaces as
well as evaporation simulations with the same set of simulation
conditions. These included a planar surface at four different
temperatures and droplets at T = 273.15 K with radii of 1.92
and 4.14 nm, with the latter size considered in the mass
accommodation simulations only. Our simulated water
evaporation rates are in qualitative agreement with the
evaporation rate given by simple kinetic condensation
equations, but this theoretical expression consistently under-
estimates the observed rates. While a longer simulation time
might result in a better quantitative agreement, the systematic
difference between the two makes this doubtful. On the other
hand, a change of a few hundred pascals in the equilibrium
vapor pressure would be needed to bring the theoretical
prediction to the same level as simulations.

In the two highest of the studied temperatures, T = 290 K
and T = 300 K, the evaporation rate in the MD mass
accommodation simulations is elevated compared to the
evaporation simulations. This effect can be attributed to
exchange evaporation; that is, an incoming molecule will
remain in the condensed phase but causes a surface molecule to
evaporate. Such behavior is at odds with the commonly used
assumption that the evaporation mass flux is independent of the
condensational mass flux, but it should be noted that the
relatively frequently generated incident molecules cause the
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simulation conditions to correspond to very high super-
saturations of the order 10—200. The comparison of MD
evaporation rates and theoretical free molecular regime
evaporation rates suggests that the evaporation coefficient for
water is unity, which is in agreement with earlier MD work
where the evaporation coefhicient has been calculated from the
evaporation fluxes in liquid—vapor equilibrium and vacuum
evaporation simulations.”® This is at odds, however, with
experimental Raman thermometry results, which point to a
value below unity.'®

The MD simulations also provided an opportunity to refine
the average desorption lifetime that is required as an input
parameter for the detailed kinetic flux model KM-GAP.*® Using
the surface coverage of the KM-GAP sorption layer, the region
in the MD simulations that corresponds to this KM-GAP
sorption layer is identified. From the time that evaporating
molecules spend in this region, we find the average desorption
lifetime to be around 1 ps. Although this new 7, differs by an
order of magnitude from the earlier value used in KM-GAP, the
model succeeds in describing the condensational growth of
water droplets from the experiments of ref 10. In fact, the
droplet growth is described equally well with desorption
lifetimes ranging from 1 to 100 ps, indicating that the growth is
limited by gas phase diffusion and surface accommodation
rather than desorption. Thus the simple kinetic treatment (see
Figure 1, left panel) is sufficient for describing pure water. This
is likely not the case for a situation where the transport between
surface and bulk is less efficient, for example, for a water droplet
coated with organic molecules.*

A mass accommodation coeflicient between 0.99 and 1 is
found for all studied planar interfaces, which is in accordance
with previous MD studies. Using a droplet as the target surface
also produces a coefficient that is practically unity, even though
the coefficient appears to get slightly (<0.5%) lower as the
droplet radius decreases. The mass accommodation coeflicient
gets slightly (~0.2%) smaller as temperature increases, which is
in agreement with experiments.*”?” When the exchange
evaporation is taken into account, the decrease with increasing
temperature is somewhat more pronounced, resulting in a value
of 0.99 at the highest temperature. The effect of exhange
evaporation is included by comparing the evaporation fluxes in
mass accommodation and evaporation simulations and
attributing the difference to molecules evaporated by the
exchange method and, consequently, as nonaccommodated.

The molecular level definitions of the mass accommodation
coefficient conventionally used in MD consider only the fate of
the incoming molecules. However, when kinetic condensation
models for aerosol growth are used, the picture is not a
molecular level one but instead is one of mass fluxes, and then
the mass accommodation coefficient acts as a factor that
effectively decides the magnitude of the condensation and
evaporation fluxes. In this case, the information that the
coefficient is expected to contain includes the possible exchange
evaporation.
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