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Abstract: Three-dimensional (3D) bioprinting has become a flexible tool in regenerative medicine
with potential for various applications. Further development of the new 3D bioprinting field lies
in suitable bioink materials with satisfied printability, mechanical integrity, and biocompatibility.
Natural polymers from marine resources have been attracting increasing attention in recent years,
as they are biologically active and abundant when comparing to polymers from other resources.
This review focuses on research and applications of marine biomaterials for 3D bioprinting. Special
attention is paid to the mechanisms, material requirements, and applications of commonly used 3D
bioprinting technologies based on marine-derived resources. Commonly used marine materials for
3D bioprinting including alginate, carrageenan, chitosan, hyaluronic acid, collagen, and gelatin are
also discussed, especially in regards to their advantages and applications.
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1. Introduction

Due to the limited availability of donor tissues and organs for clinical application, more and more
attention has been paid to engineered tissues. However, many challenges remain in the biofabrication of
complex and heterogeneous tissues and organs for clinical translation purposes [1]. Three-dimensional
(3D) bioprinting, an emerging additive manufacturing technology in which cell-laden hydrogel bioinks
are deposited in a layer-by-layer fashion, shows promise for meeting the requirements of constructing
complex composite living tissues, with the help of recent advances in 3D printing technology, cell
biology, and materials science. Inkjet bioprinting, extrusion bioprinting, and stereolithographic 3D
bioprinting are typical bioprinting methods [2]. Inkjet printing has high speed and resolution; however,
it is not easy to print highly viscous solutions with this technology. Extrusion printing has lower
printing resolution; however, it is easier to fabricate 3D constructs with this method due to the
continuous extrusion of fiber and relatively high mechanical integrity. Although stereolithographic 3D
bioprinting is not commonly used as compared to other two methods due to the difficulty of preparing
printing materials and inability to print multiple types of cells, it avoids the clogging problem and
can achieve high viability of printed cells [3]. Cells, biomaterials, and bio-factors are the fundamental
components for 3D bioprinting to build constructs. Due to its capability of precisely fabricating
complex structures, 3D bioprinting holds great promise to construct biomimetic structures for the
study of disease development or tissue/organ replacement.
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Material is an important factor for fabricating and designing 3D constructs that fulfill specific
demands. The materials suitable for 3D bioprinting should possess properties like printability,
mechanical integrity, and biocompatibility. The commonly used synthetic materials such as
polycaprolactone (PCL), poly-L-lactic acid, and poly (lactic-co-glycolic acid) have high mechanical
strength; however, they lack sites of cell adhesion [4]. Also, the high printing temperature and organic
solvent needed to make bioink with these materials make it difficult for them to encapsulate cells.
Natural materials encapsulate and interact with cells more easily; however, most of them lack the
suitable mechanical strength and it is not easy to control their degree of degradation [5]. Until now, the
number of materials suitable for 3D bioprinting has been limited, lowering the rate of development of
this field. New resources of materials with abundant existence, high economic benefits, and unaffected
by pathogen, would bring new opportunities for the development of 3D printing materials.

The ocean is such an untapped material resource for biomedical applications [6]. One example is
the nacre-derived materials [7], which are abundant in the ocean and provide an economic way for
developing new materials, as they are essentially the residues of seashells. At the same time, some
materials from marine sources could avoid animal-derived infections compared with animal-based
materials. Some new marine-based materials, such as fish-gelatin [8] and aneroin [9] have been
successfully used in 3D printing and have shown their potential in tissue engineering applications.
This review addresses the mechanisms, material requirements, and application of commonly used
3D bioprinting methods based on marine resources. Main marine materials used in 3D bioprinting
including alginate, carrageenan, chitosan, HA, collagen and gelatin are emphasized, especially in their
advantages and application. Finally, recent development, current challenges, and future prospects of
marine materials applied in 3D bioprinting are also presented in this study.

2. 3D bioprinting Technologies

3D bioprinting technologies employ an X-Y-Z robotic system to load and read computer-aided-
design files (from computed tomography scan or design software) to fabricate the tissue structure.
For the fabrication of 3D cell-laden hydrogel tissue constructs, the bioink and bioprinter are key
elements. In this part, the most important bioprinting technologies including inkjet, extrusion and
stereolithography (SLA)-based printing are discussed.

2.1. Biomaterials Classification for Bioprinting

In 3D bioprinting, bioinks refer to cell-laden biomaterial solutions [10]. These biomaterials can
be classified as naturally-derived (including alginate, gelatin, collagen, fibrin, HA, decellularized
extracellular matrix (ECM), silk, chitosan and carrageenan [11]) or synthetic bioinks (polyethylene
glycol (PEG) [12], and pluronic acid bioinks [10]).

Generally, compared to synthetic bioinks, naturally-derived ones provide better biocompatiblility
in terms of cell viability and growth. Although chemical modifications of naturally-derived biomaterials
change them into photo-polymerizable bioinks such as gelatin methacryloyl (GelMA), methacrylated
HA (MeHA), the modification of naturally-derived bioinks is still difficult and limited [13].

2.2. Requirements for Biomaterials to be Used as Bioinks

In tissue engineering, to mimic the in-vivo micro-environment and structures, the properties of
bioprinted scaffolds (Figure 1A), including cell viabilities, scaffold porosity and mechanical properties,
must match those of real tissues in the body. Appropriate hydrogels must have low concentrations
and high viscosity to maintain the desired shape [14], low shear stress and shear rate [15], as well
as favourable shear thinning and thixotropic properties to maintain high cell viability. Furthermore,
hydrogels need strong interfacial bonding between layers to maintain their stability [16]. Meanwhile,
a slow degradation rate means shape retaining of the scaffold for a long time [17]. Therefore, in order to
enable tissue engineering application of the printed tissue or organ, it is important that the biomaterials
satisfy the following requirements for 3D bioprinting [2]:
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(1) Biomaterials should be biocompatible and friendly to specific types of cells or hosts without
eliciting cell death or immune response and have a positive effect on the attachment, migration,
proliferation, and function of both endogenous and exogenous cells.

(2) Biomaterials need to be printable and can be accurately and precisely deposited with the desired
spatial pattern and temporal control.

(3) Biomaterials need to have controlled degradation kinetics and non-toxic byproducts, as the
embedded cells secrete proteases and subsequently produce ECM proteins that define the
new tissue.

(4) Biomaterials-based structures need excellent mechanical properties which are essential for
continued function of the construct by various crosslinking or other methods.
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2.3. Main 3D Bioprinting Technologies

Among various 3D printing technologies, 3D bioprinters based on cell-laden bioinks often
utilize inkjet bioprinting, (co-axial) extrusion printing or stereolithographic printing (Table 1). These
bioprinting technologies will be discussed in detail.

Table 1. Comparison of 3D bioprinting technologies.

Bioprinting Technology Inkjet Extrusion Stereolithography

Resolution High (tens of micrometers) Moderate
(micrometers-millimeters) High (micrometers)

Print speed Fast Slow Fast
Cost Low Medium Low
Bioink viscosity Low High No limitation

Bioink gelation Chemical,
photocrosslinking

Chemical, enzymatic,
thermal, photocrosslinking Photocrosslinking

Cell density Low High High
Representative
marine-derived biomaterials
for bioinks

Alginate, collagen Alginate, carrageenan,
chitosan, GelMA, collagen GelMA, MeHA
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2.3.1. Inkjet Bioprinting

Inkjet printing can be classified as continuous-inkjet bioprinting or drop-on-demand
bioprinting [19]. Compared with continuous-inkjet printer, the drop-on-demand printer ejects droplets
only when it receives the signal from the controller so that it can improve the efficacy of ink utilization,
and it is easy to control during the operation. Moreover, drop-on-demand bioprinting can be used for
various research studies including scaffold printing (Figure 2A), cell encapsulation [20], microarrays [21],
and gene transfection [22] and those may be challenging to achieve with continuous-inkjet bioprinting.
Drop-on-demand bioprinting is more reliable and commonly used than continuous-inkjet bioprinting.

Drop-on-demand bioprinting manipulates the bioink to generate droplets via different physical
methods. According to the driving force, drop-on-demand printers are divided into three types
(Figure 2A): thermal, piezoelectric, and electrostatic forces. Inkjet printing have used various
biomaterials (alginate, collagen, fibrin, etc.) as bioinks in different tissue engineering applications such
as bone [23], cartilage [24], liver [25], and ocular tissue [26]. To avoid the clogging problem, the bioink
used in drop-on-demand bioprinting should have low viscosity (<10 mPa·s) and cell concentration
(<107 cell/mL) [19]. Marine-derived biomaterials with the potential to be used as bioinks for inkjet
printing include alginate and collagen [23,24].Mar. Drugs 2019, 17 FOR PEER REVIEW  5 
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Thermal Inkjet Printing

Thermal inkjet printing uses the actuator to heat the bioink in the chamber for the purpose of
ejecting droplets (Figure 2A). When a voltage is applied, the heating actuator creates a vapor bubble.
As the bubble expands rapidly and explodes, it produces a pressure pulse inside the chamber and
the droplets are pushed out of the orifice [28]. During the printing process, the actuator raises its
temperature to 300 ◦C [29], but cells could maintain high viability after printing due to the short period
of ejection.

Piezoelectric Inkjet Printing

Piezoelectric inkjet printing, similar to thermal inkjet printing, also uses an actuator to eject the
droplets out of the orifice. The piezoelectric inkjet printer relies on the deformation of the actuator to
eject the droplets (Figure 2A). When a voltage is applied, the actuator changes its shape to deform the
ink chamber which produces a pressure variation within the chamber. As the pressure overcomes the
ink surface tension, the droplets are pushed out. Compared with thermal inkjet printing, piezoelectric
inkjet printing has no limitation when it comes to thermally sensitive ink.

Electrostatic Inkjet Printing

The electrostatic inkjet printer generates droplets by manipulating the volume of the fluid chamber
(Figure 2A). The chamber has two orifices: one for droplet printing and another for ink to enter the
fluid chamber [30]. When a voltage is applied, the chamber changes its shape and ink enters the
chamber. After the voltage is removed, the chamber regains its original shape and subsequently
ejects droplets. Compared with other inkjet printing methods, electrostatic inkjet printing has a lower
bioink consumption.

2.3.2. Extrusion Bioprinting and Co-axial Extrusion Bioprinting

In extrusion-based bioprinting, three-dimensional constructs are formed by microfibers extruded
through a nozzle. With the relative movements between the platform and the nozzle, three dimensional
constructs may be deposited. The bioinks to form the microfiber should have a proper viscosity in
order to ensure the connection between layers, and should be able to be crosslinked to ensure the
formation of the final constructs (Figure 2B).

Extrusion-based bioprinting has been widely used to deposit various kinds of bioinks. These
bioinks include hydrogel with encapsulated cells [31], ECM [5] and cell aggregates [10,32]. Among these
bioinks, hydrogel with encapsulated cells is widely used for extrusion-based bioprinting. The bioinks
used for extrusion-based bioprinting should have biocompatibility, printability and proper mechanical
strength after crosslinking [13]. Many types of hydrogel, such as alginate [33], chitosan [34], gelatin [35],
collagen [36] and HA [37] that are used in extrusion-based bioprinting can be derived from marine
resources. Hydrogels that can be used in extrusion-based bioprinting should be crosslinked under
certain conditions, such as specific temperature ranges [38] or ionic conditions [39]. Gelatin can be
crosslinked at a low temperature and alginate can be crosslinked with calcium ions. Meanwhile,
alginate and gelatin both have shear thinning properties, making them suitable for extrusion-based
bioprinting [40]. When the strain rate increases, a decreased viscosity of shear thinning bioinks can
protect encapsulated cells. Moreover, shear thinning allows for smooth extrusion of viscous bioink
through the nozzle to improve the resolution by limiting the entanglement of chains [13]. Chitosan has
a slow gelation time and low mechanical properties [41], and thus it is usually blended with other
hydrogels for proper printability. HA also has low mechanical properties and a short degradation
time [42]; thus, modification is usually needed [43].

Furthermore, with a coaxial nozzle, these biomaterials can be printed coaxially [44]. A core-shell
microfiber can be created in this manner. The core can possess either good mechanical strength [44] or
poor mechanical strength [45]. The shell is always made of alginate since it has proper mechanical
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strength [45,46]. With protection from the shell, the core may be designed with good biocompatibility
and encapsulate a large amount of cells. Ouyang et al. have done a series of studies using biomaterials
from marine resources, mainly alginate, to print cells [40,47]. Using proper bioink parameters and
bioprinting parameters based on the cell type selected is pivotal in keeping the structural integrity
and cell viability in extrusion-based printing [48]. Therefore, proper bioink should be selected, and
printing parameters should be carefully adjusted to fit the requirement of the cells being printed.

2.3.3. Stereolithographic 3D Bioprinting

The SLA-based bioprinting technology utilizes the spatially-controlled irradiation of light or laser
to solidify a geometrically two-dimensional (2D) pattern layered through selective photopolymerization
in the bioink reservoir (Figure 2C). The 3D structure can be consecutively built on 2D patterned layers
in a “layer-by-layer” fashion, and the uncured bioink can be easily removed from the final product.

SLA is a solid freeform technology that was introduced in the late 1980s which has the highest
fabrication accuracy, and the number of materials that can be processed with SLA is increasing. SLA
is particularly versatile with respect to the freedom of designing structures and the scales at which
these can be built: sub-micron sized structures, as well as decimetre-sized objects have been fabricated.
In the biomedical field, these developments have led to the fabrication of patient-specific models for
mould-assisted implant fabrication [49]. More recently, biodegradable materials have been developed
for the preparation of medical implants, such as tissue engineering scaffolds, by SLA [50].

Kinetics of the curing reactions occuring during polymerization is critical. For example, ultraviolet
(UV) absorbers can be added to the resin to control the depth of polymerization [51]. In addition,
materials must have photocurable moieties for photocrosslinking. The advantages of SLA are the
ability to create complex shapes with internal architecture, ease of removal of unpolymerized resin,
and extremely high feature resolution (~1.2 um) [52]. The main disadvantage of SLA is the scarcity
of biocompatible resins with proper SLA processing properties. Additional challenges are the use
of photointiators and radicals which may be cytotoxic (with long processing times), entrapment of
unreacted monomer and residual photoinitiator, and an inability to create compositional gradients
along horizontal planes. Photopolymerized resin also has poor mechanical properties that are needed
for hard tissue engineering. However, natural biomaterials with some modification (eg. acetylation,
such as GelMA, and MeHA) showed the potential of SLA-based bioprinting for tissue engineering
applications [53,54].

3. Marine-Derived Biomaterials for 3D Bioprinting

In 3D bioprinting, as bioinks contain living cells, biomaterials are key components. These
biomaterials are compatible with biological materials (cells, cell aggregates, microcarriers, etc).
In addition, they are suitable for the printing process and provide the relevant mechanical and
functional properties.

Marine organisms are natural source reservoirs of various biopolymers with diverse biological
cues (Table 2). However, efficient use of marine organisms is still lacking. Due to marine-derived
biopolymer diversity and simplicity of the isolation processes [55–57], marine biomaterials for 3D
bioprinting applications have received rapidly increasing attention. Many marine-derived biomaterials
are selected as bioinks in 3D bioprinting (Figure 1B), including not only the widely used alginate,
chitosan [10], and carrageenan [58], but also HA, collagen, and gelatin [5,8,55]. Marine-derived
biomaterials for 3D bioprinting are naturally-derived bioinks, showing necessary properties and
advantages for tissue engineering. Compared to mammalian resources, marine natural resources
do not carry risks of transmissible diseases and are unaffected by religious restrictions. Therefore,
interest in biomaterials for 3D bioprinting has changed into marine resources because they enable high
production at a low cost [56]. At the same time, compared to synthetic hydrogels, marine-derived
natural hydrogels have many advantages, such as sufficient biological cues, low immune response,
and excellent biocompatibility for tissue engineering applications.
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Table 2. Summary of marine-derived biomaterials for 3D bioprinting.

Biomaterials Marine Sources [56] Category Gelation
Mechanism Charge Biodegardable Cell

Attachment
Cell Viability
(%) [59] Limitation 3D Bioprinting Methods Ref.

Alginate Brown algae Natural Ionic anionic Yes Modified
RGD 77-100

low biodegradability,
lack cell binding
domains

Inkjet printing, extrusion
printing [60,61]

Carrageenan Red algae Natural Ionic and
thermal anionic No Yes >80 Poor solubility, low

biodegradability
Extrusion printing,
stereolithographic printing [58]

Chitosan
Arthropods,
arthropods, marine
algae

Natural pH-sensitive cationic Yes Yes ~75 Low mechanical
integrity, poor solubility Extrusion printing [62]

HA Fish tissue Natural Photo-sensitive
MeHA cationic Yes Yes 64.4 Low stability, no direct

gelation
Extrusion printing,
stereolithographic printing [63,64]

Collagen Fish tissue, gellyfish,
marine sponges Natural Thermal - Yes Yes 46-99 Low viscosity and

mechanical integrity Extrusion printing [65]

Gelatin Derivative of collagen Natural
Thermal and
Photo-sensitive
GelMA

cationic Yes Yes 70-99.7 Low viscosity and
mechanical integrity

Extrusion printing, inkjet
printing, stereolithographic
printing

[66]
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4. Characteristics and Potentials of Main Marine-Derived Biomaterials for 3D Bioprinting

Marine-derived compounds have potential in a wide range of applications because of their
suitable chemical structures and functionalities. Among various marine-origin macromolecules,
alginate, carrageenan, chitosan, HA, collagen, and gelatin in particular have emerged as widely used
biomaterials for 3D bioprinting of regenerative medicine in recent years (Table 2). In fact, marine
biomaterials satisfy most requirements of 3D bioprinting, such as printability, mechanical integrity,
and biocompatibility.

4.1. Commonly used Marine-Derived Biomaterials as Bioinks

4.1.1. Alginate

One of the most representative polysaccharides in marine environment is alginate [56]. In general,
alginate, which is a linear anionic polysaccharide copolymer of (1–4)-linked β-mannuronic acid (M)
and α-guluronic acid (G) monomers (Figure 3A), is derived primarily from brown seaweed and also
from bacteria [67]. Commercial alginate extraction started in 1929 and has been developed to obtain
alginate with controlled molecular weight (MW), which acts as source of biomaterials with specific
physico-chemical properties for tissue engineering [68].
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Figure 3. Chemical structure of alginate (A) with permission from reference [69], Copyright Elsevier,
2003. The gelation and printability of different molecular weight alginate bioinks with Ca2+ (B) with
permission from reference [61], Copyright Springer Nature, 2017. The coupling strategy of the tripeptide
arginine-glycine-aspartic acid sequence with alginate (C) and the increased adherence of the cells to
modified alginate (D) with permission from reference [70], Copyright Elsevier, 2015.

Gelation is an important characteristic of alginates. Today, alginate is widely used as a gelling agent
for pharmaceuticals, tissue engineering, biomedicine, and the food industry [71–73]. Alginate hydrogel,
which is a naturally-derived polymer, has a similar physical structure to the native ECM, gentle
gelling kinetics, good biodegradability, excellent biocompatibility, and low toxicity [74]. Alginates can
form a hydrogel polymer with well-known properties in the presence of divalent counterions (Ca,
Ba, Sr) (Figure 3B). Calcium chloride (CaCl2) is a typical ionic crosslinker because of rapid gelation
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with its high solubility in aqueous solutions [75]. The ionic crosslinker can distinctly influence the
printability, mechanical integrity, and the degradation rate of alginate-based hydrogel, leading to low
degradability [61].

The alginate hydrogel has the potential to become a scaffold material for tissue engineering,
since it offers many advantages over synthetic polymers for this application. Alginate is abundantly
available in marine environments and can be obtained with low cost, and it forms hydrogel under
relatively mild conditions (pH and temperature). Alginate is also nontoxic, biocompatible, and
biodegradable [76]. Tissue engineering applications of alginate hydrogel have received increasing
interest. Alginate hydrogel not only has mechanical integrity to produce scaffolds [77], but also
is nontoxic and biocompatible to easily encapsulate cells as bioink during the hydrogel formation
process [61,72,78]. In addition, alginate has plasticity of molecular structure which benefits 3D
bioprinting by adding the cell attachment sites. Alginate molecules may enhance the interaction with
cells by incorporating arginine-glycine-aspartic acid (RGD) sequences along the chain of macromolecular
structure (Figure 3C,D) [70,79].

4.1.2. Carrageenan

Carrageenan is a water-soluble anionic sulfated polysaccharide derived from the marine red algae
by alkali extraction. Carrageenan is a galactan, and it consists of repeated sequences of b-d-galactose
and a-d-galactose with variable proportions of sulfate groups. Seaweed-derived carrageenan can be
divided into six basic forms based on the position and number of sulfate groups: κ-(kappa), ι-(iota),
λ-(lambda), µ-(Mu), ν-(Nu) and θ-(Theta)-carrageenan (Figure 4A) [80].
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Carrageenan type, molecular weight, concentration, and temperature have effects on the viscosity
of carrageenan gels. Among the above types of CRGs, κ and ι types of carrageenan, which can form
hydrogel at low temperature, and low salt concentrations are commercially popular because of their
viscoelastic and gelling properties (Figure 4B). For example, κ-carrageenan can coil to helix transition
and helical aggregation to form thermotropic and ionotropic hydrogels at low temperature (5 ◦C)
and in the presence of cations (K+, Ca2+) [80]. It is known that the viscosity of carrageenan gels will
decrease with increasing temperature.

However, carrageenan-based hydrogels are brittle in nature with high swelling ratios and poor
mechanical stability under physiological conditions [82]. The degradation mechanism of carrageenan
hydrogels is similar to that of alginate hydrogels, where ion exchange with the surrounding medium
causes mechanical weakness [83]. Two types of strategies have been adapted to overcome this limitation.
First, to improve mechanical properties and printability of carrageenan hydrogels, double network
hydrogels can be formed by combining carrageenan with other components. Hydrogels fabricated
with this approach showed super strong interface bonding [84,85]. In addition, various chemical
modifications of the carrageenan backbone with hydroxyl/sulphate groups, such as oversulphated,
acetylated, phosphorylated [86], oxidized [87], carboxmethylated [88], and methacrylated [81]
modifications, also have been used to overcome this weakness [89].

Therefore, carrageenan-based hydrogels can be formed by four different crosslinking mechanisms,
including thermoreversible gelation, ionic crosslinking (in presence of monovalent or divalent ions), UV
crosslinking (modification of carrageenan backbone with methacrylate groups), or dual crosslinking
(both UV and ionic crosslinking) (Figure 4B).

Carrageenan shows similar tissue composition to mammalian glycosaminoglycans of ECM [90].
Therefore, the thermogelation properties and excellent biocompatibility of κ-carrageenan hydrogels
have been used to improve rheological behaviors of hydrogel and precise fabrication of the cell-laden
scaffolds based on alginate/carrageenan hydrogels in 3D bioprinting [91]. κ-carrageenan can also be
used as a biological binder in the printing of the tissue scaffold with its proven biocompatibility [85].
In addition, methacrylated carrageenan (MA-κ-carrageenan) underwent gelation upon the consecutive
crosslinking procedures (UV and KCl) and showed good printability of scaffolds with encapsulated
cells. Human mesenchymal stem cells (hMSCs) within MA-κ-carrageenan hydrogel presented high
viability (∼75%) for long time periods (up to 21 days) (Figure 4C,D) [81]. These chemical modifications
of carrageenan endow them with improved physio-chemical properties, new specific functionalities
and features, such as a capability for photocrosslinking for SLA-based 3D bioprinting in tissue
engineering applications.

4.1.3. Chitosan

Chitosan, a cationic polysaccharide, is the deacetylated derivative of chitin which is the second
most abundant natural polymer after cellulose [62,92,93]. Among the various polysaccharides obtained
from the marine environment, chitosan is also one of the most abundant polysaccharides. It is the main
structural component in the exoskeleton of various marine invertebrates [56]. Chitosan is formed by
d-glucosamine (70–90%) and N-acetyl-d-glucosamine (10–30%) units, linked by β-1,4 glycosidic bonds
(Figure 5E) [62]. The deacetylation degree of chitosan is related to the ratio between the two units [94].
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Unlike chitin with poor solubility, chitosan with high deacetylation degree (>50%) can dissolve in
acidic aqueous solutions [96]. Because the free amino groups of chitosan are protonated in diluted
acids, chitosan becomes fully soluble when pH < 5 [97]. Therefore, chitosan-based hydrogel is
pH-sensitive. For example, viscosity could increase with high pH by addition of NaOH or KOH
coagulation solutions [98].

Chitosan is a bioactive polymer with favorable properties such as biocompatibility, bioactivity,
high mechanical strength, easy modification, and biodegradability. It is used in a variety of applications
such as neural tissue engineering (Figure 5A–D) [62]. In addition, chitosan has antimicrobial property
due to charge interaction with the membranes of microorganisms [99–101]. Chitosan-based hydrogel
as a bio-ink for 3D bioprinting in bone tissue engineering clearly demonstrated the feasibility and
printability of chitosan as a bio-printing solution, and cells encapsulated within chitosan-based
hydrogels had mineralized and differentiated osteogenically after 21 days of culture [102]. The amino
groups of chitosan can be chemically modified to obtain more derivatives with satisfactory solubility,
and mechanical and biological properties, which can be used for specific purposes [5,103]. But in
general, thermo-mechanical processing is not suitable for chitosan because it is not thermoplastic and
degrades before melting [104]. In order to avoid degradation of chitosan, the processing temperature
must be controlled.

4.2. Selective Use of Marine-Derived Biomaterials as Bioinks

4.2.1. HA

HA is a naturally occurring non-sulfated cationic glycosaminoglycan that was first extracted from
bovine vitreous by Karl Meyer and John Palmers in 1934 [105]. But this is limited by the possibility of
transmissible diseases and religious restrictions, so a large amount of HA has been obtained from the
marine environment, mainly in cartilaginous fishes and in vitreous humor of different fishes [55,56].
HA is a polymer compound which consists of alternating disaccharide units of N-acetylglucosamine
and glucuronic acid, linked by β-1,3 and β-1,4 glycosidic bonds (Figure 6A) [106].
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It is well known that the hydrophobic and hydrogen bonding interactions, countering electrostatic
repulsion, enable large numbers of HA molecules to aggregate, leading to the formation of molecular
networks (matrices) [63]. However, the stability of the matrix structure of HA appeared to be marginal
in physiological solutions [107]. Therefore, indirect HA-based hydrogel is used in 3D bioprinting
applications by esterification of the primary hydroxyl groups and photocrosslinking [108]. When
functionalized with methacrylate groups (Figure 6A), MeHA could form hydrogel networks by the
addition of a photo initiator, leading to polymerization upon UV-exposure.
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HA is an ECM component and its physiological functions include maintaining the viscoelasticity
of connective tissue fluids, controlling tissue hydration and water transportation, and assembling
supramolecular proteoglycans in the ECM [109–111]. Because of the above advantages, HA is widely
applied in the field of biomedicine with few reported adverse effects [112,113]. In 3D bioprinting, most
previous studies simply used HA as an additive component to improve cell growth, as it plays an
important role in the mediation of cell physiological functions via interaction with binding proteins
and cell surface receptors [63], regardless of instability of HA networks in solution [114,115]. When
compared to plain HA hydrogels, modified MeHA hydrogels have been shown to be more resistant to
degradation, while maintaining good biocompatibility. In addition, photocrosslinking-enabled MeHA
hydrogels could be applied as cell-laden bioink to print tissue scaffolds by crosslinking with UV light
directly after gel deposition (Figure 6B) [64]. When encapsulated in MeHA-based hydrogels with
increased mechanical stiffness and long-term stability, the viability of hMSCs remained at 64.4% after
21 days of culture, and osteogenic differentiation of hMSCs occurred spontaneously in hydrogels with
high concentrations of MeHA polymer, in the absence of additional osteogenic stimuli (Figure 6C) [64].
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4.2.2. Collagen

Collagen is a natural protein polymer with the structure of a triple helix by three extended protein
chains that wrap around one another (Figure 7F) [116]. These protein chains contain cell adherence
sites based on integrin binding motifs of RGD residues. Moreover, collagen is a unique protein with
abundant non-polar amino acids, such as Glycine–Gly (30%), Alanine–Ala (10%) and Proline–Pro
(10%), and significant presence of Hydroxyproline–Hyp, leading to an elegant structural motif [117].
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Molecular structure, MW, and temperature have effects on the characteristics of collagen and
determine the viscosity and formation of collagen-based hydrogels. For example, collagen type I
hydrogel is temperature-sensitive, and when the environmental temperature increases to 20–28 ◦C,
collagen molecules could aggregate to form thermotropic hydrogel [65].

Collagen is part of the ECM and mainly found in hard and soft connective tissues of the skins
and bones of animals. Collagen has the advantages of biodegradability, biocompatibility and low
immunogenicity, so it is broadly used in 3D bioprinting for tissue engineering applications [116,119,120].
Since hydrogel based only on collagen presents weak mechanical properties, collagen has been modified
by esterification or blended with other materials like alginate and gelatin as bioink to fabricate tissue
models or repair structures. Recently, collagen has been applied in cornea fabrication [118,121], skin
healing [122,123], and thyroid gland [124] applications by 3D bioprinting (Figure 7A–E).

Collagen is the most abundant protein presents in the human body, especially in connective
tissues. Currently, commercial collagen is generally sourced from mammalian-derived products
including pig and cattle hide and bone [125]. However, collagen proteins from mammalian tissues
have a potential risk of transmission of diseases such as bovine spongiform encephalopathy, foot and
mouth diseases, and avian influenza [126,127]. Therefore, it is critical to find a source of collagen
that is appropriate for medical applications. Several studies indicated that marine collagen is an
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ideal substitute because fish by-products, such as skin, scale, and bone, are abundant sources of
collagen [128–130]. Compared to land-based mammalian collagen, marine collagen has unique
advantages including its large amount, low melting point, low viscosity in solution, good water
solubility, and no risk of transmitted diseases [127]. To date, collagen has been found in various marine
species including corals, sponges, sea urchin, salmon, jellyfish, mollusk, and coralline red algae [131].

4.2.3. Gelatin

Gelatin is a natural cationic biopolymer derived from collagen. In fact, gelatin and collagen
are similarly structured macromolecules since gelatin is the partially hydrolyzed form of collagen
(Figure 8A). However, gelatin has an opposite thermo-responsive property from collagen. The viscosity
of gelatin solution will increase with decreasing temperature (<35 ◦C). When below 35 ◦C, gelatin
forms a random coil structure to produce a helix leading to molecular chain aggregation for gelation
(Figure 8B) [66].
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Like collagen, gelatin-based hydrogel has cell adherence sites based on integrin binding motifs
of RGD residues. Gelatin also shows great biodegradability, low antigenicity and biocompatibility,
so it is used as a bioink material in 3D bioprinting for cell culture, such as liver tissue [133,134],
cartilage tissue [135], and muscle tissue [136]. Due to its weak strength and water-solubility above
35 ◦C, gelatin could be modified with a methacrylate group, creating the photocrosslink-able GelMA
(Figure 8C) [137] used in extrusion printing [53], inkjet printing [138] and SLA-based printing [139].
In addition, by using commonly used extrusion printing, GelMA scaffolds could be designed to have a
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100% interconnected pore network in the gelatin concentration range of 10–20 w/v% and mechanically
stable cell-laden gelatin methacrylamide scaffolds with high cell viability (>97%) could be printed
(Figure 8D) [53].

Similar to collagen, gelatin from marine sources is free from risk of disease transmission and
religious restrictions associated with the use of that obtained from mammalian sources. Thus, it is a
promising alternative to mammalian gelatin [140,141].

5. 3D Bioprinting Applications Based on Marine-Derived Bioinks

With the development of printing technology, materials science, and stem cell biology, 3D
bioprinting has made it possible to generate functional tissues in vitro [1]. Suitable biomaterials play
a critical role in 3D bioprinting for tissue engineering and regenerative medicine. Marine-derived
natural biomaterials fulfill the requirements of successful 3D printing based on cell-laden bioinks [56]
and have been widely used in medical applications including tissue or organ regeneration (Table 3),
cell therapy, and drug screening (Table 4).

5.1. Tissue Engineering

With the need of donor tissue or organs and the development of tissue engineering and
regenerative medicine, 3D bioprinting makes it possible to fabricate 3D tissues with complex
geometries of personalized consumer product in future with rapid prototyping and manufacturing
technologies. By using natural marine-derived biomaterials, several tissues have already been explored
for 3D bioprinting.

Alginate hydrogel is a widely used biomaterial due to its excellent performance in bioprinting
for various tissue engineering applications, including bone, neural, liver, skin, and so on (Table 3).
For example, in 2007, Coppi and colleagues embedded human amniotic fluid-derived stem (hAFS)
cells in an alginate/collagen scaffold by thermal inkjet printing and demonstrated bone formation
induced from hAFS cells [23]. Neural mini-tissue [95] and aortic valve conduits [71] had been
printed by extrusion bioprinting technology and they expressed characteristic functional molecular.
In addition, carrageenan, chitosan, and f-gelatin have become suitable in 3D bioprinting. Carrageenan
increased the compressive strength of collagen-hydroxyapatite composite gel [142]. This improvement
in mechanical properties justifies carrageenan as an efficient bone repair material. Moreover, to
overcome the difficulty of fabricating functional engineered implants with patient-specific sizes and low
immunogenicity, Cuidi et al. [143] developed a printable and biocompatible hydrogel which contains
hydroxybutyl chitosan and oxidized chondroitin sulfate. Human adipose-derived mesenchymal stem
cells (hADMSCs) encapsulated in the 3D hydrogel showed high viability. The results demonstrated
that hydrogels triggered low level of inflammatory genes expression of macrophage in vitro and feeble
inflammatory responses in vivo, and have the potential for cartilage engineering. Particularly, f-gelatin
showed distinct potential for tissue engineering. For example, Jeong and colleagues studied the
differences between GelMA from mammalian sources and fish-derived gelatin. Compared to porcine
GelMA, fish GelMA had a higher degradation rate and lower melting and gelling points. Additionally,
cells retained high viability until 24 h after encapsulation [144]. Zhang and colleagues used this
type of f-GelMA to develop a marine-based interpenetrating polymer network hydrogel composed
of fish-gelatin and alginate [8]. Besides a desirable swelling ratio, this hydrogel possessed a strong
mechanical strength that can reach 130 kPa. Moreover, this hydrogel had a desirable degradation rate
in both Dulbecco’s Phosphate-Buffered Saline and collagenase type II. In the morphology and cell
viability study after bioprinting, the f-GelMA showed a clear structure and cells encapsulated had
high viability.
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Marine Bioinks-Based 3D Bioprinting for Autologous Tissue Replacement

Adipose Tissue

The biofabrication of autologous tissue substitutes provide patients with new hopes given
the shortage of donors. Adipose tissue has the ability to differentiate down the mesenchymal or
non-mesenchymal pathways to offer future perspectives for tissue reconstruction therapies [145].
Marine bioinks-based bioprinting technology has shown remarkable potential in adipose tissue
engineering. For example, hADMSCs-laden alginate and blood plasma hydrogel scaffolds were
constructed by bioprinting. Adipogenic markers that present in natural adipose tissue could be verified
in the 3D grafts to resemble cell lineages [146].

Aortic Valve Construct

Aortic valve disease is a significant cause of morbidity and mortality. This disease could be cured
by replacing the diseased valve with a prosthetic one, but current prosthetic devices are inadequate
for young adults and growing children [147]. Tissue engineered living aortic valve scaffolds have the
potential for tissue regeneration. Several studies have shown the potential of the bioprinted scaffolds
for development of aortic valve construct. Alginate and gelatin-based hydrogel valve conduits
encapsulating aortic root sinus smooth muscle cells (SMC) and aortic valve leaflet interstitial cells
(VIC) were fabricated using an extrusion printer where cells were viable (81.4 ± 3.4% for SMC and
83.2 ± 4.0% for VIC) and elevated muscle actin and vimentin expression for aortic valve tissue were
observed [71]. Besides, crosslinking parameters showed the effects on viability of heart valve cell types
in GelMA, PEG-diacrylate 3350 (PEGDA3350) and alginate-based 3D bioprinted scaffolds. The results
showed that the highest viability achieved was >93% for SMC, VIC and hADMSCs, and intracellular
oxidative stress did not improve cell viability [148].

Bone Tissue

Bioprinting technology has shown promising developments in bone tissue, which is a complex
composite tissue and needed for bone injury patients (Figure 9). In an earlier study, natural
polymer-based hydrogels such as alginate, collagen, and gelatin, were mixed with bone-related
stem cells and bioprinted to form 3D bone scaffolds where differentiated osteogenic lineage cells
formed tissue-engineered bone and expressed elevated bone morphogenetic protein 2 (BMP-2) [23,149].
Later, hydrogel composites were improved by adding bioactive materials. For example, biosilica as a
morphogenetically active matrix and human osteogenic sarcoma (SaOS-2) cells were embedded into a
Na-alginate-based hydrogel for 3D bioprinting of bone tissue constructs and SaOS-2 cells presented
increased growth and higher expression of the genes encoding the cytokine BMP-2 [150]. In another
research study, bone-related alginate hydrogels also showed higher viability and activity by adding
polylactic acid (PLA) [151], nanosilicate clay [152], hydroxyapatite [153–155], and cellulose [156].
Besides, collagen, alginate, and fibrin bioink-based reactive jet bioprinting offers a combination of
higher deposition rate, cell density, and cell viability than some other bioprinting technologies [157].
On the other hand, chitosan and hydroxyapatite-based hydrogel tissue constructs blended with
pre-osteoblast cells were stable, and its printability is superior to those made from alginate, which is
the most widely used solution preferred in bioprinting systems, and the most preferred one in terms of
cell proliferation and differentiation [102].
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Cardiac Tissue

Myocardial infarction (MI) leads to a high death rate in cardiovascular diseases. Due to the
progressive loss of cardiomyocytes from MI, there is a tremendous demand for new cardiomyocytes
for MI treatments [159]. Recently, cardiac tissue engineering has shown promising strategies for
MI repair. Zhang and colleagues showed a novel hybrid strategy based on 3D bioprinting. First,
endothelial cells were directly bioprinted within microfibrous alginate and GelMA hydrogel scaffolds
to form a layer of confluent endothelium. Then, cardiomyocytes were seeded on 3D endothelial
scaffolds to generate human cardiomyocytes with the ability of contraction [160]. In particular, cardiac
patches should be electrically conductive, mechanically robust, and biologically active. For example,
in another study, a nanoreinforced hybrid way for cardiac patch bioprinting based on the combination
of functionalized carbon nanotubes, methacrylated collagen, and alginate matrix showed improved
electrical, mechanical, and biological behaviors for prevascularized hybrid cardiac patches [161].
For biological activity, Maiullari and colleagues presented heterogeneous, multi-cellular constructs
based on alginate and PEG-fibrinogen bioinks containing human umbilical vein endothelial cells
(HUVECs) and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) through a co-axial
nozzle extruder [162]. However, although alginate bioink was used to bioprint cardiac constructs
with varying architectures, the electrical/mechanical behavior of alginate implants was bioprinting
pattern-dependent [163].

Cartilage Tissue

Cartilage tissue engineering by 3D bioprinting has received increasing attention due to the
limited self-repair capability of cartilage. Natural polymers from marine sources including alginate,
carrageenan and chitosan have all been intensively studied as possible bioinks [164–170]. For example,
alginate-based bioink laden with cartilage progenitor cells (CPCs) was fabricated into hollow filament
scaffolds by using a coaxial extruder and these tissue constructs yielded a relatively higher expression
of cartilage-specific genes compared with monolayer cultured CPCs [166]. Due to limitations of
single-component hydrogel systems, more interest for cartilage tissue engineering has been paid
to biocompatible materials with good mechanical or biological properties. Such materials include
cellulose [72,171–173], hydroxyapatite [157,174], nanosilicates [82], chondroitin sulfate [143], and
cartilage-ECM (cECM) [175]. Rathan and his colleagues developed cECM-functionalized alginate
bioink for the bioprinting of cartilage tissues with robust chondrogenesis property [175].
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Dental Tissue

Due to the intricate 3D features and geometrically-controlled mechanical and biological functions
of dental tissues, the regeneration of various dental structures has been addressed only to a very limited
extend. However, 3D bioprinting technology has shown promising potential for biofabrication of dental
tissue constructs. For example, bioprinted tissue with bioink consists of alginate, stem cells and dentin
ECM showed significant odontogenic differentiation of stem cells and natural odontogenic capacity for
regenerative dentistry [176]. Also, 3D-printed alginate and gelatin scaffold containing human dental
pulp stem cells (hDPSCs) promoted osteogenic and odontoblastic differentiation of hDPSCs with the
enhanced formation of bone-like nodules and positive alkaline phosphatase staining [177].

Liver Tissue

For patients suffering from end-stage liver disease, 3D bioprinting technology provides hope
for its ability to biofabricate liver tissue. For example, 3D bioprinted tissue scaffolds using alginate
and hepatocytes as bioink, either inkjet printed [25] or extrusion bioprinted [178–180], demonstrated
upregulation of hepatic markers and excellent cell morphology. On the other hand, by adding ECM
into alginate and gelatin bioinks, a printed 3D liver model containing human HepaRG liver cells
not only maintained cell viability and metabolic functions, but also supported efficient adenoviral
replication, showing its paradigmatic potential to be used for studies including viral vectors and
infectious viruses [181].

Neural Tissue

Recent advances in 3D bioprinting make it possible to generate functional neural tissue. Schwann
cells encapsulated in alginate bioink-based 3D bioprinted scaffolds enhanced expression of nerve
growth factor [182], and promoted the cell alignment with uni-directional cues to guide the extension
of dorsal root ganglion neurites along the printed strands [183], demonstrating the potential for
nerve tissue engineering. In addition, Gu and colleagues used one bioink comprising alginate,
carboxymethyl-chitosan, and agarose to fabricate 3D scaffolds encapsulating human neural stem
cells, showing stem cell expansion and differentiation as the results of bicuculline-induced increased
expression of calcium-responsive gamma-aminobutyric acid, and provided one neural model for
investigation of human neural development, function, and disease [95,184].

Ocular Tissue

The retinal is critical to the formation of visual image in eyes. Many eye diseases may be linked to
retinal pigment epithelium degeneration. 3D bioprinting can precisely deliver cells and biomolecules to
provide a breakthrough for retina tissue engineering. For example, a hybrid retina construct including
a PCL ultrathin membrane, human retinal pigmented epithelial (ARPE-19) cell monolayer and human
retinoblastoma (Y79) cell-laden alginate/pluronic bioink was bioprinted and Y79 cells in bioink showed
promising morphology and proliferation [26]. The successfully bioprinted retina model showed
potential for ocular tissue applications.

Skeletal Muscle Tissue

Although skeletal muscles can self-repair relatively small damages, significant tissue loss cannot
be self-restored, leading to severe trauma or invasive surgeries. Artificial skeletal muscle tissue has
received increasing attention in the field of tissue engineering. Muscle precursor cell (C2C12 cell) laden
PEG-fibrinogen and alginate bioink was used to print hydrogel fiber scaffolds by coaxial extrusion
printing and demonstrated an enhanced myogenic differentiation with the formation of parallel aligned
long-range myotubes like natural skeletal muscle [185]. Besides, compared to conventional cell-seeded
scaffolds, C2C12 cell-laden pluronic/alginate blends-based 3D bioprinted tissue construct provided a
cell density similar to that of native tissue, and also demonstrated cell alignment along the deposition
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direction to tailor the resulting cell histoarchitecture for native muscle tissues and showed high cell
viability, as well as a significantly improved expression level of myogenic genes [186]. With the
development of new biocompatible materials, carboxymethyl cellulose chemically functionalized with
methacrylic anhydride, PEGDA blended into GelMA and methacrylic alginate have enabled the direct
3D printing of complex functional living tissues such as skeletal muscle fibers from C2C12 murine
cells, and 3D bioprinting utilizing aforementioned biomaterials provided versatile, long lasting, and
mechanically tunable scaffolds for myotube formation and alignment [187].

Skin Tissue and Sweat Gland

The skin, which can self-repair with minor injuries excluding extensive damage, is the largest
organ in the human body and protects it from the external environment. Among the estimated
265,000 deaths per year caused by burns, many people lost skin function and had wound infection
leading to multi-organ failure [188]. Engineered skin tissue constructs showed potential for artificial skin
replacement [24,189]. Cell-laden alginate hydrogel blended with other biomaterials was added to a 3D
bioprinter to fabricate bioactive skin scaffolds. For example, alginate, gelatin, and encapsulated hMSCs
bioink-based skin tissue scaffold was 3D printed, showed complete attachment on the wound surface,
and integrated with host tissues in a week. It showed biocompatibility for skin tissue engineering
without toxicity and was not rejected [190]. Moreover, based on gelatin, alginate, fibrinogen and
human dermal fibroblasts bioink, 3D printed highly organized full thickness skin (dermis + epidermis)
presented all characteristics of human skin, at both molecular and macromolecular levels [191].

Body temperature is primarily controlled by sweating of the sweat glands in skin. However,
severe skin burns may lead to failure of complete sweat gland regeneration with the hypertrophic scars
and heat intolerance [192]. Alginate hydrogel-based 3D bioprinted hydrogel showed the ability to
regenerate sweat glands. Adult epidermal progenitor cell-laden gelatin and alginate bioink was used
to print 3D extracellular matrix scaffolds for a restrictive niche for epidermal progenitors to unilaterally
differentiate into sweat gland cells. Animal implant results showed the functional restoration of sweat
glands and the printed scaffold may have the potential for translational implications in regenerating
sweat glands [193].

Vessel Systems

To maintain the functions of complex engineered tissue or organ with continuous nutrient
requirement, the development of interconnected 3D vascular networks within the tissue or organ
constructs is critical. 3D bioprinting technologies, in particular the coaxial printing technology [194,195]
are promising for fabrication of highly organized 3D vascular networks. For example, alginate, GelMA,
PEG-tetra-acrylate, HUVECs, and hMSCs bioink-based perfusable vascular structures with highly
ordered arrangements were printed by a coaxial extrusion printer in a single-step process and supported
the spread and proliferation of encapsulated endothelial and stem cells [36]. Besides, a small-sized
artificial vessel was also fabricated based on alginate and hMSCs-derived endothelial-like cells bioink
and showed upregulation of endothelial cell markers for vessel formation [196]. In addition to coaxial
extrusion printing, inkjet printing printed alginate/fibrinogen droplets containing cells to fabricate
circular patterns for microvessel constructs [197]. Hollow channels realized complex heterogeneous,
hierarchical architectures and have strong potential for use in vascular tissue applications [198].
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Table 3. Marine-derived biomaterial hydrogels in 3D bioprinting for tissue engineering applications. hADMSCs, human adipose-derived mesenchymal stem cells;
SMC, aortic root sinus smooth muscle cells; VIC, aortic valve leaflet interstitial cells; hAFS cells, human amniotic fluid–derived stem cells; SaOS-2 cells, human
osteogenic sarcoma cells; RGD, Arginine-Glycine-Aspartic acid; GelMA, gelatin methacryloyl; hMSCs, human mesenchymal stem cells; HUVECs, human umbilical
vein endothelial cells; iPSC-CMs, induced pluripotent stem cell-derived cardiomyocytes; CPCs, cartilage progenitor cells; C2C12 cell, muscle precursor cells.

Marine-Derived
Biomaterial

Marine Biomaterial
Resources Application Bioink Composites 3D Bioprinting Technology Ref.

Alginate Brown algae

Adipose tissue Alginate/blood plasma/hADMSCs Laser-assisted thermal inkjet
printing [146]

Aortic valve
Alginate/gelatin/SMC/VIC Extrusion bioprinting [71]

GelMA/polyethylene glycol diacrylate 3350/alginate/VIC/SMC Extrusion bioprinting [148]

Bone tissue

Alginate/collagen/hAFS cells Inkjet printing [23]
Alginate/multipotent stromal cells Extrusion bioprinting [149]

Alginate/gelatin/SaOS-2 cells Extrusion bioprinting [199]
Alginate/silica/biosilica/SaOS-2 cells Extrusion bioprinting [150]

RGD-γ Alginate/polyethylene glycol methacryloyl/GelMA/hMSCs Extrusion bioprinting [158]
Alginate/polylactic acid nanofibers/hADMSCs Extrusion bioprinting [151]

Alginate/methylcellulose/nanosilicate clay/hMSCs Extrusion bioprinting [152]
Alginate/polyvinyl alcohol/hydroxyapatite/MC3T3 mouse preosteoblasts Extrusion bioprinting [153,154]

RGD-γ alginate/nano-hydroxyapatite/plasmid DNA/hMSCs Extrusion bioprinting [155]
Collagen/alginate/fibrin/hMSCs Jet bioprinting [157]

wood-based cellulose nanofibrils/bioactive glass/gelatin/alginate/Saos-2 cells/hMSCs Extrusion bioprinting [156]

Cardiac tissue

Alginate/GelMA/endothelial cells Extrusion bioprinting [160]
Alginate/human coronary artery endothelial cells Extrusion bioprinting [163]

Carbon nanotubes/methacrylated collagen/alginate/human coronary artery endothelial cells Extrusion bioprinting [161]
Alginate/PEG-fibrinogen/HUVECs/iPSC-CMs Coaxial extrusion bioprinting [162]

Cartilage tissue

Alginate/osteoblasts/chondrocytes Extrusion bioprinting [165]
Alginate/CPCs Coaxial extrusion bioprinting [166]

Gellan/alginate/BioCartilage/chondrocytes Coaxial extrusion bioprinting [200]
Alginate/chondrocyte Extrusion bioprinting [167–169]

Cellulose/alginate/chondrocyte Extrusion bioprinting [72,171–173]
Alginate/GelMA/chondroitin sulfate amino ethyl methacrylate/methacrylated hyaluronic

acid/hMSCs Coaxial extrusion bioprinting [201]

Alginate/agarose/GelMA/BioINK™/hMSCs Extrusion bioprinting [202]
Cellulose/alginate/chondrocytes/hMSCs Extrusion bioprinting [203,204]

Alginate/polylactic acid/chondrocyte Extrusion bioprinting [205]
Cellulose/alginate/iPSCs Extrusion bioprinting [206]

Cellulose/alginate/chondrocyte Inkjet printing [24]
Collagen/alginate/chondrocyte Extrusion bioprinting [207]

Hydroxyapatite/alginate/chondrocyte Extrusion bioprinting [174]
Cartilage decellularized extracellular matrix/alginate/hMSCs Extrusion bioprinting [175]

Dental tissue
Alginate/ECM/mouse odontoblast-like OD21 cells/human dental stem cells from the apical papilla Extrusion bioprinting [176]

Alginate/gelatin/human Dental Pulp Stem Cells Extrusion bioprinting [177]
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Table 3. Cont.

Marine-Derived
Biomaterial

Marine Biomaterial
Resources Application Bioink Composites 3D Bioprinting Technology Ref.

Alginate Brown algae

Liver tissue

Alginate/hepatocyte-like cells Inkjet printing [25]
Alginate/HepG2 cells Extrusion bioprinting [178,208]

Alginate/mouse primary hepatocytes Extrusion bioprinting [179]
Alginate/gelatin/ECM/human HepaRG liver cells Extrusion bioprinting [181]

Alginate/mouse-induced hepatocyte-like cells Extrusion bioprinting [180]
Alginate/cellulose nanocrystals/fibroblast/hepatoma cells Extrusion bioprinting [209]

Neural tissue
Alginate/carboxymethyl-chitosan/agarose/human neural stem cells Extrusion bioprinting [95,184]

Alginate/gelatin/Schwann cell RSC96s Coaxial extrusion bioprinting [182]
Alginate/fibrin/HA/RGD peptide/Schwann cell Extrusion bioprinting [183]

Ocular tissue Alginate/pluronic/Y79 human retinoblastoma cell Inkjet printing [26]

Skeletal muscle
tissue

PEG-Fibrinogen/alginate/C2C12 cell Coaxial extrusion bioprinting [185]
Pluronic/alginate/C2C12 cell Extrusion bioprinting [186]

GelMA/PEG-diacrylate/carboxymethyl cellulose chemically functionalized with methacrylic
anhydride/methacryloyl Alginate/C2C12 cell Extrusion bioprinting [187]

Skin tissue

Gelatin/alginate/hMSCs Extrusion bioprinting [190]
Gelatin/alginate/fibrinogen/human dermal fibroblasts Extrusion bioprinting [191]
Gelatin/alginate/human skin primary fibroblast cells Extrusion bioprinting [189]

Cellulose/alginate/primary human dermal fibroblasts/human nasal chondrocytes Extrusion bioprinting [24]

Sweat gland Gelatin/alginate/epidermal progenitor cells Extrusion bioprinting [193]

Vessel system

Alginate/CPCs Coaxial extrusion bioprinting [166,195]
Alginate/L929 mouse fibroblasts Coaxial extrusion bioprinting [194]

Alginate/GelMA/polyethylene glycol tetra-acrylate/HUVECs/hMSCs Coaxial extrusion bioprinting [36]
Alginate/fibroblasts/smooth muscle cells Coaxial extrusion bioprinting [210]

Alginate/fibrinogen/endothelial cells Inkjet printing [197]
Alginate/endothelial cells/fibroblasts Coaxial extrusion bioprinting [198]

Alginate/endothelial-like cells Coaxial extrusion bioprinting [196]
Alginate/GelMA/PEG/human urothelial cells/human bladder smooth muscle cells/human umbilical

vein endothelial cells/human smooth muscle cells Coaxial extrusion bioprinting [211]

Carrageenan Red algae

Cartilage tissue κ-carrageenan/hADMSCs/human nasal chondrocytes Model pattern [170]
MA-κ-carrageenan/2D nanosilicates/hMSC Extrusion bioprinting [82]

Tissue scaffolds

MA-κ-carrageenan/NIH-3T3 fibroblast cells/MC3T3 mouse preosteoblasts/hMSCs Model pattern [81]
κ-carrageenan/2D nanosilicates/MC3T3 mouse preosteoblasts Extrusion bioprinting [212]

GelMA/κ-carrageenan/nanosilicates/hMSCs Extrusion bioprinting [213]
Carrageenan/alginate/hADMSCs Extrusion bioprinting [91]

Chitosan Shell

Bone tissue Chitosan/hydroxyapatite/MC3T3 mouse preosteoblasts Extrusion bioprinting [102]

Cartilage tissue Hyaluronate/chitosan/adipic acid dihydrazide/ATDC5 chondrocyte Extrusion bioprinting [164]
Chitosan/oxidized chondroitin sulfate/hADMSCs Extrusion bioprinting [143]

Neural Tissues Alginate/carboxymethyl-chitosan/agarose/human neural stem cells Extrusion bioprinting [95,184]

Tissue scaffolds Gelatin/alginate/carboxymethyl chitosan/hMSCs Extrusion bioprinting [214]

Gelatin Fish tissue Tissue scaffolds Alginate/fish GelMA/NIH-3T3 fibroblast cells Coaxial extrusion bioprinting [8]
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5.2. Further Applications

5.2.1. Cell Therapy

A cell therapy is a medicinal product containing cells within materials or not, and is typically
injected into a patient. However, one challenge, which is to maintain cell viability and function,
lies in cell therapy application. The problem could be solved with 3D bioprinting by providing
in-vivo-like microenvironment and diverse cell combination. For example, researchers successfully
printed the hydrogel scaffolds containing alginate, gelatin, INS1E β-cells, human and mouse islets
without affecting their morphology and viability by extrusion bioprinting. Further, pancreatic islets of
multicellular constructs (islet in the inner layer and islet-related supporting cells in the outer layer)
could also be constructed by co-axial bioprinting. After transplantation, blood vessels could grow
into the pores of the construct [215] and the viability of pancreatic islets is well maintained after
the 3D printing process [216]. They demonstrated the potential to produce functional Langerhans
for some patients with type 1 diabetes. Moreover, through bioprinting technology, pancreatic islets
encapsulated in macroporous 3D alginate and methylcellulose hydrogel constructs of defined geometry
could continuously produce insulin and glucagon and still react to glucose stimulation albeit to a lesser
degree than control islets [217].

Stem cell therapy has become a hot field in medical application. 3D bioprinting of stem cells
directly into scaffolds offers great potential for the development of regenerative therapies [218]. Gu and
colleagues printed a human iPSCs-containing scaffold in alginate, carboxymethyl-chitosan, and agarose
hydrogel for in situ expansion and sequential multilineage differentiation [35]. Based on alginate
hydrogel mixed with human neural stem cells, a layered lattice structure was created by 3D bioprinting
and showed a viable and economical platform for human neural stem cells expansion that could be
translated to clinical application [219]. However, it is important for stem cell 3D bioprinting to control
shear stress in the printing process, because shear stress had effects on printing resolution and stem
cell integrity [15]. The shear-thinning property of hydrogels can shield cells from high shear forces in
bioprinting, which is mainly used for cell encapsulation and delivery. Thakur and colleagues used 2D
nano-silcate reinforced k-carrageenan hydrogels for cell delivery. The shear-thinning characteristics of
nanocomposite hydrogels are investigated for hMSCs delivery. The hMSCs showed high cell viability
after injection and encapsulated cells showed a circular morphology [82].

5.2.2. Drug Research System

Drug screening research evolved from traditional 2D cells or animal tests into patient-specific
precision medicine in recent years because of the development of 3D cell cultures that use patient-derived
cells and better mimic of the in vivo physiology [220]. In vitro physiological drug models based on
3D bioprinting technology have attracted increasing attention in pharmaceutical drug and toxicology
screening for drug discovery and development (Table 4). Moreover, the assessment of efficacy and
safety profiles of physiological models fabricated by 3D bioprinting has also been reviewed and some
research confirmed that the efficacy and toxicity of drugs in 3D models are similar to that of the clinical
data [221].

Marine-Derived Biomaterial based Bioprinting for Liver Drug Metabolism Model

Among in-vitro drug screening models, the liver organ is the focus of study due to its primary
role in drug metabolism [222]. Fortunately, the convergence of 3D bioprinting technologies along with
microfabrication and cell culture techniques enables the construction of a biomimetic 3D micro-tissue
or organ model to serve as an in vitro platform for cell culture, and drug screening to provide further
insights in cell–cell and cell–matrix interactions. Combining the development and application of natural
marine biomaterials, a 3D microscale liver tissue analog was established by direct cell writing extrusion
bioprinting using alginate hydrogel. Researchers observed collective drug metabolic function and
suitability of liver tissue analog as a drug metabolism model and could assess drug pharmacokinetic
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profiles in planetary environments [208]. This biofabrication strategy of various in vitro 3D tissue
analogs with specific tissue cells and complex microarchitecture could benefit clinical drug screening,
by increasing the test efficacy and effects of the agent of interest.

Brain Tumor Model

Despite recent advances in the treatment of brain tumors, the prediction of clinical efficacy
of therapeutic drugs of patients with brain cancers, such as glioma, and neuroblastoma, is still
challenging [223]. In-vitro glioma tumor model fabricated by 3D bioprinting technology with
marine alginate [27,34] or chitosan [224] biomaterials and its drug pharmacokinetic study have made
much progress in our lab. Dai and colleagues printed a brain glioma model by extrusion printing
with alginate/gelatin/fibrinogen containing glioma stem cells. They showed drug susceptibility
of the in vitro brain tumor models to temozolomide (TMZ), and the results demonstrated that
cells in 3D printed tumor model were more resistant to TMZ than those in 2D monolayer model
(Figure 10) [225]. In addition, for mimicking the glioma microenvironment with heterogeneous cell
interaction, our group constructed shell-alginate and glioma stem cell GSC23/core-glioma cell line
U118 (G/U) hydrogel microfibers with high cell viability by coaxial extrusion bioprinting. The results
showed matrix metalloproteinase (MMP)-2, MMP9, vascular endothelial growth factor receptor-2 and
O6-methylguanine-DNA methyltransferase, which are related to tumor invasion and drug resistance
were significantly enhanced in G/U hydrogel microfibers, and that U118 cells derived from G/U
microfibers had greater drug resistance to TMZ in vitro compared to U118 culture alone [226]. Besides,
the neuroblastoma tumor model was also printed based on chitosan and gelatin hydrogel using an
extruder and exhibited excellent viability for about one week [227].
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Figure 10. 3D glioma tumor model by extrusion printing and application of susceptibility of tumor model
to high drug concentration (A,B: TMZ-susceptibility of glioma cell lines at 3D and 2D. C–F: Live/dead
images of TMZ treated glioma cells in 3D and 2D. G: relative growth rate of TMZ treated glioma cells
in 3D and 2D) with permission from reference [225], Copyright IOPScience, 2019.
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Body Organ Tumor Model

The development of tumor study and drug therapy is limited by the inadequate understanding of
tumorigenesis [228]. Due to ethical and safety limitations for tumor drug tests in clinical trials, 3D
bioprinting technology has received increasing attention for preclinical tumor models with biomimetic
physiological environments for in-vitro tumorgenesis study and anti-cancer drug screening [229,230].
For example, in vitro cervical tumor models based on marine-derived alginate, gelatin, fibrinogen
and Hela cell bioinks were constructed by extrusion bioprinting, showing that cells in this model
presented over 90% viability, and higher MMP protein expression and chemoresistance than those in
2D culture for cancer study [231]. Besides, 3D breast epithelial spheroids in alginate-based bioinks were
used to bioprint breast tumor models and demonstrated they were more resistant to paclitaxel than
individually printed breast cells, presenting the ability of 3D cellular structure bioprinting to capture
the in-vivo microenvironment of tumor cells for tumor drug study [232]. Particularly, based on alginate
and gelatin hydrogel, a bioprinted pituitary adenoma model demonstrated excellent proliferation and
invasion of growth-hormone-secreting pituitary adenoma cells in our lab [233].

In the future, with the development of 3D bioprinting drug models, more model data could be
further obtained and validated by using existing human data and in-vitro physiological drug models
for precision medicine, and it will be a new form of therapeutics for treating many different diseases.

Table 4. Resume of marine-derived biomaterial hydrogels in 3D bioprinting for tumor model.

Marine-Derived
Biomaterial

Marine
Biomaterial
Resources

Tumor
Model Bioink Composites 3D Bioprinting

Technology Ref.

Alginate Brown algae

Cervical Gelatin/alginate/fibrinogen/Hela cells Extrusion
bioprinting [231]

Alginate/U87 glioma cell line Extrusion
bioprinting [34]

Glioma Gelatin/alginate/fibrinogen/glioma stem cell Extrusion
bioprinting [27,225]

Gelatin/alginate/fibrinogen/glioma stem
cell/human mesenchymal stem cells

Coaxial extrusion
bioprinting [234]

Alginate/glioma stem cell/U118 glioma cell line Coaxial extrusion
bioprinting [226]

Breast
Alginate/gelatin/MDA-MB-231 breast cancer cells Extrusion

bioprinting [230]

Alginate/gelatin or collagen/breast epithelial cells Extrusion
bioprinting [232]

Lung Alginate/gelatin/lung cancer cell A549/95-D Extrusion
bioprinting [229]

Pituitary
adenoma Alginate/gelatin/rat pituitary adenoma GH3 cells Extrusion

bioprinting [233]

Chitosan Shell

Glioma Chitosan/HA/glioma stem cell Extrusion
bioprinting [224]

Neuroblastoma Chitosan/gelatin/neuroblastoma cells Extrusion
bioprinting [227]

6. Conclusion and Outlook

To study in-vivo tissue-like 3D cell culture for regenerative medicine, 3D bioprinting has been
paid increasing attention over the past decade [235,236]. However, one main challenge in the 3D
bioprinting field has been to find biomaterials that are not only compatible with biological materials
and the printing process, but also can provide the desired mechanical and functional properties for
tissue constructs. Among all the hydrogels including synthetic and naturally sourced hydrogels,
marine-derived hydrogels showed many advantages over synthetic and other sourced hydrogels as
biopolymers from marine resources provide biological cues, low immune response, and excellent
biocompatibility for tissue engineering applications compared with synthetic hydrogels [236]. They are
abundant and not limited by religious restrictions, which are low in cost when compared with other
sources [237,238]. However, it remains a challenge for applications of marine-derived biomaterials
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such as HA, collagen, and gelatin to control the consistent quality among different batches of products.
In future, further improvement of isolation processes and industrial control technologies are needed to
make marine natural biomaterials become a major choice for 3D bioprinting.

On the other hand, marine-derived biomaterials for 3D bioprinting applications are not without
limitations in certain physical properties, such as mechanical strength, degradation, swelling ratio, and
stiffness. Hydrogels formed via ionic, thermal, and photo triggers display relatively poor mechanical
properties and eventually fail to maintain the desired 3D microgeometry integrity [235,239]. Therefore,
the physical or chemical modifications of natural biomaterials could help achieve the potential of
tissue-specific material biomimicry, such as methacrylate-conjugated natural polymers for application
in tissue engineering [221]. In particular, a polysaccharidic chain can be modified to combine with
functional groups for scaffold applications [115,227]. Alginate extracted from marine resource showed
an influence on cell morphology and related gene expression in a structural or calcium-dependent
manner [150], but alginate itself does not provide any cell attachment sites. Therefore, to increase cell
interaction, alginate could be modified to link with bioactive peptides such as the RGD sequence and to
show high cell adherence [70]. Also, alginate hydrogel induces cell attachment by combining with other
biopolymers (gelatin, collagen, HA, chitosan, etc.) [71,95,149]. The strategies of chemically modified
derivatives make these polysaccharides versatile biomaterials [240]. However, these strategies are
limited as they could not achieve both the printability and mechanical properties needed for 3D
microgeometry integrity and needed cellular function such as viability and differentiation at the same
time, so it is one huge challenge for material scientists to find the ways to fulfill this need in the future.

Marine-derived biomaterials have emerged as commonly-used hydrogels in 3D bioprinting for
regenerative medicine, such as tissue repair and regeneration during recent years [241,242]. Due to its
ability to fabricate patient-specific 3D scaffolds containing various cells with well-controlled porous
architecture, 3D bioprinting has become widely utilized for regenerative medicine. The ultimate aim
of 3D bioprinting is to realize regeneration of artificial tissues or organs for complete replacements of
diseased or damaged organs in patients. However, further work is still needed to create biomaterials
that can satisfy all the requirements of artificial implanted tissue or organ regeneration still needing
further work. For example, controlled degradation of biomaterials in vivo is difficult.

It is well known that the sea is a huge reservoir of natural biopolymers and life origin. Thus, raw
marine materials will be a new resource for biomedical applications, especially for 3D bioprinting.
Nevertheless, in-vivo testing is still needed to create combinations with other materials to improve
performances of marine-derived materials. Marine-derived biomaterial-based regenerative medicine
within a real clinical application still remains limited at this stage.
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