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Abstract: For ultrasound imaging of thyroid nodules, medical guidelines are all based on findings
of sonographic features to provide clinicians management recommendations. Due to the recent
development of artificial intelligence and machine learning (AI/ML) technologies, there have been
computer-assisted detection (CAD) software devices available for clinical use to detect and quantify
the sonographic features of thyroid nodules. This study is to validate the accuracy of the computerized
sonographic features (CSF) by a CAD software device, namely, AmCAD-UT, and then to assess
how the reading performance of clinicians (readers) can be improved providing the computerized
features. The feature detection accuracy is tested against the ground truth established by a panel
of thyroid specialists and a multiple-reader multiple-case (MRMC) study is performed to assess
the sequential reading performance with the assistance of the CSF. Five computerized features,
including anechoic area, hyperechoic foci, hypoechoic pattern, heterogeneous texture, and indistinct
margin, were tested, with AUCs ranging from 0.888~0.946, 0.825~0.913, 0.812~0.847, 0.627~0.77, and
0.676~0.766, respectively. With the five CSFs, the sequential reading performance of 18 clinicians is
found significantly improved, with the AUC increasing from 0.720 without CSF to 0.776 with CSF.
Our studies show that the computerized features are consistent with the clinicians’ findings and
provide additional value in assisting sonographic diagnosis.

Keywords: thyroid nodules; sonographic features; computer-assisted detection; MRMC study

1. Introduction

Thyroid cancer is the most common endocrine cancer, and its incidence has increased
dramatically by an average of 4.5% annually [1]. Accurate identification of thyroid cancer
is crucial for effective treatment. Ultrasonography is the most common tool for early
detection of thyroid cancer because it is readily available and noninvasive. In the past
decade, use of high-resolution ultrasound has resulted in improved detection of thyroid
nodules [2,3]. Nevertheless, most of the nodules are benign, and thyroid cancers only
account for 7–15% of detected nodules [4]. Identification of malignant nodules is critical to
avoid unnecessary fine-needle aspiration (FNA) biopsy and surgical procedures. Medical
guidelines, most notably the management guidelines by the American Thyroid Association
(ATA) [4] and Thyroid Imaging Reporting and Data System (TI-RADS) by the American
College of Radiology (ACR) [5], have been developed and recommended to clinicians on
how to identify and use the sonographic features for differentiation of thyroid cancers.
Important features include micro-calcifications, hypo-echogenicity, irregular margins, taller-
than-wide shape, etc. [4,6–10]. However, presence of the sonographic features is determined
based on a physician’s subjective interpretation, which may be influenced by education and
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experience. Interpretation discrepancies among clinicians or even by the same clinicians
at different times have become a major issue that hinders the diagnosis and treatment of
thyroid nodules [11,12].

Recent development of AI/ML technologies has given rise to the use of CAD software
devices in clinical practice [13,14], to assist clinicians with improving their diagnosis ac-
curacy and workflow effectiveness. The CAD solutions have been applied to ultrasound
imaging of various diseases, such as breast cancer [15,16] and liver lesions [17]. One CAD
software device has emerged to give a second opinion on image interpretation [18], to
reduce inter-observer variation in breast images [16,19]. Studies have also reported appli-
cations of CAD devices to ultrasound imaging of thyroid nodules [20–28]. In particular,
the effectiveness of computerized sonographic features (CSF) to differentiate malignant
nodules has been demonstrated [20–24]. The CSFs provided by a CAD device are used to
assist clinicians in interpreting the images and then making recommendations based on
the clinicians’ professional judgment and/or medical guidelines. Although both clinicians’
finding and computerization of sonographic features are shown helpful in thyroid cancer
diagnosis, the computerized sonographic features have not yet been validated by compar-
ing to the clinicians’ sonographic feature findings and by studying their effect in assisting
clinicians’ reading of the thyroid sonograms.

In this study, an FDA-cleared CAD software device, AmCAD-UT (AmCad BioMed Co.,
Taipei, Taiwan) (Figure 1a), is employed to validate the software’s detection and quantifica-
tion of the sonographic features (Figure 1b) against the ground truth established by a panel
of thyroid specialists and then to perform an MRMC study to test the reader’s performance
sequentially assisted with the computerized features calculated by the CAD device.
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Figure 1. AmCAD-UT: (a) Graphical user interface; (b) A: nodules with features present; B: nodules 
without the features. Features are visualized, with colors indicating the severity or likelihood of the 
feature presence—the warmer the color the more likely or severer the feature’s presence. Quantified 
values of the computerized features ranging from 0 to 1 are shown and displayed in the pointer 
meters. 
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nodular goiter diagnosed by ultrasound imaging and FNA cytology, at NTUH. Since the 
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Figure 1. AmCAD-UT: (a) Graphical user interface; (b) A: nodules with features present; B: nodules
without the features. Features are visualized, with colors indicating the severity or likelihood
of the feature presence—the warmer the color the more likely or severer the feature’s presence.
Quantified values of the computerized features ranging from 0 to 1 are shown and displayed in the
pointer meters.

2. Materials and Methods
2.1. Database for Computerized Features Testing

The Institutional Review Board of the National Taiwan University Hospital (NTUH)
approved this prospective study (200805039R). Informed consent was obtained from all
participants and all patient identifiers were removed from the images used in the study.
The database consisted of a collection of thyroid sonograms of patients who underwent a
thyroidectomy due to suspicious thyroid carcinoma, follicular neoplasm, or symptomatic
nodular goiter diagnosed by ultrasound imaging and FNA cytology, at NTUH. Since the
quality of the sonograms greatly depended on the ultrasound scanners and might affect
both the clinicians’ finding and computerization of the sonographic features, we collected
for this study sonograms obtained from different ultrasound scanners. The sonograms
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were acquired in DICOM format using Philips HDI 5000 (denoted as PH), GE Voluson
730 PRO (denoted as GE), and ALOKA Prosound2 (denoted as AL) ultrasound scanners,
with 5–12 MHz linear multifrequency probes under identical imaging setting by certified
technicians. The images were ineligible if the nodule size was larger than the width of the
probe array or if the single nodule was not separable from another in cases of multinodular
goiters. Finally, sonograms of 823 nodules (663 patients) were included in the database
(Figure 2a). The major ethnic group was Chinese. Our previous studies investigated the
effectiveness of specific computerized sonographic features, namely, calcification, hetero-
geneity, or echogenicity, in distinguishing malignant from benign nodules [20–24], whereas
the current study validate the detection accuracy against the ground truth established by
a panel of three thyroid specialists. A set of images was used for algorithm validation,
consisting of 170 sonograms (102 benign and 68 malignant). In total, 653 sonograms were
used for testing. Of these, 352 sonograms were randomly chosen for test of feature detec-
tion accuracy, and another 150 images from the Philips scanner were chosen for reading
performance assessment (Table 1a). The pathology results of the nodules and cancer type
distribution are shown in Table 1b. Among the 150 sonograms, 20 (10 benign and 10 malig-
nant) were used as the training set for the 18 readers to get familiar with the CAD software
user interface and to train themselves using the software to differentiate malignant nodules.
The remaining 130 sonograms were used for the MRMC study (Figure 2b).
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Table 1. Demographics of the patients and nodules.

Detection Accuracy Assessment
PH Set

Detection Accuracy Assessment
GE Set

Patients (n = 113) Patients (n = 84)

Benign
(n = 74)

Malignant
(n = 56)

Total
(n = 130)

Benign
(n = 73)

Malignant
(n = 27)

Total
(n = 100)

Gender No. (%)
Male 14 (18.9) 9 (16.1) 23 (17.7) 14 (19.2) 3 (11.1) 17 (17.0)

Female 60 (81.1) 47 (83.9) 107 (82.3) 59 (80.8) 24 (88.9) 83 (83.0)

Age (year)
Mean ± SD * 48.2 ± 13.8 48.6 ± 15.4 48.3 ± 14.5 51.1 ± 13.2 50.1 ± 16.6 50.5 ± 14.1

Range 20.9–76.9 11.2–71.6 11.2–76.9 20.9–75.3 20.4–84.8 20.4–84.8

Size of Nodule (cm)
Mean ± SD * 2.38 ± 0.88 1.87 ± 0.86 2.16 ± 0.90 2.50 ± 0.94 1.86 ± 0.72 2.33 ± 0.93

Range 0.94–4.37 0.49–4.09 0.49–4.37 0.71–4.16 0.87–3.66 0.71–4.16

(a) Demographics of patients and nodule images acquired from Philips (PH), GE, and Aloka (AL) ultrasound scanners for detection
accuracy and reader performance assessment.

Detection Accuracy Assessment
AL Set

Reader
Performance Assessment

Patients (n = 107) Patients (n = 129)

Benign
(n = 58)

Malignant
(n = 64)

Total
(n = 122)

Benign
(n = 83)

Malignant
(n = 67)

Total
(n = 150)

Gender No. (%)
Male 8 (13.8) 14 (21.9) 22 (18.0) 16 (19.3) 11 (16.4) 27 (18.0)

Female 50 (86.2) 50 (78.1) 100 (82.0) 67 (80.7) 56 (83.6) 123 (82.0)

Age (year)
Mean ± SD * 45.9 ± 9.5 42.7 ± 11.8 44.2 ± 10.8 48.5 ± 13.9 47.8 ± 14.8 48.2 ± 14.3

Range 21.7–64.3 1.5–74.0 1.5–74.0 20.9–76.9 11.2–71.6 11.2–76.9

Size of Nodule (cm)
Mean ± SD * 2.45 ± 1.06 1.48 ± 0.72 1.94 ± 1.02 2.38 ± 0.86 1.86 ± 0.83 2.15 ± 0.88

Range 0.53–4.29 0.53–4.12 0.53–4.29 0.94–4.37 0.49–4.09 0.49–4.37

(b) The pathology diagnosis results of the 823 nodules.

Pathology of Nodules No. (%)

Benign (n = 499)
Nodular hyperplasia 428 (85.8)
Follicular adenoma 70 (14.0)

Unidentified adenoma 1 (0.2)

Malignant (n = 324)

Papillary thyroid carcinoma 296 (91.4)
Follicular thyroid carcinoma 15 (4.6)
Medullary thyroid carcinoma 5 (1.5)

Anaplastic carcinoma 5 (1.5)
Others 3 (1.0)

* SD = standard deviation.

2.2. Testing CSF Detection Accuracy

The AmCAD-UT software device was developed to assist clinicians in analyzing the
regions of interest (ROI) on the thyroid sonograms. Figure 1a shows the interface of the
AmCAD-UT software. The software produced five computerized sonographic features
(CSFs), namely, anechoic areas, hyperechoic foci, hypoechoic patterns, heterogeneous
textures, and indistinct margins, providing their quantified values and visualizing them,
using colors, to assist clinical differentiation of thyroid nodules. The quantification and
visualization algorithms of AmCAD-UT have been disclosed in previous studies [20–24].
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To validate the feature detection, we tested the quantified value of each sonographic
feature against the ground truth, indicating the presence or absence of each feature on
the sonogram (Table 2). The ground truth was determined by a panel of three thyroid
specialists. All three specialists, certified to interpret the sonograms, with an average of
8.6 years (range 8–10 years) of experience and an average of 1366 readings (ranging from
700 to 2400 readings), independently read the sonograms to define the ROIs of the nodules
and to determine the presence or absence of each feature. In cases of a discrepancy in
interpretation, consensus was achieved by discussions among the panelists.

Table 2. Ground truth established by the panel of thyroid ultrasound specialists.

Sonographic Features Determined by
a Panel of Specialists PH No. (%) GE No. (%) AL No. (%)

Anechoic Areas
Absence 68 (52.3%) 82 (82.0%) 96 (78.7%)
Presence 62 (47.7%) 18 (18.0%) 26 (21.3%)

Hyperechoic Foci Absence 97 (74.6%) 74 (74.0%) 93 (76.2%)
Presence 33 (25.4%) 26 (26.0%) 29 (23.8%)

Hypoechoic Pattern Absence 39 (30.0%) 30 (30.0%) 21 (17.2%)
Presence 91 (70.0%) 70 (70.0%) 101 (82.8)

Heterogeneous Texture Absence 11 (8.5%) 5 (5.0%) 10 (8.2%)
Presence 119 (91.5%) 95 (95.0%) 112 (91.8%)

Indistinct Margin Absence 102 (78.5%) 77 (77.0%) 49 (44.5%)
Presence 28 (21.5%) 23 (23.0%) 61 (55.5%)

For all sonograms, the CAD device automatically performed detection and quantifi-
cation of each feature and electronically stored the values in a database for subsequent
analysis. The quantified values between nodules with the feature present and those without
the feature were compared using a t-test and a p-value less than 0.05 was considered statisti-
cally significant. Since each feature was quantified as a continuous value to indicate a higher
likelihood of presence by a larger value of the computerized feature, the receiver operating
characteristic (ROC) curve for each feature was also generated againstthe corresponding
“ground truth”, with the area under the ROC curves (AUC) calculated to represent the
detection accuracy. If the detection accuracy was 100%, i.e., AUC = 1.0, it meant a cut-off
point can be found for the CSF to determine the presence of the sonographic feature, such
that the findings by the computer and by the specialist panel were in 100% agreement. The
higher the AUC value, the higher the agreement between the CSF and the ground truth.
The statistical analysis was performed using MedCalc version 10.6.0.0 (MedCalc Software
Ltd, Ostend, Belgium).

2.3. Assessing Diagnosis Performance of Readers Assisted with CSF

To assess whether the assistance of CSF provided by the CAD device can improve the
readers’ diagnosis accuracy, a multiple-reader multiple-case (MRMC) study [29–31] was
performed. We recruited 18 clinicians (readers) to read 130 thyroid nodule sonograms. All
the clinicians were licensed for an average of 8.78 years (ranging from 1 to 25 years experi-
ence) to perform ultrasound scans and interpret the sonograms, but had no experience in
using AmCAD-UT. No reader had foreknowledge of the corresponding pathology results
(benign or malignant) of the thyroid nodules. We first trained the readers with 20 training
sonograms and the corresponding pathology results (10 benign or 10 malignant) to get the
readers familiarized with the interface of the CAD software. Then, each of the 18 readers
read each of 130 sonograms first without the CSF and then sequentially read the sonogram
with the CSF provided [30]. The sequential reading with the CSF was to mimic how the
CAD device would be used in clinical practice where the CSF information was provided as
an integral part of the clinical reading and interpretation of sonograms. In other words, a
reader read and scored every sonogram twice—one without CSF and one with CSF—for all
130 images. The order of the 130 sonograms was randomized and different for every reader.
The scoring was scaled from 0 to 100 (0 = absolute benign, 100 = absolute malignant). We
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used the DBM MRMC 2.32 software (based on the Dorfman–Berbaum–Metz method) for
generation of the ROC curves based on bi-normal models and for estimates of random
effects of readers and cases [29,32–34]. Paired ROC curves of readers’ scoring without and
with assistance of CSF were generated against pathology, and the paired AUCs calculated.
We also performed subgroup analysis for readers with different levels of experience. Read-
ers with more than 6 years’ experience of interpreting sonograms were referred to as senior
readers and the others were called junior readers. We calculated the paired AUC for the
two groups separately and compared the paired AUCs between the two groups.

3. Results
3.1. Detection Accuracy of Computerized Sonographic Features

The detection accuracy of each computerized feature was tested against the ground
truth (Table 2). Regardless of the ultrasound scanner types, the difference between the
two groups of quantified values (with or without presence of anechoic areas, hyperechoic
foci, hypoechoic pattern, heterogeneous texture and indistinct margin) were significant,
ranging from a p-value < 0.0001 to a p-value = 0.0347 (Table 3). The lowest agreement
(p-value = 0.0045~0.0347) was observed in detecting the heterogeneous texture and the
highest agreement between the computerized values and panel findings was observed for
the anechoic area and the hyperechoic foci detection.

Table 3. Test results of the computerized sonographic features’ detection accuracy.

Anechoic
Areas

Hyperechoic
Foci

Hypoechoic
Pattern

Heterogeneous
Texture

Indistinct
Margin

PH
(n = 130)

AUC
(95% CI)

0.902
(0.838–0.947)

0.913
(0.850–0.955)

0.837
(0.762–0.896)

0.701
(0.614–0.778)

0.702
(0.616–0.779)

p-value <0.0001 <0.0001 <0.0001 0.0347 0.0007

GE
(n = 100)

AUC
(95% CI)

0.888
(0.809–0.942)

0.825
(0.736–0.894)

0.847
(0.761–0.911)

0.627
(0.525–0.722)

0.766
(0.670–0.845)

p-value 0.0001 <0.0001 <0.0001 0.0323 0.0002

AL
(n = 122, n = 110

for Margin)

AUC
(95% CI)

0.946
(0.890–0.979)

0.830
(0.751–0.892)

0.812
(0.732–0.877)

0.77
(0.685–0.841)

0.676
(0.580–0.762)

p-value <0.0001 0.0002 0.0156 0.0045 0.0002

PH: Philips HDI 5000; GE: GE Voluson 730; AL: ALOKA Prosound2.

Similarly, in terms of the AUC against the ground truth, the detection accuracies of the
quantified anechoic areas, hyperechoic foci, echogenicity (hypoechoic pattern), heteroge-
neous texture and indistinct margin were 0.946–0.888, 0.825–0.913, 0.812–0.847, 0.627–0.77
and 0.676–0.766 for various ultrasound scanners (Table 3 and Figure 3), respectively. The de-
tection accuracies of the quantified heterogeneous texture and indistinct margin appeared
to be lower than that of the quantified anechoic areas, hyperechoic foci, and hypoechoic
pattern. These AUCs also indicated good agreement between the computerized feature
values and the panel’s readings.

3.2. Reader Performance Assisted with CSF

The reader performance using the computerized sonographic features generated by the
CAD device was tested against the corresponding pathology. The accuracy of the readers
in diagnosing malignant thyroid nodule sonograms was evaluated by the AUC based
on the readers’ scoring. AUCs without and with the computerized sonographic features
(CSF) for each reader are shown in Table 4a. The mean AUC with CSF was significantly
greater (p-value = 0.0420) than that without CSF using the DBM MRMC test, as shown in
Table 4b. Moreover, the statistics showed that the difference was mainly observed for the
junior readers (p-value = 0.1462 and 0.0265, respectively, for the senior and junior readers).
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Figure 4 shows the graph of the paired ROC curves. Differences could be observed between
the ROCs with and without CSF for all readers, indicating improvement in the reader’s
performance with the assistance of computerized features. In particular, Figure 4c showed
the distinct ROC curves for the junior readers. However, only a slight difference was found
in Figure 4b between the pair of ROC curves for senior readers. This demonstrated that the
computerized features were especially beneficial to junior clinicians to supplement their
relatively less experience in making diagnosis. Though an improvement was also observed
for the senior readers assisted by the computerized features, a bigger sample size of senior
readers might be required to show the significance.
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Table 4. Reader performance in terms of AUC without and with CSF: (a) individual readers; (b) all
readers, senior readers, and junior readers.

(a) AUC of Each Reader

Seniority **
(Year)

AUC

Without CSF With CSF

Senior *
Readers

Reader 1 25 0.761 0.805
Reader 2 21 0.786 0.821
Reader 3 21 0.766 0.804

Reader 8 # 12 0.807 0.810
Reader 11 ## 7 0.832 0.825
Reader 12 ## 7 0.822 0.817

Reader 13 15 0.731 0.767
Reader 14 10 0.614 0.738
Reader 15 11 0.711 0.805

Junior
Readers

Reader 4 5 0.740 0.770
Reader 5 5 0.609 0.749
Reader 6 5 0.744 0.753
Reader 7 2 0.739 0.797
Reader 9 1 0.514 0.642

Reader 10 5 0.717 0.781
Reader 16 3 0.653 0.761
Reader 17 2 0.633 0.716
Reader 18 1 0.784 0.810

(b) Mean AUC

Without CSF
(95% CI)

With CSF
(95% CI)

Improvement
(95% CI) p-Value

All Readers 0.720
(0.661, 0.780)

0.776
(0.708, 0.844)

0.056
(0.002, 0.110) 0.0420

Senior Readers 0.759
(0.706, 0.812)

0.799
(0.732, 0.866)

0.040
(−0.014, 0.094) 0.1462

Junior Readers 0.681
(0.608, 0.755)

0.753
(0.679, 0.827)

0.072
(0.009, 0.136) 0.0265

* Senior Readers: Seniority > 6 years; ** The item indicates the years of the reader been certified as a physician
and able to use the ultrasound machine and interpret the sonograms; # The reader is a board-certified thyroid
specialist; ## The reader is a board-certified radiologist; CI: confidence interval; Improvement = With CSF −
Without CSF.
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4. Discussion
4.1. Population and Features

The distribution and percentage of thyroid cancers were similar to that reported inter-
nationally [35–37], representing actual clinical practice and the demographic distribution
of the studied population. Therefore, the possible effect of the nodule types and their distri-
butions should be considered negligible. In addition, because the CSFs were found highly
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agreeable with the clinicians’ findings for all three types of ultrasound scanners included
in this study, the feature computerization of the CAD device should be generalizable to
thyroid sonograms acquired for a general patient population in practical clinical situations.

4.2. CSF Accuracy

The sonographic features evaluated by the CAD device were tested to be significantly
in agreement with the specialist’s judgement (ground truth). The heterogeneous texture
feature appeared to be less agreeable and was possibly due to the extremely unbalanced
reading results by the specialist panel, where only 5–8.5% of nodules were not deemed to
be heterogeneous. In clinical practice, even a slight unsmooth trace within a nodule would
lead to a judgement of a heterogeneous nodule. In contrast, the CAD software provided
the quantified values evaluating the degree of heterogeneity, which was more functional,
with a continuous severity rating. Another less agreeable feature was the indistinct margin.
An indistinct margin was supposedly indicated for a possible infiltration by a malignant
nodule. However, determination of indistinct margins was highly subjective and greatly
influenced by the clarity of the sonogram and the aim angle of the ultrasound probe. The
readings of indistinct margins were thus with a relatively high variability and appeared to
be less reliable. Since the CSFs were produced by the CAD software independently without
interaction with clinicians, they could serve as second opinions to assist clinical diagnosis.

4.3. Reader Performance with CSF

An MRMC analysis was necessary to test the performance of a CAD device, since
the radiological device was to assist the physicians and had to been shown of value to
the physicians in making diagnosis. The MRMC study design offered a comprehensive
analysis of the role of the device in actual clinical situations where clinicians of different
experiences might use the device for reading a variety of cases [31]. Both the reader
variability and interactions between readers and cases were considered by the DBM model
in the MRMC analysis [34]. The scoring by rating the malignancy potentials of the nodules
reflected the readers’ interpretation confidence without and with the device’s assistance.
In this study, a total of 18 readers were recruited for the test and all readers received
training by reading 20 sonograms prior to the test. The test sonograms were randomly
selected from a sufficiently large database to avoid possible sampling bias. The analysis
results demonstrated that the reading performances of clinicians, in terms of AUC, were
significantly improved when assisted with the CSFs produced by the CAD. We had also
observed that the greatest improvements were mainly made by the junior readers, although
the higher diagnosis accuracy, with an average AUC near 0.8, was achieved by the senior
readers. The CSFs appeared to be of value to both junior and senior readers, with the
accuracy approaching and not exceeding 0.8. Since the improvement made by the senior
readers was only about 5% (from AUC = 0.759 to 0.799), a larger number of senior readers
might be needed to prove the statistical significance.

4.4. CAD Device in Clinical Practice

Major advantages of the CAD device included providing a critical second opinion,
reducing time-consuming procedures, and avoiding oversight and interobserver varia-
tion [13]. A CAD device could serve as a reliable second opinion because it provides
accurate information of the sonographic features in concordance with the ground truth.
Independent double reading by another clinician was an alternative way to improve the
detection accuracy [38]. However, independent double reading was a labor-demanding
work for clinicians and might not be as efficient and effective as the assisted reading of a
CAD device [19]. Furthermore, the sonographic reading of a human clinician was greatly
dependent on one’s past experience and often subject to momentary feel. In contrast, the
CAD device could provide consistent and objective evaluation regardless of the time and
environment settings, and thus could further reduce the interobserver variation [39].
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Several CAD algorithms had been proposed for thyroid ultrasound images by other
authors [25–28]. Acharya et al. characterized the thyroid nodules into benign and malignant
classes using a combination of texture and discrete wavelet transform [25]. Chang et al.
used the support vector machine classifier to differentiate malignant and benign nodules
and showed accuracy similar to that obtained via visual inspection by radiologists [26].
Choi et al. suggested that the sensitivity of the junior reader was as good as that of the senior
readers by using a CAD device with a lower the specificity [27]. Most recently, Wu et al.
reported an MRMC study that showed a significant improvement in reading performance
with assistance of the CAD device after a washout period [28]. Although the above studies
assessed the differentiation of malignant and benign nodules by using the CAD device, this
study would be the first study to evaluate the CAD device’s performance in reading the
sonographic features through comparison to readings by a panel of specialists and to assess
the CSFs’ effects on the reader performance via an MRMC study of sequential readings
with and without CSF.

4.5. Study Limitation

This study had limitations regarding the sonographic features evaluated. First, hy-
perechoic foci were not further differentiated into microcalcifications, coarse calcifications,
rim-shape calcifications, or colloid [20]. Second, the echogenicity level determined by the
panel was not further classified into the four levels, namely, hyperechoic, isoechoic, mildly
hypoechoic, and markedly hypoechoic [23], commonly used in clinical practice. Third,
though the sequential readings without and with the CSF mimicked how the CAD device
would be used in clinical practice but the sequential readings without a washout period
might result in a recollection bias and impair the effect of the assistance by the CAD device.

In conclusion, the CAD device visualized and quantified the thyroid sonographic
features in high concordance with a specialist panel and was shown to significantly improve
clinicians’ reading of the nodule’s malignancy risk.
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