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Abstract
While there is abounding literature on virus-induced pathology in general and coronavirus in particular, recent evidence 
accumulates showing distinct and deleterious brain affection. As the respiratory tract connects to the brain without protec-
tion of the blood–brain barrier, SARS-CoV-2 might in the early invasive phase attack the cardiorespiratory centres located 
in the medulla/pons areas, giving rise to disturbances of respiration and cardiac problems. Furthermore, brainstem regions 
are at risk to lose their functional integrity. Therefore, long-term neurological as well as psychiatric symptomatology and 
eventual respective disorders cannot be excluded as evidenced from influenza-A triggered post-encephalitic Parkinsonism 
and HIV-1 triggered AIDS–dementia complex. From the available evidences for coronavirus-induced brain pathology, this 
review concludes a number of unmet needs for further research strategies like human postmortem brain analyses. SARS-
CoV-2 mirroring experimental animal brain studies, characterization of time-dependent and region-dependent spreading 
behaviours of coronaviruses, enlightening of pathological mechanisms after coronavirus infection using long-term animal 
models and clinical observations of patients having had COVID-19 infection are calling to develop both protective strategies 
and drug discoveries to avoid early and late coronavirus-induced functional brain disturbances, symptoms and eventually 
disorders. To fight SARS-CoV-2, it is an urgent need to enforce clinical, molecular biological, neurochemical and genetic 
research including brain-related studies on a worldwide harmonized basis.
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Introduction

Ever since the landmark observations of Constantin von 
Economo and Rene Cruchet in 1917 and subsequent pub-
lications on encephalitis lethargica, viral infections of the 
central nervous system (CNS) have been of great interest to 

neurology and neurovirology to study diseases with long-
term neurological and psychiatric symptoms of unknown 
aetiology. Great progress has been made ever since and new 
CNS diseases such as subacute sclerosing panencephali-
tis (SSPE) or progressive multifocal leucoencephalopathy 
(PML) have been linked to specific virus infections. Also 
the group of coronaviruses which are widespread in nature, 
infecting animal and men and causing a variety of acute, 
subacute and chronic diseases, have been studied with 
respect to CNS involvement. It is, therefore, not surprising 
that in the corona virus disease 2019 (COVID-19) pandemic, 
CNS involvement was noted.

In the current COVID-19 pandemic, the respiratory tract 
is a major target of infection but some reports are showing 
also clinical involvement of the CNS. It is, therefore, impor-
tant that not only clinical data of neurological deficits are 
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collected but also studies are carried out to look for acute or 
late CNS changes with or without virus presence.

Early pathology of SARS‑CoV‑2 infection

Fever, cough, sore throat and dyspnea are early and rather 
unspecific symptoms of coronavirus infections and even 
before its molecular detection. Pharyngodynia, nasal con-
gestion, rhinorrhoea, smell and taste dysfunctions have been 
recently described as major symptoms of severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) (Lovato 

and de Felippis 2020; Krajewska et al. 2020; Vetter et al. 
2020; Yan et al. 2020; Table 1).

Elderly patients and especially those with comorbidi-
ties, including obesity, type 2 diabetes, hypertension and 
coronary heart disease, are at risk for increased severity 
of COVID-19 pathology and mortality (Butler and Barri-
entos 2020; Naughton et al. 2020). Indeed, when compar-
ing patients with non-severe infection to those with severe 
infection, the latter were older and had more such under-
lying disorders. In addition, patients with more severe 
infections could show neurological manifestations, such 

Table 1  Early symptoms of SARS-CoV-2 infection

“Percentage of patients” is mentioned in only a few publications, while there are a number of reports mentioning symptoms appearing in SARS-
CoV-2 patients

Symptomology In % of patients References

Fever 85 Lovato and de Filippis (2020)
Cough 68.7 Lovato and de Filippis (2020), Krajewska et al. (2020)
Sore throat Krajewska et al. (2020)
Dyspnea Krajewska et al. (2020)
Pharyngodynya 12.4 Lovato and de Filippis (2020), Krajewska et al. (2020)
Nasal congestion 3.7 Lovato and de Filippis (2020), Krajewska et al. (2020)
Rhinorrhea Krajewska et al. (2020)
Smell dysfunction 68; up to 53; 98; 85,6 Yan et al. (2020), Vetter et al. (2020), Moein et al. (2020), Lechien et al. (2020)
Anosmia (58% of n = 60) 25 Moein et al. (2020)
Microsmia 33 Moein et al. (2020)
Moderate microsmia 27 Moein et al. (2020)
Mild microsmia 13 Moein et al. (2020)
Normosmia 2 Moein et al. (2020)
Smell and taste dysfunction 39.2 Beltran-Corbellini et al. (2020), Xydakis et al. (2020), Roe (2020)
Loss of taste 71 Yan et al. (2020)
Gustative disorders 88 Lechien et al. (2020)
Gastrointestinal symptoms 2–40 Vetter et al. (2020)
Overall rate of conjunctivitis 1.1 Loffredo et al. (2020)
Conjunctivitis in severe cases 3 Loffredo et al. (2020)
Conjunctivitis in non-severe cases 0.7 Loffredo et al. (2020)
Conjunctival symptoms Up to 32 Wu et al. (2020)
Fatigue 39.4 Lovato and de Filippis (2020)
Dizziness 2–40 Vetter et al. (2020)
Comorbidities
 Hypertension 17–58 Lovato and de Filippis (2020), Li et al. (2020a, b), Zheng et al. (2020), Wang et al. 

(2020)
 Diabetes 3.8; 9.7 Lovato and de Filippis (2020), Li et al. (2020a, b)
 Coronary heart disease 3–25 Lovato and de Filippis (2020), Zheng et al. (2020), Wang et al. (2020)
 Cardiac injury 8–12 Bansal (2020) Wang et al. (2020)
 Arrhythmias 44 Zheng et al. (2020), Wang et al. (2020)

Mortality data
 Ischaemic stroke 74 Varatharaj et al. (2020)
 Hypertension 35 Zheng et al. (2020)
 Coronary heart disease 17 Zheng et al. (2020)
 Venous thromboembolism 58 Wichmann et al. (2020)
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as acute cerebrovascular diseases, impaired consciousness 
and skeletal muscle injury (Mao et al. 2020; Varatharaj 
et al. 2020).

Only a few publications and sometimes only case reports 
report on autopsy studies of patients dying from COVID-19 
infection (Solomon et al. 2020). Weyhern et al. (2020) report 
the findings of six autopsies. Besides viral pneumonia, a pro-
nounced CNS involvement with pan-encephalitis, meningitis 
and brain stem neuronal cell damage was a key event in all 
cases. CNS haemorrhage was fatal in patients younger than 
the age of 65 (Weyhern et al. 2020). In 125 patients with 
complete datasets, 62% presented with a cerebrovascular 
event, including ischaemic stroke, intracerebral haemorrhage 
and one CNS vasculitis. 31% presented with altered mental 
status, including unspecific encephalopathy, encephalitis, 
neuropsychiatric disorders, psychosis, dementia-like neuro-
cognitive syndrome and affective disorders (Varatharaj et al. 
2020). Encephalopathies, inflammatory CNS syndromes, 
ischaemic strokes and peripheral neurological disorders have 
been reported by Paterson et al. (2020). Autopsy studies of 
18 consecutive patients with SARS-CoV-2 infection who 
died within 32 days after the onset of symptoms showed 
only hypoxic changes and did not show encephalitis. In a 
case report, an autopsy by Reichard et al. (2020) revealed a 
range of neuropathological lesions with features resembling 
both vascular and demyelinating etiologies.

Neurological disorders may be caused by COVID-19 due 
to direct infection of the brain and/or via strong activation of 
the immune system (Rossmann 2020; Butowt and Bilinska 
2020) (Table 2).

Viruses seem to enter the brain via distinct routes either 
by haematogenous dissemination or neuronal retrograde 
transport (Desforges et al. 2014; Vetter et al. 2020; Bohm-
wald et al. 2018). It is assumed that SARS-CoV-2 spreads 
from peripheral organs, like the gastrointestinal tract, the 
lung, nose, other organs to the brain. Enhanced binding of 
SARS-CoV-2 to the nasal cavity olfactory epithelium has 
been suggested as primary target, as the olfactory epithe-
lium lining blood vessels express two host receptors, ACE-2 
and TMPRSS2 proteases, which facilitate virus binding, 
replication and accumulation (Butowt and Bilinska 2020; 
Sungnak et al. 2020). Indeed, the infection of the olfactorial 
epithelium seems to be responsible for olfactory dysfunction 
and loss of smell in patients with COVID-19 (Butowt and 
Bilinska 2020; Sungnak et al. 2020). ACE-2 may be related 
to both respiratory and myocardial injury, because ACE-2 
is widely expressed like in the lungs and the cardiovascular 
system as pointed out by several authors. It is regarded that 
ACE-2 is a potential risk factor for both respiratory and car-
diac failures in patients with COVID-19 (Long et al 2020; 
Zheng et al. 2020; Cure and Cumhur Cure 2020; Hess et al. 
2020; Yang et al. 2020; Bonow et al. 2020; Driggin et al. 
2020; Wang et al. 2020).

Spreading from the respiratory tract to the brain is sug-
gested to be based on (1) virus transport to pass from the 
respiratory tract to the blood and then across the blood–brain 
barrier into the brain (Rossman 2020; Butowt and Bilinska 
2020; Bohmwald et al. 2018) by an transendothelial mecha-
nism by infection of endothelial cells or via destabilisation 
of tight junctions by inflammatory processes, as well as (2) 
via infection of olfactory receptor neurons, (3) via diffusion 
through channels formed by olfactory ensheathing cells (van 
Riel et al. 2015; Bohmwald et al. 2018) and (4) inflamma-
tory processes affecting the vagus nerve (Amor et al. 2010). 
Transsynaptic transport and microfusion may occur and 
cause damage from infection of nerve cells per se and/or 
immune response (van Riel et al. 2015).

Of special interest is that axons projecting from the olfac-
tory system to the brain lack protection by the blood–brain 
barrier (BBB) (Broadwell and Jacobowitz 1976) which 
allows spreading of the virus from the olfactory system 
to the CNS in rather short time. Experimental studies in 
mice with HCoV-OC43 infection showed, that neuroinva-
sion could be demonstrated in the olfactory bulb area after 
3 days. Already at 7 days post-infection neuroinvasion of the 
hippocampus was evident and motor symptoms developed 
with progressive severity until death of the infected mice 
at about 20 days post-infection (Jacomy and Talbot 2003; 
Jacomy et al. 2006).

Of interest are multiexperiment matrix (MEM) data 
showing a coexpression link of ACE-2 and aromatic ami-
noacid-decarboxylase (DDC), the enzyme responsible for 
the synthesis of dopamine and finally noradrenaline and 
adrenaline from L-DOPA and serotonin from 5-hydroxytryp-
tophan. As SARS-CoV including SARS-CoV-2 down-regu-
lates ACE-2, this might change both the activities of the cat-
echolamine as well as the serotonin pathways (Nataf 2020). 
ACE-2 knockout mice generated substantially low levels of 
serotonin (Klempin et al. 2018). These data demonstrate that 
involvement of neurotransmitter action and pathology is of 
importance and should be considered in more detail.

Smell is significantly affected in SARS-CoV-2 infected 
patients which may be the result of virus induced pathology 
of olfactory sensory neurons in the olfactory epithelium. 
The olfactory bulb is an important relay as it transforms sig-
nals from the olfactory sensory neurons to other parts of the 
olfactory system including the anterior olfactory nucleus, the 
olfactory tubercle, amygdala, piriform cortex and entorhi-
nal cortex. Neurotransmitters, as acetylcholine and bio-
genic amines are involved in transmitting odorant percep-
tion (Rothermel et al. 2014; Kapoor et al. 2016; Shea et al. 
2008). Taste dysfunctions have been reported in patients 
suffering from COVID-19 infection (Xydakis et al. 2020; 
Spinato et al. 2020; Bousquet et al. 2020; Beltran-Corbellini 
et al. 2020; Gautier and Ravussin 2020; Cecarelli et al. 2020; 
Lechien et al. 2020; Moein et al. 2020; Sungnak et al. 2020) 
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(Table 1). It has been suggested, that virus attacks the cranial 
nerves related to smell or the muscosal tissue surrounding 
these nerves. Inflammatory processes induced by viral infec-
tion are of major pathological interest in this regard (Huber 
2020).

With regard to coronavirus infection and especially 
SARS-CoV-2 of the brain, it may be of particular interest 
to consider infection of both the brain respiratory centre 
located in the medulla–pons areas and the medullary car-
diovascular centres. Viral infection of those centres, which 
are responsible for generating and maintaining rhythms of 
respiration and cardiovascular activity, may disturb and even 
disrupt the underlying homeostasis with environmental stim-
uli. Disturbance or even disruptions of those pathways are 

risk factors which may lead and contribute to the severeness 
of the disease process of COVID-19 patients (Gandhi et al. 
2020; Lucchese and Flöel 2020). Cardiac dysfunctions have 
been observed in patients with severe viral infection and 
patients with comorbidities like respiratory disorders, dia-
betes type II, obesity, hypertension, coronary heart disease, 
myocardial injury, myocarditis, acute myocardial infarc-
tion, heart failure, dysrhythmias and venous thromboem-
bolic events (Li et al. 2020b; Bansal 2020; Long et al. 2020; 
Zheng et al. 2020) (Table 1) do have additional risk factors 
for the outcome of the disease process.

Recent clinical evidence shows that SARS-CoV-2 induces 
neuromuscular symptoms (Schoser et al. 2020) with muscle 
pain and weakness and fatigue. In these patients, 11% revealed 

Table 2  Early neurological/psychiatric symptoms of patients with coronavirus/SARS-CoV-2

“Percentage of patients” is mentioned in only a few publications, while there are a number of reports mentioning symptoms appearing in SARS-
CoV-2 patients

Symptomology In % of patients References

Neurological symptoms 36.4–84 Mao et al. (2020), Rossmann (2020), Vetter et al. (2020), Bohmwald et al. 
(2018), Arbour et al. (2000), Burks et al. (1980), Hung et al. (2003), Lau 
et al. (2004), Yeh et al. (2004), Li et al. (2020a, b), Poyiadji et al. (2020), 
Roe (2020), Helms et al. (2020)

Encephalopathies/encephalitis 18–23 Varatharaj et al. (2020), Paterson et al. (2020), Weyhern et al. (2020)
Impaired consciousness 15–34 Mao et al. (2020), Rossmann (2020), Rogers et al. (2020), Vetter et al. 

(2020), Bohmwald et al. (2018), Arbour et al. (2000), Burks et al. 
(1980), Hung et al. (2003), Lau et al. (2004), Yeh et al. (2004), Li et al. 
(2020a, b), Poyiadji et al. (2020), Saad et al. (2014), Pinzon et al. (2020), 
Varatharaj et al. (2020)

Confusion 18–65 Saad et al. (2014), Helms et al. (2020), Rogers et al. (2020)
Cerebrovascular diseases 5.7–8.5 Mao et al. (2020), Rossmann (2020), Vetter et al. (2020), Bohmwald et al. 

(2018), Arbour et al. (2000), Burks et al. (1980), Hung et al. (2003), Lau 
et al. (2004), Yeh et al. (2004), Li et al. (2020a, b), Poyiadji et al. (2020), 
Pinzon et al. (2020), Varatharaj et al. (2020)

Stroke Up to 74 Hess et al. (2020), Varatharaj et al. (2020), Paterson et al. (2020)
Skeletal muscle injury 19.3 Mao et al. (2020), Rossmann (2020), Vetter et al. (2020),

Bohmwald et al. (2018), Arbour et al. (2000), Burks et al. (1980), Hung 
et al. (2003), Lau et al. (2004), Yeh et al. (2004), Li et al. (2020a, b), 
Poyladji et al. (2020), Schoser et al (2020)

Myalgia 13.4–71 Pinzon et al. (2020), Saad et al. (2014)
Guillain–Barré syndrome Vetter et al. (2020), Paterson et al. (2020)
Seizures 8.6 Saad et al. (2014)
Altered mental state 31.0 Varatharaj et al. (2020)
Acute illness
 Depression 32.6 Rogers et al. (2020)
 Anxiety 35.7 Rogers et al. (2020)
 Insomnia 41.9 Rogers et al. (2020)
 Psychosis 0.7 Rogers et al. (2020)

Post-illness
 PTSD (Posttraumatic stress disorder) 32.2 Rogers et al. (2020)
 Depression 14.9 Rogers et al. (2020)
 Anxiety disorders 14.8 Rogers et al. (2020)
 Return to work at follow-up time of 35.3 month 76.9 Rogers et al. (2020)
 Agitation 69 Rogers et al. (2020)
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an increase of creatinkinase presenting with muscle weakness. 
Creatinkinase increased significantly with clinical severity 
from 22.4% in non-complicated patients to 71% of critically 
ill patients (Schoser et al. 2020) (Table 2).

Brain pathology of coronavirus infection 
in experiments in animals

The neurotropism of certain animal coronaviruses has lead 
in the past to experimental studies in mice and rats to investi-
gate the conditions leading to CNS damage using the mouse 
hepatitis coronavirus strain JHM (Nagashima et al. 1978a, b).

Three types of diseases were observed: (1) acute panen-
cephalitis with demyelinating foci and affection of oligo-
dendroglial cells and neurons, (2) subacute demyelinat-
ing encephalomyelitis three weeks after virus infection of 
new-born and weanling rats, which in about 35% developed 
paralysis. Demyelination was observed predominantly in the 
white matter of brainstem, pons, optic nerve and spinal cord. 
Axons and neurons were well preserved whereas virus was 
only detectable in oligodendroglial cells, (3) chronic pro-
gressive paralysis in 5% of infected animals 6–8 months later 
(Weiner 1973; Nagashima et al. 1978a, b). Of interest is the 
notion, that remyelination for both, peripheral and central 
nervous system could be observed in clinically silent ani-
mals (Nagashima et al. 1979). In both infected mice and rats, 
infectious virus could be isolated from brain tissue during 
the acute or subacute stage of encephalitis. Thereafter, infec-
tious virus disappeared but viral antigen persisted (Sörensen 
and Dales 1985).

More recent animal studies using mice transgenic for 
the SARS-CoV receptor ACE-2 demonstrated that viral 
brain infection covered all brain regions time dependently 
and complete after 4 days. Neurons were highly suscepti-
ble for SARS-CoV and prevention of severe murine disease 
could be reached only by absence of the host cell receptor 
(Netland et al. 2008). As neither apoptosis or necrosis, nor 
inflammation could be verified in these studies, the authors 
speculated, that non-inflammatory processes like autophagy 
may be involved in the neuronal loss in SARS-CoV-infected 
K18-h ACE-2 mice without encephalitis (Netland et al. 
2008). On the basis of findings in animal experiments, the 
question arises if COVID-19 patients with CNS infection 
could develop later CNS degenerative disorders as a conse-
quence of an infection of specific cell populations.

Implications for neurodegenerative 
disorders

Animal studies point to the view that glial cells and oligo-
dendroglial cells are of particular vulnerability for coronavi-
rus infection (Barach-Latas et al. 1997). Acute and persistent 

infections of neural cell lines with human coronavirus OC43 
and 229E confirm sensitivity of glial cells towards virus 
infection (Bonavia et al 1997; Arbour et al 1999a, b). Infec-
tion of human astrocytic cell line U-373MG by the OC43 
strain of human coronavirus resulted in an increase of IL-6, 
TNF-ɑ and MCP-1 mRNA expression and modulation of 
the activity of matrix metalloproteinase-2 and -9. Nitric 
oxide production was notable in U-373MG cells as well as 
in microglial cell line CHME-5, indicating that coronavi-
rus may contribute to the pathogenesis of multiple sclero-
sis (Edwards et al 2000). Infection by HCoV-OC43 with a 
single-point mutation in the spike protein led to a hind-limb 
paralytic disease in infected mice (Brison et al. 2011). This 
infection resulted in glutamatergic excitotoxicity, which 
could be antagonized by an inhibitor of AMPA receptors, 
GYKI-52466, which was accompanied by improvement of 
clinical scores and protection of CNS from neuronal dys-
function (Brison et al. 2011).

In three patients suffering from MERS-CoV T2-weighted 
MRI imaging showed striking changes characterized by 
widespread, bilateral hyperintense lesions within the white 
matter and subcortical areas of the frontal, temporal and 
parietal lobes, the basal ganglia and corpus callosum, giving 
raise to the possibility, that MERS-CoV may lead to long-
lasting severe alterations of brain tissue (Arabi et al. 2015). 
As described in more detail by Matias-Guiu et al. (2020), 
coronavirus-like particles have been identified in autopsied 
brain tissue (Burks et al. 1980; Murray et al. 1992; Stewart 
et al. 1992; Dessau et al. 2001), as well as detection of anti-
bodies to human coronavirus (Salmi et al. 1982) and CoV 
RNA in the CSF of patients with multiple sclerosis (Cristallo 
et al. 1997).

Parkinsonism

Infectious agents associated with Parkinsonism are influ-
enza A, HIV, measles, Japanese B encephalitis, Western 
equine encephalitis, tick-borne encephalitis, polyomyelitis 
and cytomegalovirus (Nisipeanu et al. 1997). Neuromelanin 
of the substantia nigra pars compacta is of special inter-
est in this regard as it (1) is an immune stimulator (Ober-
länder et al. 2011) and (2) pigmented neurons of the SN 
were significantly decreased in HIV-1-infected brains (Itoh 
et al. 2000), thus contributing to dopaminergic pathology. 
A viral hypothesis for Parkinson’s disease has been sug-
gested for long time, namely since the influenza A pandemia 
1915–1927 with post-encephalitic Parkinsonism as fatal 
consequence years later (Foley 2009; Lutters et al. 2018; Eli-
zan and Casal 1983; Takahashi and Yamada 2001; Hawkes 
et al. 2007). Any specific viral antibodies, RNA, viral par-
ticles or inclusions could not be detected in several studies 
in brain tissue (Martilla et al. 1977; Elizan et al. 1979; Jell-
inger 2001; McCall et al. 2001; Schwartz and Elizan 1979; 
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Gamboa et al. 1974). These data contrast to those reported 
by Mihara et al. (2001) and Rohn and Catlin (2011), who 
have detected immunolocalization of influenza A virus in 
PD brain (Rohn and Catlin 2011) and isolated lesions in the 
bilateral SN on MRI associated with influenza A (Mihara 
et al 2001). As summarized by Oliver et al. (1997a), changes 
in the dopaminergic system have been observed in many 
studies following virus infection and encephalitis. Indeed, 
dopaminergic neurons are heavily involved in the HIV-1 
pathology using SIVmac 251 infection in rhesus monkeys as 
well as in a retroviral rat model of HIV and murine leucemia 
virus (MULV)NT 40 infections (Koutsilieri et al. 2001a, b, 
2002a; b; Czub et al. 2001). Experimental long-term studies 
with H5N1 influenza virus in mice showed that intranasal 
application of H5N1 induces transient loss of dopamine in 
the substantia nigra pars compacta (SNpc) and basal ganglia. 
In addition, activated microglia and increase in cytokines 
could be detected suggesting, that viral infection may not 
be excluded as trigger for Parkinsonism (Jang et al. 2012).

From this experimental approach, it is hypothesized that 
(1) viral infection of the substantia nigra pars compacta is 
at risk for the development of Parkinsonism and (2), as Par-
kinson’s disease is common in the elderly and Parkinson’s 
disease clinically shows compromise of the respiratory and 
cardiac systems,  Parkinson’s disease is at risk for SARS-
CoV-2 infection (Helmich and Bloem 2020). Indeed, HCoV 
has been detected in brain tissue from Parkinson’s disease 
(Fazzini et al. 1992; Arbour et al. 2000). Long-term clinical 
observations of patients with COVID-19 infection will show, 
whether SARS-CoV-2 triggers Parkinsonism and/or depres-
sion in genetically vulnerable human beings.

Psychiatric symptomology

Arbour et al. (2000) have also detected HCoV-229E- and 
HCoV-0C43 RT-PCR-positive results in rare cases of amyo-
trophic lateral sclerosis (ALS), Alzheimer disease, depres-
sion and schizophrenia. SARS-CoV long-term adverse reac-
tions, like depression and other psychiatric symptomology 
have not been reported in great detail. However, there is 
preliminary evidence to assume that depression, fatigue and 
sleep disturbances are evident in post-SARS-CoV patients 
(Moldofsky and Patcai 2011). The most recent publication 
by Rogers et al. (2020) gives a detailed representation of 
psychiatric symptoms of SARS, MERS and COVID-19 
patients in the acute as well as in the post illness phases 
(Table 2). Furthermore, it cannot be excluded that in the pro-
cess of SARS-CoV-2 CNS infections, impaired conscious-
ness occurs, which my lead to cognitive deficiencies.

Indeed, besides cerebrovascular events, altered mental 
status was the second most common presentation com-
promising encephalopathy or encephalitis and primary 

psychiatric diagnosis, often occurring in younger patients 
(Varatharaj et al. 2020) (Table 2).

Experimental observations in the protection 
of brain cell damage

Since we cannot exclude the possibility that SARS-COV-2 
could lead to CNS damage, it is worthwhile to discuss 
experimental data obtained from pharmacological basic 
research. Enlargement of the therapeutic armamentarium 
for drugs protecting from virus-induced damage is scarce 
and limited to human case reports, experimental approaches 
using disease-related animal models and in vitro studies. 
To mention a few ones, the following options have been 
proposed: therapeutic strategies related to neurotransmitter 
pathology are targeting ACE-2. As there are close interac-
tions between ACE-2 and nicotinic receptors, nicotine expo-
sure due to smoking has been predicted to enhance the risk 
for COVID-19 neuroinfection (Kabbani and Olds 2020). 
Therefore, nicotine receptor antagonists may counteract the 
risk for SARS-CoV-2 viral brain entry and brain pathology. 
Even of more interest is the data showing a potentiation of 
SIV replication by drugs used clinically to substitute loss of 
dopamine in Parkinson’s disease (Scheller et al 2000). The 
conclusion of this work possibly is of interest for clinical 
treatment options in HIV-1 infected patients with a parkin-
sonism/dementia syndrome. While levodopa and inhibitors 
of monoamine oxidase B (MAO-I) therapy of parkinsonism 
is obsolete in this regard (Koutsilieri et al 2002a, b, 2004), 
treatment with the NMDA-receptor channel antagonists 
amantadine/memantine are advised from these experimental 
studies (Meisner et al. 2008; Olney et al. 1989).

Aminoadamantanes, amantadine and memantine have 
been used for long time in the treatment of Parkinson’s 
disease (amantadine) and Alzheimer disease (memantine). 
These drugs are primarily glutamate related NMDA-recep-
tor channel antagonists (Kornhuber et al. 1989, 1991) and 
inhibit glutamatergic excitotoxicity associated with these 
neurodegenerative disorders. More recent studies support the 
antiviral potential of aminoadamantanes, including develop-
ment of novel compounds (Kesel et al. 2013) and treatment 
of virus replication (Leibowitz and Reneker 1993) including 
HCoV-OC43 replication by memantine (Brison et al. 2014). 
Most recently, Hasanagic and Serdarevic (2020) suggested 
that memantine (besides its NMDA-R channel blocking 
properties) through its α7-nAChR antagonism may coun-
teract proinflammatory cytokines induced in cell cultures by 
HCoV-OC43. This is of special interest, because α7-nAChR 
is localized in lungs and in the CNS. As ACE-2 expression is 
mediated by stimulation of α7-nAChR nicotine (smoking!) 
might promote entry of SARS-CoV-2 into the respiratory 
epithelium.
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Serotonin antagonists have been proposed too. Cinan-
serin (SQ10,643) has been studied in bacterially expressed 
3 CL pro SARS-CoV and the related human coronavirus 
229E. 5microM of cinanserin inhibited the catalytic activ-
ity by 50% (Chen et al. 2005). The antiviral activity of 
cinanserin could be substantiated in tissue culture assays 
and confirmed strong inhibition of coroanvirus replication 
(Chen et al. 2005; Yang et al. 2008).

 Interestingly, a very recent screening of substances 
effective to inhibit SARS-COV-2 showed that the anti-
depressant serotonin selective reuptake inhibitor (SSRI) 
fluoxetine inhibited the virus at a concentration of 0.8 µg/
ml (Zimniak et al 2020). These studies demonstrated that 
cianserin and fluoxetine enter at a structural site of the 
virus which is important for the replication of SARS-
CoV-2 and this is independent from the compounds action 
on the serotonergic system.

An initial “cytokine storm” induced by viral suppres-
sion of pineal melatonin has been suggested to contribute 
to virus-induced brain pathology (Anderson and Reiter 
2020). Pineal melatonin is involved in a variety of inter-
mediary cell processes, including the activation of the tri-
carboxylic acid cycle, oxidative phosphorylation and ATP 
production, thus regulating mitochondrial and immune cell 
phenotype (Anderson and Reiter 2020). Drug development 
to enhance melatonin concentration and function seems to 
be a useful target to reduce viral infection potential.

NOS2/NO is associated with regulation of chemokine 
expression and inflammation. Inhibition of NOS2/NO 
slows the progression of MHV-induced demyelination 
(Lane et al. 1999). There is also a role for apoD in the 
regulation of inflammation and suggests that it protects 
from HVoV-OC43-induced encephalitis, probably through 
the phospholipase A2 signalling pathway (Do Carmo 
et al. 2008). Some more recent developments are those 
directed to treat the acute respiratory distress syndrome 
(ARDS) (Dreher et al. 2020), which shows inflammation 
due to acute hypoxemia and diffuse alveolar injury “fol-
lowing a triggering factor” (Santos Nasciemento et al. 
2019). These authors propose the development of fluoro-
phenyl imidazole-derived molecules to treat pathologies, 
in which inflammation, in particular based on p38 MAPK 
and NFkB, plays a privotal role (Santos Nasciemento et al. 
2019).

These examples point to the view that research on trans-
mitter alterations after virus infection might be suitable (1) 
to gain knowledge about virus induced neuronal pathology 
of the CNS and (2) to get new targets for developing neu-
ron protective and restorative drugs. For coronavirus, neu-
rochemical, molecular biological/genetic research enlight-
ening nerval participation of coronavirus toxic affection 
are largely missing.

Conclusion

Although there is abounding description of virus-induced 
pathology of peripheral organs, there is lack of evidence 
as to the viral staging pathology of brain regions and of 
neuron as well as of glial affection. This, however, seems 
to be of importance as evidence is accumulating, that 
viruses and especially coronaviruses including SARS-
CoV-2 infect the brain with great affinity to brain regions. 
Long-term pathological outcome of coronavirus-induced 
brain affection facilitating or even triggering brain associ-
ated disorders like neurodegenerative disorders have to be 
considered. Therefore, it is important to learn more about 
SARS-CoV-2-induced brain affection and its short- as well 
as its long-term consequences. As such targets for future 
clinical and brain coronavirus-related research and unmet 
needs are summarized:

(1)  Human postmortem brain studies are essential to 
understand HCoV-induced brain pathologies (Ellul 
et al. 2020; Glatzel 2020), including neuropathology 
and regional human postmortem neurotransmitter 
analyses. Moreover, molecular biological and—genetic 
studies should give evidence for functional distur-
bances caused by coronavirus affection. Virus affection 
of neuromelanin containing substantia nigra and locus 
coeruleus as well as research on coronavirus damaged 
oligodendrocytes are of importance to understand the 
vulnerability potential for neurodegenerative disorders.

(2)  Regional detection of virus footprints and RNA in 
postmortem brains, as well as spreading characteris-
tics of coronaviral infection/time dependency/staging 
in animal studies/models and longitudinal studies are 
necessary to enlighten details of SARS-CoV-2 affinity 
to brain regions.

(3)  Studies of mechanisms to explain the differences of 
coronaviral variations of neuropathology in mice and 
rat strains as well as in organoids are of importance, 
in particular, since the pathological outcome of coro-
navirus infection in various strains of rodents need an 
explanation (Dörries et al 1987a, b).

(4)  Age-dependent variety (young/adult/aged) and gender 
specificity, regarding severity of SARS-CoV-2 neuro-
virulence should be studied in animal experiments to 
understand the great divergence of CoV infection rates.

  In addition, studies to the genetic and immunological 
background of host are regarded as important in this 
respect. Not much is known to characterise specific-
ity and selectivity of various viral infection factors for 
resistance against viral attacks.

(5) Drug developments to protect neurons and glia from 
coronavirus induced pathology are of importance to 
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protect nerve tissue from viral toxicity beside SARS-
CoV-2 treatment strategies.

Answers to these questions may contribute to understand 
why SARS-CoV-2 affects aged and young human beings so 
differently. Age, reduced immunological defence, comor-
bidity and underlying genetic vulnerabilities are at risk for 
the severity of viral attack in general and SARS-CoV-2 in 
particular. In this respect, extensive clinical, neuropatho-
logical and molecular biologic/neurochemical postmortem 
studies as well as animal and in vitro studies are of utmost 
importance to uncover the enigma of viral infections and its 
disastrous pathology.

So far, we have learned that beside the respiratory tract as 
the main organ being infected in humans, the SARS-CoV-2 
virus has the potential to spread and infect other organs 
as well. It has to be seen, to what longlasting deficits may 
develop.
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