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Treg Regulatory T cells
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1  Biology of Stem Cells and History of Stem Cell Therapy

Stem cell therapy is one of the most fascinating areas in modern medicine. Stem 
cells are different from other cells in that (a) they are undifferentiated, (b) they can 
divide for long periods, and (c) they are capable of becoming specialized cell types. 
These unique characteristics have generated significant excitement in the scientific 
community to examine the biology underlying their distinct characteristics and 
more importantly, their application for cell-based therapy.

Three primary categories of stem cells exist: embryonic stem cells (ESC), adult 
stem cells (ASC), and induced pluripotent stem cells (iPSC) (Table 1). ESC are 
derived from the blastocysts during embryo development. ESC are pluripotent 
because they have the potential to self-renew and also to differentiate into any cell 
type. In the laboratory, ESC lines can remain undifferentiated under specific condi-
tions. Undifferentiated ESC can directly undergo differentiation into specific func-
tional cell types. It is envisioned that differentiated ESC can be used to cure diseases. 
Examples of clinical applications of ESC include diabetes, heart diseases, traumatic 
spinal cord injury, muscular dystrophy, and hearing and vision loss. iPSC are adult 
cells that have been genetically reprogrammed to dedifferentiate into behaving like 
ESC. Mouse iPSC were first reported in 2006 [1], and soon after, the first human 
iPSC were successfully generated in 2007 [2].

Research on ASC can be traced back to the 1950s when two kinds of stem cells 
were discovered in the bone marrow. The first one being hematopoietic stem cells 
(HSC) and the other being bone marrow stromal cells, which are also known as 
mesenchymal stem cells (MSC). Since then, ASC have been identified in many 
organs and tissues, including brain, bone marrow, peripheral blood, blood vessels, 
skeletal muscle, skin, teeth, heart, gut, liver, ovarian epithelium, and testis. HSC can 
differentiate into all blood cell lineages such as red blood cells, B lymphocytes, T 
lymphocytes, natural killer cells, neutrophils, basophils, eosinophils, monocytes, 
and macrophages [3]. MSC are multipotent and can give rise to a variety of cell 
types such as bone cells (osteoblasts and osteocytes), cartilage cells (chondrocytes), 
fat cells (adipocytes), and stromal cells.

The potential applications of stem cells in clinical medicine are enormous. The 
unique property that allows stem cells to differentiate into specific cell types offers 
the possibility of a renewable source of replacement cells and tissues in cell-based 
therapy. Indeed, over 40 years ago, HSC transfer was initially conducted in the form 
of bone marrow transplantation with successful allogeneic transplantations per-
formed for an infant with X-linked lymphopenic immune deficiency [4]. Stem cell 
therapy generated great enthusiasm in the 1980s as a targeted and permanent treat-
ment for many previously incurable autoimmune disorders. In 1986, Jacobs et al. 
reported that allogeneic HSC transplant in a patient with drug-induced aplastic 
 anemia and severe rheumatoid arthritis not only reversed the hematological abnor-
mality but also simultaneously resulted in a 2-year period of relief from joint pain 
[5]. HSC therapy also resulted in significant clinical improvements in other autoim-
mune diseases [6–10]. In 1996, the First International Symposium on HSC Therapy 
in autoimmune rheumatic diseases (ARD) was convened in Basel, which led to the 
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development of the first consensus guidelines for HSCT in autoimmunity 
 recommending standardized protocols and established the European Bone Marrow 
Transplant/European League Against Rheumatism (EBMT/EULAR) registry [11]. 
Since then, over 1,500 HSC transplants for ARD, including systemic sclerosis 
(SSc), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Sjögren’s 
syndrome (SS), and juvenile idiopathic arthritis (JIA), have been registered [12]. 
Despite its promise of potential long-term benefit, acute toxicity such as infection 

Table 1 Comparison of three categories of stem cells and their clinical applications

Adult stem cells
Embryonic stem 
cells

Induced pluripotent 
stem cells

Source Various tissues and 
includes bone 
marrow, umbilical 
cord, and blood 
stem cells

Blastocysts 
from fertilized 
eggs

Viral or nonviral 
reprogramming of 
somatic cells

Potency Multipotent Pluripotent Pluripotent
Laboratory features 1. Finite – may not 

live long in culture. 
Difficult to obtain 
in large numbers

1. Immortal – 
endless division 
in culture 
without losing 
function

1. Immortal – endless 
division in culture 
without losing 
function

2. Less flexible – 
more difficult to 
reprogram to 
another tissue type

2. Plasticity – 
can be easily 
manipulated

2. Most difficult 
among these three to 
obtain or create

Immunogenic/rejection Low risk (but with 
possible second 
autoimmune 
disease 
development)

High risk Low risk

Ethical issues No serious ethical 
issues involved

Destruction of 
developing life

No serious ethical 
issues involved

Clinical research/application HSC therapy Diabetes, heart 
diseases, 
traumatic spinal 
cord injury, 
muscular 
dystrophy, 
hearing loss, 
and vision loss

Relative new to 
science  Systemic sclerosis

  Rheumatoid 
arthritis

  Systemic lupus
  Erythematosus
  Sjogren’s 

syndrome
  Juvenile idiopathic
  Arthritis
MSC therapy
  Multiple sclerosis
  Osteoarthritis
  Sjogren’s 

syndrome
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and bleeding during the aplastic period, complications due to opportunistic infec-
tions during the T-cell reconstitution phase, and the possibility of developing a sec-
ond autoimmune disease should be carefully considered [13, 14].

Multipotent MSC have recently gained significant attention in the treatment of 
ARD. MSC was initially isolated from guinea pig bone marrow as spindle-shaped 
cells with progenitor properties that adhered to plastic and formed fibroblast colo-
nies [15]. MSC are not truly pluripotent, and most MSC described to date are actu-
ally multipotent progenitors obtained from a wide range of tissues such as bone 
marrow, umbilical cord, placenta, cord blood, adipose tissue, synovium, and teeth. 
Human MSC are now phenotypically characterized as CD105+, CD73+ and CD90+, 
CD45−, CD34−, CD14− or CD11b−, CD79a− or CD19−, and negative for HLA class 
II molecules. Human MSC must also be plastic-adherent cells and have the ability 
to differentiate into osteoblasts, adipocytes, and chondroblasts [16]. However, these 
criteria are not unique because CD105, CD73, or CD90 is also expressed on other 
cell populations, while other cell markers are also expressed in MSC [17]. Moreover, 
there are various sources of MSC with differentiation potentials that are different 
from the criteria described above [18]. Essentially, MSC represent a heterogeneous 
progenitor cell population with immunomodulatory properties, which are able to 
suppress T- and B-cell proliferation, inhibit the differentiation of monocytes into 
immature dendritic cells, and affect the functions of NK cells [19, 20]. MSC express 
low levels of cell surface HLA class I molecules and are negative for HLA class II 
molecules. Meanwhile, MSC do not express co-stimulatory molecules CD80, 
CD86, or CD40. Hence, MSC can easily escape immune surveillance [21]. 
Biologically, the regenerative, immune privileged, immunomodulatory, and tissue- 
protective properties of MSC suggest that these cells are effective therapeutic 
reagents in human diseases [20–24].

Preclinical studies have demonstrated the therapeutic efficacy of MSC in various 
rheumatic autoimmune disorders in animal models including multiple sclerosis 
(MS) [25–27], osteoarthritis [28–31], rheumatoid arthritis (RA) [32–36], and 
Sjogren’s syndrome (SS) [37, 38]. The hallmark of the clinical application of MSC 
therapy was phase I study in which 23 patients experienced full remission after 
treatment of various hematological malignancies in 1995. Moreover, there were no 
adverse events after intravenous infusion of ex vivo expended bone marrow-derived 
MSC [39]. The first published report describing the application of MSC in therapeu-
tic intervention was on breast cancer patients receiving high-dose chemotherapy. 
This study showed that MSC therapy was safe and had the potential to enhance HSC 
engraftment [40]. Thereafter, animal studies, in vitro, and clinical studies on MSC 
have increased rapidly.

2  Clinical Studies on SCT for Common Rheumatic Diseases

SCT has been successfully applied in patients with ARD. Here we will review a few 
clinical trials in SSc, RA, inflammatory myopathies, primary systemic vasculitis 
(PSV), SS, and pediatric ARDs, such as JIA.
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2.1  Systemic Scleroderma (SSc)

SSc is a rare chronic systemic autoimmune disease with a prevalence rate of around 
5 per 100,000 and an incidence of 1 in 100,000. Based on epidemiological data, 
approximately 3.4 million individuals are affected globally. Despite advances in 
early diagnosis and appropriate therapy, the prognosis of SSc patients remains 
poor, and the disease is associated with a high mortality [41]. The amenable treat-
ment for SSc is immunosuppressive therapy. For example, the standard of regimens 
for interstitial lung disease (ILD) in SSc is CYC. Nevertheless, two randomized 
trials and meta-analyses showed no improvement in prognosis of SSc with CYC 
treatment [42].

In 1994, Ratanatharathorn et al. [43] reported the first successful HSC treat-
ment in SSc patients with untreatable pulmonary hypertension which led to the 
gradual acceptance of HSC therapy as an optional treatment regimen for severe 
SSc. Complete or partial remission was observed in small case series and non- 
randomized clinical trials of HSCT treatment for SSc patients, although there 
were high rates of transplant-related mortality (TRM) [44]. Data from a single-
center retrospective study of SSc patients who received auto-HSCT showed sig-
nificant skin and lung disease amelioration in 78.3 % of patients at 6 months, and 
91 % of patients achieved an overall good response. However, cardiac events 
result in 6 % TRM [45]. Another subsequent analysis of 57 SSc patients receiv-
ing HSCT from the EBMT/EULAR registry showed that sustained improvement 
in skin score and visceral organ functions was observed in two-thirds of the 
patients for up to 3 years after HSCT but with a TRM of 8.7 % [46]. TRM was 
reduced by pretransplant evaluation, early intervention, and the use of amenable 
conditioning regimen.

More recently, one phase II and two phase III randomized control trials were 
conducted to evaluate the efficacy, safety, and long-term side effects of auto-HSCT: 
the American Scleroderma Stem Cell Versus Immune Suppression Trial (ASSIST) 
[47], Autologous Stem Cell Transplantation International Scleroderma (ASTIS) 
[48, 49], and the “Scleroderma: Cyclophosphamide or Transplantation” trial 
(SCOT) [50].

ASSIST is a published open-label, randomized, controlled trial. The result of this 
phase II clinical trial demonstrated that unmanipulated auto-HSCT steadily amelio-
rated skin flexibility and pulmonary function defects in patients with SSc. This was 
found in patients treated with CYC whose disease progressed before being switched 
to HSCT. After 2 years of follow-up, patients receiving HSC therapy had durable 
remission in pulmonary function, reduction in interstitial lung lesions visualized on 
high-resolution CT imaging, and improved quality of life (QOL). More importantly, 
no TRM was reported [47]. Based on the success of phase II clinical trials [47], a 
phase III study is in progress to compare the safety and efficacy of the ASSIST trial 
pretransplant protocols of CYC and G rabbit antithymocyte globulin (rbATG) with 
the addition of rituximab [50]. In the multicenter phase III ASTIS trial [51], there is 
an increase in overall and survival benefit in patients administered with CYC 
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200 mg/kg and rbATG with CD34+ auto-HSCT compared to those with monthly 
pulse CYC treatment of HSCT that had a 10 % TRM. More stringent patient selec-
tion and safer conditioning regimens may reduce the TRM of ASTIS [52].

A controlled phase III SCOT trial was conducted to compare intensive immuno-
therapy and HSCT to monthly pulse CYC [50]. For future intertrial comparison, the 
SCOT trial shared identical end points and control regimen with the ASTIS trial, but 
the SCOT trial protocol employed transplant conditioning with total body irradia-
tion (TBI), which differed from both the ASTIS and ASSIST trials that contained 
ATG as part of their immunoablative protocols [53].

A number of case reports [54, 55] indicated clear, positive therapeutic effects, 
without immediate toxicity nor severe infection in SSc patients receiving allo- 
HSCT and MSCT. Further studies using larger samples in randomized controlled 
trials are required to validate the efficacy and safety of allo-HSCT and MSCT.

2.2  Rheumatoid Arthritis (RA)

RA is a chronic, debilitating, systemic ARD affecting 1 % of the population [56]. 
Despite aggressive disease-modifying antirheumatic drugs (DMARD) approaches 
and efficient biologic agents in RA [56], a considerable proportion of RA patients 
still suffer from a severe, destructive, refractory disease [52, 57]. Besides bio-
logical agents, lymphoablative regimens combined with SCT have been employed 
as a therapeutic modality for refractory RA. The rationale for this approach is 
based on the concept of lymphoablation by high-dose chemotherapy, with a sub-
sequent revival of naive T cells derived from reinfused hematopoietic progenitor 
cells [58].

In 1997, a disabled patient with refractory RA received auto-HSCT and became 
almost free of joint symptoms in half a year [59]. Since then, phase I/II clinical trials 
were set up to evaluate the feasibility, safety, and efficacy of auto-HSCT in patients 
with RA. From the 2001 EBMT/EULAR data, 43 patients from 11 centers under-
went auto-HSCT. Among 39 patients evaluated, significant improvement in clinical 
response was observed in half of the patients, but the disease recurrence rate was 
around two-thirds within 2 years. One patient died as a consequence of sepsis [60]. 
In the 2004 data analysis of EBMT/EULAR, 73 refractory RA patients from 15 
centers were given auto-HSCT and assessed for treatment response using the 
American College of Rheumatology (ACR) criteria. Two-thirds achieved an ACR50 
improvement response. However, most patients restarted DMARD within 6 months 
due to persistent or relapsing disease activity. Interestingly, most patients were rela-
tively sensitive to DMARD, which had proven refractory prior to HSCT [61].

In a CYC dose escalation followed by unmanipulated auto-HSCT study, the 
cohort receiving subablative dosage (100 mg/kg) developed disease recurrence 
within 3–4 months, while the cohort at the higher dosage (200 mg/kg) had durable 
remission for 17–19 months [62]. The most common protocol for auto-HSCT 
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treatment in RA includes CD34 selection and a lymphoablative, rather than mye-
loablative, conditioning regimen. Data from these heterogeneous studies indicate 
the feasibility and safety of auto-HSCT in RA. No severe adverse event or TRM 
was noted [61, 63].

Preclinical data and anecdotal evidence showed that allo-HSCT might be more 
effective than auto-HSCT [64]. In 1977, four patients with RA underwent allo- 
HSCT for gold-induced marrow aplasia. Three patients died from transplant-related 
toxicity. The one surviving patient had complete remission at 2 years follow-up 
[65]. Three other patients with RA receiving allo-HSCT reached long-term amelio-
ration of their disease [66]. However, the TRM from nonmyeloablative allo-HSCT 
was 10–20 %. The risks of TRM and graft-versus-host disease (GVHD) may dis-
courage physicians from recommending allo-HSCT to RA patients unless all other 
standard treatments have proven to be noneffective [64].

It is difficult to differentiate the poor prognosis and HSCT-responsive RA 
patients from refractory ones. Therefore, HSCT for RA patients should only be 
considered with extra caution. Prospective, randomized controlled long-term fol-
low- up trials are urgently needed to evaluate the risk–benefit ratio. Unfortunately, 
the EBMT Autologous Stem Cell Transplantation International Rheumatoid 
Arthritis (ASTIRA) phase III trials were suspended because of failure to recruit suf-
ficient patients [67].

To date, only limited clinical trials of MSCT in RA have been registered [68]. A 
single-center cohort study demonstrated that 136 patients with intractable RA 
receiving DMARD plus umbilical cord MSC had a rapid and effective remission. 
Moreover, repeated treatments achieved better clinical response and more clearly 
improved the QOL of intractable RA, without serious side effects [69]. It should be 
noted that the utilization of biologic agents has significantly altered the natural his-
tory of RA [70]. Therefore, SCT regimens only have a finite therapeutic potential in 
a portion of patients with RA, specifically those who fail to respond to currently 
available therapies [44, 61].

2.3  Sjögren’s Syndrome (SS)

SS is the most common chronic, slowly progressive ARD, which typically affects the 
exocrine glands leading to xerostomia, keratoconjunctivitis sicca, and systemic fea-
tures. Prevalence of SS varying from 0.1 to 4.8 % has been estimated using different 
criteria for classification among different study populations, and patients with SS have 
a 20- to 40-fold increased risk of developing lymphoma [71]. Currently, clinical man-
agement of SS remains challenging because of a lack of effective therapeutic agents.

Only a limited number of case reports of HSCT in SS are available. Three SS 
patients with refractory systemic vasculitis or lymphoma receiving auto-HSCT 
developed amelioration of the vasculitis and lymphoma but not the SS [72]. Two 
other patients with severe and refractory SS were able to tolerate high-dose 
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immunosuppressive drugs and auto-HSCT and had temporary alleviation of dis-
ease [73].

Recently, clinical data from 24 refractory SS patients receiving MSCT demon-
strated the feasibility, safety, and efficacy of MSCT. In this study, most SS patients 
reach durable increased salivary flow rate, considerable improvements in disease 
activity, and organ function after MSCT [38].

2.4  Primary Systemic Vasculitis (PSV)

PSV, as well as its related conditions, Behcet’s disease (BD) and relapsing poly-
chondritis, belongs to a heterogeneous group of autoimmune diseases with severe 
organ damage and an often fatal course [74]. With the development of early diagno-
sis and optimal standard therapy, the outcome of PSV has been dramatically trans-
formed into a controllable disease. However, one quarter of patients with PSV are 
resistant [75] to current treatment, and half of them suffer from disease recurrence 
despite at least 2 years of therapy. There is therefore an obvious unmet need in the 
treatment of PSV [76].

SCT in PSV is limited. Retrospective analysis of 15 patients with various PSV 
and related diseases from EBMT showed that 14 of them first received auto-
HSCT, while one additional patient received allo-HSCT. Remission rate was 
beyond 90 %, but one-third had a recurrence of the disease [77]. In a single-center 
study, four patients with refractory SV with neurological system involvement 
received nonmyeloablative auto-HSCT. Among them, three patients recovered 
completely. One patient with BD did not respond to HSCT. No TRM or adverse 
reactions were noted [72].

The first report of a patient with antineutrophil cytoplasmic antibody (ANCA)-
associated renal vasculitis treated beyond conventional therapy with MSCT demon-
strated an abrupt and striking recovery from disease, which was clearly confirmed 
with a second infusion [75]. However, another small clinical study showed that 
MSCT could not reverse BD’s retinal vasculitis process, which might be due to the 
late and advanced stage of disease [78].

2.5  Polymyositis (PM) and Dermatomyositis (DM)

Inflammatory myopathies are a heterogeneous group of rare conditions including 
PM and DM characterized by muscle weakness and inflammation [79]. The approx-
imate incidence in the United States is five to ten cases per million. Unfortunately, 
PM/DM can induce marked disability and mortality unless properly recognized and 
timely and aggressive therapy is given [80]. In severe refractory cases of PM/DM, 
auto-HSCT may be a salvage strategy.
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In one case report, a severe refractory PM patient with anti-Jo-1 antibody 
received auto-HSCT after T-cell-depleted myeloablative conditioning with 
CYC. The patient’s strength and respiratory function significantly improved. 
Chest CT imaging showed remarkable reduction of interstitial shadows [81]. 
Five other patients with rapidly progressive and refractory ILD due to PM/DM 
were also successfully treated with auto-HSCT. After treatment, the patients’ 
dyspnea disappeared, and arterial blood gas analysis and pulmonary function 
testing significantly improved. CT imaging showed a remarkable reduction of 
interstitial infiltrates [82].

An open-label pilot study of ten patients with intractable PM/DM who under-
went allo-MSCT was conducted. Most patients achieved clinical remission along 
with improved laboratory parameters and tapering of medications. However, none 
of the patients could completely withdraw therapy after following up for about 
1 year. It should also be noted that two patients died following MSCT from disease 
relapse after infection [83]. To date, the sample size with PVS and PM/DM receiv-
ing SCT is still too minute to draw any definitive conclusion.

2.6  SCT in Pediatric ARD

In children, ARD such as JIA, juvenile systemic sclerosis (JSSc), juvenile SLE, and 
others are a major cause of morbidity, which is due to both the disease itself and 
conventional treatment strategies and especially holds true for the subset of patients 
with severe or refractory disease [84]. Although recent advances in the understand-
ing of the pathogenesis of these diseases have led to significant progress in treat-to- 
target approach, some ARD patients continue to be refractory to standard treatment. 
The rate of death in pediatric ARD is about 2–4 % [85]. In recent decades, SCT has 
been successfully employed in severe and refractory pediatric ARD as a novel sal-
vage strategy.

On the other hand, one needs to seriously consider that conditioning regimens at 
pretransplantation are associated with a high rate of growth retardation, infertility, 
and late tumors in children with ARD [86]. With advances in SCT techniques, the 
rate of morbidity and mortality associated with transplantation procedures has been 
decreasing. Not only are the pretreatment strategies safer and less intense, but anti-
biotics and antifungal drugs are also more effective. To date, the preferred 
 conditioning regimen used in JIA is a nonmyeloablative regimen of CYC, rbATG, 
and fludarabine (Flu) [87].

Although it is widely believed that allo-HSCT is a more effective and poten-
tially curative regimen compared to auto-HSCT, there is no statistical difference in 
long- term survival. Unfortunately, the risk of allo-HSCT-related adverse event is 
still high, and the risks from GVHD and TRM were generally not acceptable for 
the pediatric ARD [87]. So far, there are no clinical trials on the use of MSCT in 
pediatric ARD.
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2.7  Juvenile Idiopathic Arthritis (JIA)

JIA is the most common ARD in children [88]. Despite the application of novel 
treatment regimens, the prognosis of JIA is still poor, especially in children with 
systemic and polyarticular onset. The mortality of JIA is approximately 0.2 % [85]. 
Since 1997, HSCT has been successfully applied in intractable JIA. The first four 
patients with severe refractory JIA receiving auto-HSCT all had complete remission 
and went off drug therapy [89]. Retrospective analysis of a multicenter cohort of 34 
patients with JIA after auto-HSCT demonstrated that 53 % reached drug-free full 
remission, 18 % had partial recovery, and 21 % did not respond to the procedure, 
with a TRM of 9 %. All partial and complete recurrence of disease happened in the 
first 18 months post-HSCT [90]. In a multicenter, prospective, phase II clinical trial, 
22 children with refractory progressive JIA underwent T-cell-depleted auto-HSCT 
with a regimen of myeloablative and immunoablative including CYC, ATG, and 
TBI. After a median follow-up of 80 months, eight patients reached durable full 
remission, seven responded partially, and five experienced a relapse of disease. 
However, there was a 9 % TRM [91].

HSCT has significantly improved QOL for refractory JIA. However, as 
expected, already damaged joints did not improve nor worsen. If managed before 
the DMARD treatment and before any severe permanent joint destruction, HSCT 
is likely to reverse what would otherwise have become a permanent defect. 
Therefore, it is important to screen carefully those patients who are apt to benefit 
from HSCT [87].

2.8  Juvenile Systemic Sclerosis (JSSc)

Compared with the adult form, JSSc appears to have a better outcome. However, 
children with diffuse skin thickening and lung involvement had a 5-year mortality 
of 10 % [92]. Up to this point in time, those with JSSc treated with HSCT have been 
included in two groups of clinical studies. The data from the EBMT database 
showed that five JSSc received auto-HSCT, and three of them achieved clinical 
remission at 23 months follow-up [93], while one had a recurrence of the disease 
[46]. Another five JSSc patients were included in a clinical study on 26 patients with 
SSc. After auto-HSCT, three children achieved full remission after more than 
5 years of follow-up [93].

2.9  Juvenile Dermatomyositis (JDM) and Juvenile 
Vasculitis (JV)

Recently, two children with severe progressive refractory DM were administered 
auto-HSCT. Both had a dramatic improvement in QOL, and sustained recovery was 
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noted [94]. Notably a 9-year-old girl with severe resistant granulomatosis and poly-
angiitis became disease-free after allo-HSCT following reduced-intensity condi-
tioning [95].

3  Stem Cell Transplantation in the Treatment of Systemic 
Lupus Erythematosus

3.1  The Natural History and Epidemiology of SLE

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease of unknown 
etiology and clinical heterogeneity. Patients with SLE are presented with diverse 
clinical symptoms: skin lesions, arthritis, renal disorder, neurologic disorder, and 
hematologic changes. Major biomarkers include antinuclear antibodies, anti- 
dsDNA antibody and anti-Sm antibody. Immune-mediated injury in multiple organs 
leads to high mortality and morbidity [96–104]. Besides the immune imbalance, 
evidence from familial studies together with high concordance among monozygotic 
twins suggests the contribution of genetics in SLE [105–108]. To date, there are 
many single genes, such as coagulation factor II gene (F2), TAP2 (transporter asso-
ciated with antigen processing 2) gene, VKORC1gene, and autosomal gene, which 
are implicated in the pathogenesis of SLE [109–112]. Various environmental agents 
and toxicants, such as cigarette smoke, alcohol, plastic and electronic products, cos-
metic agents, occupationally and non-occupationally related chemicals, ultraviolet 
light, infections, sex hormones, and certain medications and vaccines, are found to 
be associated with SLE onset or flares [113–115].

The incidence and prevalence of SLE varies considerably worldwide, ranging 
from 15 to 100 per 100,000 individuals among different racial groups [116]. SLE 
appears to be more prevalent in certain ethnic groups, such as the African-Americans, 
African-Caribbeans, and Asians, but it is also reported that there is a trend toward 
higher incidence and prevalence of SLE in Europe and Australia compared to the 
United States [117]. The reported prevalence of SLE in Asian countries varies from 
20 to 59 per 100,000 [118, 119].

3.2  The Deficiency of Traditional Treatment in SLE

Traditional therapies for the treatment of SLE, notably corticosteroids and immuno-
suppressive drugs, have led to a significant improvement in survival over the last 
two to three decades and decreased the progression to end-stage multi-organ failure. 
The most widely and classically used immunosuppressors include cyclophospha-
mide (CYC), mycophenolate mofetil (MMF), leflunomide (LEF), methotrexate 
(MTX), cyclosporine A (CsA), azathioprine (AZA), and hydroxychloroquine 
(HCQ). Each of these agents, however, can carry high toxicities and many side 
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effects. They include osteoporosis and dyslipidemia induced by corticosteroids, 
myelotoxicity and gonadal injury induced by CYC, gastrointestinal discomfort and 
liver dysfunction by MTX or LEF, and hypertension and nephrotoxicity by CsA. The 
main concern for the side effects of corticosteroids and immunosuppressive thera-
pies is infection [120]. CYC, particularly in combination with high-dose steroids, is 
reported to have the strongest effect in suppressing immune responses against 
microorganisms. The most common infections in patients with SLE treated with 
these traditional drugs include virus herpes zoster, mycobacterium tuberculosis, 
cytomegalovirus, Epstein–Barr virus, and fungal infections [120–124]. These infec-
tions may worsen the disease and aggravate the economic burden of patients. 
Furthermore, steroids and immunosuppressive drugs are not universally effective, 
with partial or no response in many cases.

3.3  The Efficacy and Deficiencies of the New Treatments 
(Including Small Molecules and Biological Agents)

Over the past decade, due to a better understanding of SLE immunopathogenesis, 
many new drugs have been developed to target specific immune cells, co- stimulatory 
modulation, or cytokines thought to be central to the disease pathogenesis, with the 
aim of achieving better control of the disease with fewer side effects.

B cells have long been considered central to the pathogenesis of SLE and have 
been regarded as an important target for biologic drugs. Several B-cell-targeted 
drugs have been developed. Rituximab (RTX), a monoclonal antibody targeting 
the B-cell-specific receptor CD20 (anti-CD20), has been reported to be an effec-
tive treatment for patients with active SLE who failed to respond to standard ther-
apy. A pooled analysis of the efficacy of RTX from European cohorts diagnosed 
with biopsy-proven lupus nephropathy showed that administration of RTX 
resulted in high response rates and significant improvement in 24-h proteinuria, 
serum albumin, and protein/creatinine ratio [125]. Despite these promising data, 
two other large randomized controlled studies designed to assess the efficacy of 
RTX in nonrenal lupus [126] and lupus nephritis [127] did not achieve their 
respective primary endpoints. In the ACR and EULAR guidelines for the manage-
ment of patients with refractory lupus nephritis (class III/IV) who have not 
responded to CYC nor MMF, RTX is still recommended [128]. Belimumab, 
another B-cell-targeted therapy, is a human immunoglobulin (Ig)-G1λ monoclo-
nal antibody that binds soluble B lymphocyte stimulator (BLyS) and inhibits its 
biologic activities. The efficacy of belimumab is demonstrated in two large ran-
domized control trials with more than 800 patients in each study [129, 130]. 
Pooled data showed a beneficial effect in 50.6 % of belimumab-treated patients 
versus 46.2 % in the placebo arm. However, the benefits obtained with belimumab 
are modest and only attained in patients with mild disease who are already receiv-
ing standard therapy [130]. Epratuzumab is a monoclonal antibody that targets 
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CD22, a B-cell-specific surface antigen involved in B-cell signaling. In a phase 
IIb trial to assess the efficacy and safety of epratuzumab, the overall treatment 
effect was not statistically significant [131]. Multicenter phase III studies with 
epratuzumab in patients with SLE are currently ongoing.

Tumor necrosis factor alpha (TNFα) is an interesting and controversial cyto-
kine in the field of SLE due to its apparent dual role [132]. While TNFα blockade 
has been successful as a mainstay treatment for RA [133], the assessment of this 
therapy in SLE patients has not been straightforward. A recent study demon-
strated the safety and efficacy of anti-TNFα therapy in SLE [134]. It suggests 
that any consideration of anti-TNFα for the treatment of SLE patients must be for 
a short duration only and not recommended for patients with antiphospholipid 
syndrome [135].

Despite potential benefits of biological inhibitors in the treatment of SLE, con-
cerns exist regarding the occurrence of infections in patients treated with these 
agents [136, 137]. Both patients and primary physicians need to be aware of the 
possibility that serious infection may develop. If such a problem is diagnosed, the 
biologic inhibitor should be discontinued until adequate treatment has been com-
pleted [138].

Recently, many small molecule inhibitors have been designed to treat SLE based 
on multiple targets in Toll-like receptor (TLR) signaling pathways, including TLRs, 
myeloid differentiation factor 88 (MyD88), and IL-1R-associated kinases (IRAKs). 
These new chemical drugs, which can be taken orally, include CpG-52364 and 
IMO-9200 (targeting TLR7/8/9), SM934 (targeting TLR9), E-6446 and AT-791 
(targeting TLR7/9 and IL-6), and ST-2825 (interfering with the recruitment of 
IRAK4 and IRAK1 via MyD88). They penetrate the cell membrane, effectively 
targeting endosomal TLRs and downstream signaling proteins [139]. Almost all 
these drugs are in preclinical animal studies or in phase I clinical studies and still 
require further exploration [140–142]. There are other recombinant small molecule 
inhibitors like abatacept, which blocks T-cell co-stimulatory ligands (CD80 and 
CD86) on B cells. Unfortunately, abatacept did not meet primary and secondary 
endpoints in a phase II clinical trial of SLE patients [143].

3.4  The Mechanisms of SCT in the Treatment of SLE

The rationale for auto-HSCT is its broad effect on the repopulated immune sys-
tem, complex regulatory potentials, and long-term beneficial effect via down-
regulating immune reactivity. The CD4+ and CD19+ cells were significantly 
reduced [144], and the expression of CD69 declined or normalized. Th2 cell 
cytokines like IL-4 decreased, while Th1 cell cytokines like interferon γ (IFN-γ) 
increased after auto- HSCT [145]. The peripheral T-cell receptor repertoire was 
normalized [146]. Thymic-derived Foxp3+ regulatory T cells (Treg) regenerated 
[147], or a newly differentiated population of LAPhighCD103highCD8TGF-β Treg 
generated after autologous HSCT [148]. Likewise, responders exhibited 
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normalization of the previously disturbed B-cell homeostasis with numeric 
recovery of the naive B-cell compartment [147]. These data reveal that both 
depletion of the autoreactive immunologic memory and a profound resetting of 
the adaptive immune system are required to reestablish self-tolerance by auto-
HSCT in SLE.

Unlike auto-HSCT, allo-HSCT appears to offer curative potential in that the 
autoaggressive “old” immune system is replaced by a “new” one [149]. Auto-HSCT 
aims at restoring tolerance to self but does not affect genetic risk factors for the 
development of lupus, and therefore relapses are not unexpected, whereas allo- 
HSCT transfers a completely new immune system to the recipient with a chance for 
a cure.

MSC have become a major interest in their potential for immune-modulating, 
anti-inflammatory, and tissue-protective properties. The therapeutic effect of alloge-
neic MSCT was primarily dependent on its systemic immunoregulatory effects on 
various immune regulatory cells. Allogeneic MSC dose-dependently inhibited 
T-cell proliferation [150] and inhibited Akt/GSK3β signaling pathway mediated 
G1/S transition of lupus T cells [151]. The frequency of CD4+ T cells decreased, and 
inflammatory cytokines were regulated by allogeneic MSCT in both animal models 
and humans [150, 152, 153]. MSC can regulate T-cell function via two pathways. 
First, MSC directly inhibit the functions of antigen-specific T cells. Second, MSC 
inhibit T-cell functions indirectly by stimulating the expansion of Treg [153–156]. 
In addition to T cells, MSC also suppress B-cell proliferation and plasma cell dif-
ferentiation [157]. Serum and local levels of B-cell-activating factor (BAFF) and 
IL-10 significantly declined after MSC transfusion [158], potentially explaining the 
reduction in specific autoantibody production. Modulation of lymphocyte function 
may also be mediated by other regulatory factors secreted by MSC, including TGF- 
β, indoleamine 2,3-dioxygenase (IDO), hepatocyte growth factor (HGF), prosta-
glandin E2 (PEG2), nitric oxide (NO), IL-10, heme oxygenase 1 (HO-1), and 
HLA-G [159]. MSC may therefore exert some of their clinical effects by interfering 
with the production or function of such factors.

3.5  History of SCT in the Treatment of SLE

In 1996, an international collaboration began to explore the concept of immune 
ablation in patients suffering from severe autoimmune disease and not responding 
to conventional therapy [11]. It was hoped that following reconstitution of the 
immune system, a “resetting” of the autoimmune process would occur. In 1997, 
the first auto-HSCT for SLE was performed by Marmont et al. in Genoa, Italy 
[160]. Although many protocols were employed, they basically ranged from less 
aggressive (e.g., 200 mg/kg CYC plus antithymocyte globulin (ATG)) to more 
intensive (e.g., total body irradiation (TBI) plus CYC/ATG and CD34 selection). 
However, the initial choice of autologous HSC, with low toxicity, resulted in a 
high rate of relapse.
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Theoretically, allo-HSCT offers the replacement of an autoreactive immune 
system and provides curative potential for patients with severe and drug-resistant 
ARD. Some SLE patients also received allo-HSCT previously. MSC were first 
used in humans for hematopoietic stem cell graft enhancement over 15 years ago 
[161]. Following many positive animal models of inflammation, organ transplant, 
autoimmunity, critical ischemia, radiation damage, and tissue scarring, MSC 
entered clinical trials for inflammatory disorders first in GVHD and then later in 
MS, Crohn’s disease, SLE, and SSc [24].

3.6  The Current Status of SCT in the Treatment of SLE

In the past two decades, more than 2,000 patients received HSCT, and about 500 
patients received MSCT worldwide. For autologous HSCT, phase I/II prospective 
and retrospective studies have supported autologous HSCT as a potential treatment 
option for severely affected lupus patients, as profound and prolonged clinical 
responses were noted [162]. SLE disease activity index (SLEDAI) score, 24-h pro-
teinuria, serum creatinine, serum complements, and autoimmune antibodies, includ-
ing antinuclear antibody and anti-dsDNA antibody, decreased, and there was a 
sustained withdrawal of immunosuppressive medication for most patients [145, 
162]. The 5-year follow-up data from the CIBMTR database, with 50 patients 
enrolled, showed that the overall survival was 84 %, the probability of disease-free 
survival was 50 %, and treatment-related mortality was 4 % [163]. Recently a retro-
spective survey reviewed the efficacy and safety of autologous HSCT in 28 SLE 
patients from eight centers reported to the European Group for Blood and Marrow 
Transplantation (EBMT) registry between 2001 and 2008. The 5-year overall sur-
vival was 81 ± 8 %, and disease-free survival was 29 ± 9 %, with non-relapse mortal-
ity of 15 ± 7 % [164], suggesting a satisfactory clinical efficacy of autologous HSCT 
for lupus patients.

In lupus-like animal models, allogeneic HSCT both reversed disease symptoms 
and prevented disease development. In 2007, Vanikar et al. reported a single-center 
retrospective study of allo-HSCT in 27 drug-resistant SLE patients along with fol-
low- up for 4.9 years. The average disease-free interval was 7.35 months (range, 
2.1–12.7 months), and serum anti-double-strand DNA antibody titers declined 
[165]. The EBMT data showed two SLE patients who underwent allo- 
HSCT. However, one patient died of infection at 2.9 months, and the other patient 
had progression of disease when followed up for 3 years.

As a new stem cell therapy option, in 2007, allogeneic MSCT was first admin-
istered in severe and drug-resistant lupus patients. Data from phase I clinical 
studies showed that disease activity was satisfactorily controlled, and proteinuria 
and serum autoimmune antibodies declined after allogeneic MSCT [154, 166]. 
The transfusion of umbilical cord-derived MSC also resulted in clinical benefits 
in patients with severe lupus, who were otherwise poorly responsive to conven-
tional therapy [153]. A further phase II study, with up to 4 years of follow-up, 
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demonstrated a good clinical safety profile, with an overall rate of survival of 
94 %, and about 50 % patients achieving and remaining clinical remission at 
4 years visit, although relapses of disease occurred in 23 % [167]. Based on these 
studies, there appears to be no difference in clinical efficacy between allogeneic 
bone marrow and umbilical cord- derived MSCT. MSC infusion induced remis-
sion in multi-organ dysfunctions including lupus nephritis [168], diffuse alveolar 
hemorrhage [169], and refractory cytopenia [170]. Recently a multicenter clini-
cal study showed that 32.5 % patients achieved major clinical response and 
another 27.5 % patients achieved partial clinical response during 12 months fol-
low-up. Again, a proportion of patients (17.5 %) experienced disease relapse 
within 6 months of a prior clinical response and required repeated MSCT [171]. 
However, combining MSCT and HSCT may achieve higher efficacy for SLE 
patients. Autologous MSCT was also applied in two lupus patients but received 
no clinical efficacy [172]. Recently, combined transplantation of autologous 
HSCT and allogeneic MSCT was used in a Chinese female lupus patient and 
achieved disease remission for 36 months [173], suggesting a novel and effective 
therapy option for refractory SLE.

4  Lessons Learned from Stem Cell Transplantation 
in Systemic Lupus Erythematosus

In the past two decades, SCT has represented an important breakthrough for patients 
suffering from severe and refractory SLE. Because it is an invasive procedure, SCT 
inevitability comes with risks, including treatment-related morbidity and mortality. 
However, with careful patient selection and adoption of conditioning regimens, 
TRM can be reduced. Indeed, lessons learned now from utilizing SCT in SLE will 
contribute to better outcomes in future clinical studies (Tables 2 and 3).

4.1  The Potential Benefits and Limitations of SCT in SLE

Currently there are more than ten clinical trials listed on clinicaltrials.gov designed 
to evaluate SCT as a cure for SLE (Table 2). Stem cells under consideration include 
MSC and HSC from bone marrow and umbilical cord. The basic premise for HSCT 
is to reconstruct the immune system by replacing abnormal lymphocytes in patients 
with SLE, whereas the goal behind using MSC is to modulate the patient’s existing 
microenvironment in the immune system, for example, by suppressing autoreactiv-
ity or upregulating the number of Treg [174]. In addition to MSC and HSC, iPSC 
provide an alternative source for stem cells. IPSC enable us to model normal and 
diseased cellular growth as well as the development of SLE. Along with extensive 
assessment of patient-specific disease pathogenesis, this approach may provide a 
personalized therapeutic choice for SLE patients in the future.
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Despite the positive outlook for SCT, limitations do exist. The biggest challenge 
for auto-HSCT is the high rate of disease relapse as well as serious side effects aris-
ing from conditioning therapy [175]. Jayne et al. reported that although 66 % 
patients achieved clinical remission by 6 months, 32 % of patients subsequently 
relapsed, and transplant-related mortality (TRM) was 12 % at 1 year [176]. The US 
single-arm data showed a 4 % (2/50) TRM [163]. The 7-year retrospective data from 
EBMT showed that the relapse incidence (RI) was 56 ± 11 %, and non-relapse mor-
tality was 15 ± 7 % [164]. The mechanism for disease flare after auto-HSCT is not 
clearly understood. Niu et al. showed that the function of HSC is altered by both 
genetic and inflammatory factors in lupus mice [177]. Moreover, bone marrow 
CD34+ cells expressed a higher percentage of surface markers for CD95, CD123, 
and CD166 compared to healthy controls [178], thereby implying that abnormal 
autologous HSC in lupus patients may lead to higher rates of relapse after 
HSCT. Although allo-HSCT can completely restore the immune system, its clinical 
application has unfortunately demonstrated a high rate of treatment-related mortal-
ity and a high risk for GVHD, which limits its widespread use.

SLE patients with a hypersensitive state or a severe allergic history are not suit-
able for SCT. Caution should be exercised with SCT, where intensive immunother-
apy may increase the risk of life-threatening cardiac complications, bleeding events, 
and severe infections. Therefore, the following exclusion criteria for SCT in SLE 
should be carefully considered:

 1. Organ dysfunction: Patients with advanced organ failure (heart, lung, and kid-
ney) or active gastrointestinal bleeding should be excluded from SCT.

 2. Uncontrolled infection: Any patient with an uncontrolled acute or chronic infec-
tion, including HIV, human T-lymphotropic virus type 1 and 2, hepatitis B, and 
hepatitis C, should be excluded.

 3. Pregnancy: Pregnancy should always be excluded within 7 days of administering 
immunosuppressant or SCT.

These guidelines and recommendations will promote careful patient selection 
and clinical outcome, which are crucial for the most appropriate clinical niche of 
SCT in SLE.

In MSC therapy, most clinical protocols have depended on in vitro culturing of 
MSC to expand the cell population from the donor to get the required number of 

Table 3 Lessons learned from current SCT in SLE

SCT has become a viable treatment for SLE in the past two decades that employs the use of 
HSC, MSC, and iPSC
Limitations of SCT exist including disease relapse, side effects due to conditioning therapy, 
treatment-related mortalities, and GVHD
Those who choose to undergo SCT should seek out legitimate studies and institutions with 
proper counseling and follow-up by their medical providers
To ensure the development of novel approaches, standardized treatment protocols, and safety 
criteria for SCT, international research centers should be established through the support of 
government or private agencies
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cells for therapeutic applications. This ex vivo manipulation process has to be care-
fully monitored to maintain the desired therapeutic property in vitro (e.g., immuno-
modulation). Based on reported phase I/II clinical studies, the safety and efficacy 
data acquired from allogeneic MSCT in severe and drug-resistant SLE patients are 
encouraging and thus provide a foundation for double-blinded, randomized placebo- 
controlled trials. However, numerous questions still need to be addressed. First, 
what is the most appropriate MSC source for use in clinical applications? Second, 
what should the dose of infused MSC be? Third, is a preconditioning regimen nec-
essary before MSCT? Fourth, what is the optimal time to administer MSCT? When 
lupus has progressed or at disease onset? Furthermore, Should it be applied to only 
drug-resistant cases? More double-blinded and controlled clinical studies are 
needed to confirm proper treatment protocols.

4.2  Medical Personnel Influence: Communicating 
with Patients and Public Education

All the aforementioned SCT appear to offer curative potential, but as mentioned 
previously, limitations and possible risks to the patients’ lives exist. This therapeutic 
strategy is in its early stages of clinical studies, and much more data and experience 
need to be acquired. Patients with SLE refractory to conventional therapy may opt 
to participate in clinical trials in hopes of a cure to their chronic symptoms. However, 
they should be diligent in seeking out legitimate studies undertaken by reputable 
academic institutions. Their medical providers should also assist in this process as 
well as advise their patients on the goals and end points of those studies. The rapid 
increase in centers carrying out SCT throughout various countries will require 
supervisory and ethics committees to monitor the production of stems cells, proto-
col safety, and adverse events. To ensure patients are not vulnerable to possible 
unproven therapies, these guidelines have to be strictly reinforced because any 
deviations could lead to inconclusive results. Relevant clinical experiences, both 
success and failures, should be communicated openly in professional conferences. 
Groups such as the International Society for Stem Cell Research (ISSCR) and 
European Medicines Agency (EMA) provide guidelines regarding these matters.

Confusing medical terms, physical or mental stresses, and financial obligations 
may overwhelm patients who eventually do undergo SCT therapy. Specific guide-
lines and instructions should be made available to the physicians, patients, and care-
givers to help all parties understand what to expect throughout the SCT journey. 
Qualified healthcare professionals and counselors should be trained and be avail-
able to prepare the patients and assist them with questions on SCT throughout and 
post-SCT follow-up. Various ill side effects and discomfort may occur from the time 
the patient first receives a chemotherapeutic regimen, which is performed to prepare 
the body for SCT (also known as “conditioning”), to the actual SCT. At any of these 
phases, good communication between the medical team and the patient will ensure 
effective, high-quality care.
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4.3  Active Participation and Support from the Society 
and Government for SLE

With its incidence nearly tripled in the last 40 years of the twentieth century and its 
estimated incidence rates at 1–25 per 100,000 in North America, South America, 
Europe, and Asia [117, 179], active support from the society and government agen-
cies will expedite understanding of the etiology and pathogenesis of SLE, leading to 
the development of therapeutic interventions and improving quality of life for 
patients. To establish an international SCT center for SLE or ARD will not only 
provide a platform for researchers and clinicians to collaborate and exchange data 
and experience but also standardize and regulate SCT protocols in order to ensure 
patient safety. For example, the current quality of stem cells with regard to the 
source (donor’s age or disease severity), heterogeneity, potency, and cell phenotype 
(cell surface markers) used for either animal studies or clinical trials is varied among 
labs. Further coordinated international studies from both the scientific and clinical 
community will help to develop novel approaches and standardize treatment proto-
cols and safety criteria for the use of SCT in patients with SLE and other rheumato-
logic diseases.

5  Summary

The evidence base for the benefit of stem cell therapies for SLE has increased pro-
gressively over the last 5 years, with an initial interest in high-dose immunosuppres-
sion supported by HSCT followed by growing work in MSCT. There is therapeutic 
benefit from both HSCT and MSCT approaches, although the safety and tolerability 
profiles vary considerably. Current uncontrolled studies show improvement in SLE 
patients that had only been followed for short lengths of time. Larger randomized, 
controlled trials with long-term follow-up are warranted in order to establish safety 
criteria for the use of SCT. These multicenter studies should be designed to mini-
mize discrepancies resulting from the use of different protocols and to compare 
clinical safety and efficacy between steroids combined with MSC or HSC treatment 
and steroids combined with traditional immunosuppressive drug therapy, such as 
CYC or MMF. To be sure, further elucidation of the molecular mechanisms between 
stem cells and the host immune system will also be necessary to understand the 
pathogenesis of SLE and perhaps other novel therapeutic applications.
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