
DECODE: a computational pipeline to discover T cell

receptor binding rules

Iliana Papadopoulou1,2,†, An-Phi Nguyen1,3,*,†, Anna Weber1,2 and

Mar�ıa Rodr�ıguez Mart�ınez1,*

1IBM Research Europe, 8803 Rüschlikon, Switzerland, 2ETH Zurich, Department of Biosystems Science and Engineering (D-BSSE),

4058 Basel, Switzerland and 3ETH Zurich, Department of Mathematics (D-Math), 8092 Zurich, Switzerland

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Abstract

Motivation: Understanding the mechanisms underlying T cell receptor (TCR) binding is of fundamental importance
to understanding adaptive immune responses. A better understanding of the biochemical rules governing TCR bind-
ing can be used, e.g. to guide the design of more powerful and safer T cell-based therapies. Advances in repertoire
sequencing technologies have made available millions of TCR sequences. Data abundance has, in turn, fueled the
development of many computational models to predict the binding properties of TCRs from their sequences.
Unfortunately, while many of these works have made great strides toward predicting TCR specificity using machine
learning, the black-box nature of these models has resulted in a limited understanding of the rules that govern the
binding of a TCR and an epitope.

Results: We present an easy-to-use and customizable computational pipeline, DECODE, to extract the binding rules
from any black-box model designed to predict the TCR-epitope binding. DECODE offers a range of analytical and visu-
alization tools to guide the user in the extraction of such rules. We demonstrate our pipeline on a recently published
TCR-binding prediction model, TITAN, and show how to use the provided metrics to assess the quality of the com-
puted rules. In conclusion, DECODE can lead to a better understanding of the sequence motifs that underlie TCR bind-
ing. Our pipeline can facilitate the investigation of current immunotherapeutic challenges, such as cross-reactive
events due to off-target TCR binding.

Availability and implementation: Code is available publicly at https://github.com/phineasng/DECODE.

Contact: uye@zurich.ibm.com or mrm@zurich.ibm.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The adaptive immune system relies on the selective recognition of
foreign antigens by T cells (Kumar et al., 2018). T cells recognize
short antigenic peptides presented on major histocompatibility com-
plex (MHC) proteins by binding the complex with their T cell recep-
tors (TCRs). A large diversity of TCRs (Laydon et al., 2015) ensures
that all of the vast space of possible antigenic peptides can be recog-
nized by the immune system.

In recent years, experimental advances have allowed the identifica-
tion of T cells that recognize specific antigens. High-throughput
sequencing of their TCRs has allowed linking large numbers of TCR
sequences to antigen specificity. The increase in available data regard-
ing TCR specificity has resulted in the development of many machine-
learning models aiming to predict TCR specificity from sequences
(Dash et al., 2017; De Neuter et al., 2018; Fischer et al., 2020; Gielis
et al., 2019; Glanville et al., 2017; Jokinen et al., 2021; Moris et al.,
2021; Sidhom et al., 2021; Weber et al., 2021). These efforts are pav-
ing the way for the potential decoding of the information present in a
patient’s TCR repertoire regarding its immune history, which might

reveal information about past and present infections, as well as about
disorders of the immune system, such as autoimmune diseases.

Unfortunately, TCR specificity prediction models are often black-
box algorithms with limited interpretability. That means that despite
the continuous improvement in predictive performances, these models
fail to provide insights about the biochemical rules that govern the
TCR–epitope interaction. Understanding and being able to accurately
predict the binding of new TCRs to target epitopes is an essential step
to design more powerful and safer T cell therapies, which represent a
promising new approach for cancer immunotherapies.

Motivated by the need of interpretation in the TCR-epitope
binding prediction problem, in this work, we provide an easy-to-use
explainability pipeline to extract biological insights from any TCR-
binding prediction model.

1.1 Motivation
In order to increase the explainability of machine-learning models, re-
cent work, e.g. Tcr epITope bimodal Attention Networks (TITAN)
(Weber et al., 2021), has proposed to augment deep-learning

VC The Author(s) 2022. Published by Oxford University Press. i246

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 38, 2022, i246–i254

https://doi.org/10.1093/bioinformatics/btac257

ISCB/ISMB 2022

https://github.com/phineasng/DECODE
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac257#supplementary-data
https://academic.oup.com/

architectures with interpretable components, such as attention layers
(Vaswani et al., 2017). This is an example of ante-hoc, or built-in,
strategies to tackle interpretability. However, the application of atten-
tion mechanisms and, more generally, ante-hoc approaches to the
TCR-binding prediction problem suffers from two main drawbacks:

• Local interpretability: given the complex nature of both the

model and the task, ante-hoc techniques often generate only local

explanations, i.e. explanations that are valid only for few sam-

ples. This results at best in the partial understanding of the bio-

logical mechanism underlying TCR binding.
• Modification and retraining of the original model is needed:

ante-hoc approaches need to be embedded in the existing models,

which requires retraining the whole new model from scratch.

Disregarding the amount of work that this might require, this is

only possible if the model’s code has been released. Furthermore,

there is no guarantee that the modification does not result in a

decrease in performance (Fischer et al., 2020).

To address these issues, we introduce DECODE (DEcoding t Cell
receptOr binDing rulEs), a post-hoc explainability pipeline that does
not need access to a model’s architecture, and therefore, can be
applied to models with proprietary or unreleased code. DECODE has
been designed to discover the rules that any TCR specificity predic-
tion algorithm follows to make its predictions. Our only require-
ment is to have access to a black-box model that can make a
binding/non-binding prediction for a given TCR-epitope pair.

The two main components of DECODE are:

• A clustering step to enable global explainability. This allows the

user to understand a model in its entirety and not only on indi-

vidual cases.
• An explainability step based on Anchors, a model-agnostic ap-

proach that explains the behavior of complex models using high-

precision rules (Ribeiro et al., 2018).

Using these two components, DECODE creates explanations for
each cluster of TCRs in the form of easily understood if-then rules.

DECODE is easy to use, offers a wide range of visualizations for
the generated binding rules and can be applied to any text/categoric-
ally based model. We demonstrate our pipeline on the recently pub-
lished TITAN model (Weber et al., 2021). To facilitate the
visualization of the generated explanations and the investigation of
the associated TCR-binding mechanisms, we have retrained TITAN
to predict the binding to a single-epitope, the peptide KLGGALQAK
from Cytomegalovirus.

1.2 Related work
Several works have recently focused on predicting TCR specificity
from sequence using machine learning [for a review see Mösch et al.
(2019)]. Since the small number of epitopes is currently a limiting
factor, many approaches have limited their scope and build super-
vised classifiers that predict the binding of a TCR to a limited pool
of epitopes. Among these models, decision trees (De Neuter et al.,
2018; Gielis et al., 2019) and Gaussian process methods (Jokinen
et al., 2021) have been proposed. On the other side, TITAN (Weber
et al., 2021) used a bimodal, sequence-based neural network for pre-
dicting TCR-epitope binding probability and significantly outper-
formed the state-of-the-art.

Regarding the problem of identifying informative motifs and se-
quence patterns that confer TCR its specificity properties, several
approaches have been proposed. GLIPH (Glanville et al., 2017) clus-
ters TCRs according to amino -acid similarity and the presence of
conserved motifs; TCR-specific distance measures have been defined
to enable clustering and visualization of similar TCR sequences
(Dash et al., 2017); and variational autoencoders have been used to
improve the extraction of TCR meaningful features, named con-
cepts, from TCR repertoires (Sidhom et al., 2021).

With the exception of TITAN, which uses attention layers to
highlight informative amino acids, none of the previous approaches
has focused on investigating the biochemical rules that govern TCR
binding. As discussed in Section 1.1, attention mechanisms can high-
light patterns in the input data that a neural network finds inform-
ative; however, they cannot provide human-understandable rules
predictive of TCR binding.

Here, we aim to explore alternative approaches for interpretabil-
ity. Besides ante-hoc approaches to interpretability, i.e. models that
are interpretable by construction, such as decision trees, many post-
hoc approaches have been developed in recent years. These methods
can shed light on the decision process of a machine-learning model
after it has been trained. They are often model-agnostic, in the sense
that they do not need any information about the model itself, and
are therefore applicable to any predictive model. Two popular
examples are LIME (Ribeiro et al., 2016), which learns a local linear
model, and Anchors (Ribeiro et al., 2018), which generates local if-
then rules, similar to a local decision tree. Feature attribution meth-
ods are another type of post-hoc interpretable methods that aim to
highlight the features that are most important toward a prediction.
However, while they can detect which features may have been used
for a prediction, they do not elucidate how they are used. Feature
attributions can be either model specific, e.g. gradient-based meth-
ods (Ancona et al., 2018) applied to a neural network, or model ag-
nostic, e.g. SHAP (Lundberg and Lee, 2017).

In this work, we choose Anchors as the core component of the
explainability step of DECODE. Anchors does not makes any linear-
ity assumption (as LIME does), and therefore is able to find more
complex rules. Further, logical rules can be more directly interpreted
by human experts (Fürnkranz et al., 2020) compared to importance
scores, and thus Anchors are expected to result in more user-
friendly explanations than feature attribution methods.

2 Materials and methods

2.1 Overview of the pipeline
In this section, we expand on the computational steps of the DECODE
pipeline. Figure 1 graphically shows the main steps, consisting of:

1. A preparation phase (Section 2.2) to load the model to interpret

and to prepare the data;

2. A clustering phase (Section 2.3), where representative samples of

the dataset heterogeneity are identified;

3. An explainability phase (Section 2.4), where the explanations

about the representative samples retrieved at the previous step

are computed.

Our pipeline further provides a framework to analyze and evalu-
ate both the clustering (Section 2.3.1) and the generated explana-
tions (Section 2.4.1). The user can define the specific algorithms to
use in the preprocessing and clustering phase, as well as other
parameters, in an easily customizable json file. For the simplest
predictive models, the user does not need to inspect the code and
can setup the pipeline simply by specifying the mentioned configur-
ation json file, making the pipeline particularly user-friendly even
for practitioners with little to no experience in programming.

2.2 TCR prediction model and data preparation
The very first step of our pipeline takes care of loading the model
and the data. The model should provide a predict function that
returns a predicted class for an input batch. The data should be
loaded in a format compatible with the model. For the simplest cases
[e.g. a scikit (Pedregosa et al., 2011) model using data in a numpy
(Harris et al., 2020) array format], our pipeline already provides the
loading functions. For more complex cases [e.g. tensorflow
(Abadi et al., 2015), pytorch (Paszke et al., 2019) or command-
line tools], the user should provide their own loading functions.

After loading, the pipeline will take care of splitting the samples in
binding and non-binding partitions, as predicted by the loaded model.

DECODE i247

In the remainder, we will refer to these partitions as splits. The cluster-
ing will be run separately for these two partitions. Since we expect the
binding and non-binding rules to be different, this separation step will
help the explainability phase to detect ‘higher quality’ rules.

As the final (sub)step of this first phase, the user can optionally
specify how to further (pre)process the data. This step is necessary
only if the data format expected by the model is not the same as the
format expected by the clustering and explainability steps. For ex-
ample, the user may want to provide a precomputed distance matrix
to speed up some clustering algorithms.

2.3 Clustering
After the loading and preparation phase, the pipeline will identify
clusters in each of the samples splits. The pipeline readily provides
different clustering algorithms, including K-medoids (Park and
Jun, 2009), BIRCH (Zhang et al., 1996) or OPTICS (Ankerst et al.,
1999). Similarly to the loading functions in the previous step, the
user can provide their own custom clustering algorithm.

In case it is not clear which clustering algorithm (or which hyper-
parameters) should be preferred, our pipeline allows the user to run
multiple algorithms. The pipeline then provides facilities to select
the best clustering algorithm according to a user-defined criterion
(Section 2.3.1).

Furthermore, if different clustering outcomes are produced, the
pipeline offers the possibility of finding a consensus clustering using
the ClusterEnsemble package (Strehl and Ghosh, 2003).

2.3.1 Clustering evaluation

The pipeline provides both quantitative and qualitative ways to evalu-
ate the clustering algorithms (and the hyperparameters) selected
by the user. Quantitative methods include established criteria, such
as the davies-bouldin score (Davies and Bouldin, 1979) or the
Silhouette coefficient (Rousseeuw, 1987). The qualitative assess-
ment strategies consist of dimensionality reduction algorithms that will
project the samples to a 2D space and color-code them using the labels
provided by each clustering algorithm. Examples of provided projec-
tion methods are t-SNE (Van Der Maaten and Hinton, 2008) and
LLE (Locally Linear Embeddings) (Roweis and Saul, 2000). We show
an example of clustering evaluation and visualization in Section 3.3.

2.4 Anchors
We generate human-readable explanations using Anchors (Ribeiro
et al., 2018). An anchor is an explanation presented as an if-then

rule. More specifically to our use case, for each of the cluster repre-
sentative samples, the computed rule takes the following form:

IF (amino acid X is in position i)

AND (amino acid Y is in position j)

AND etc.. THEN

the samples is PREDICTION,

where X and Y represent some amino acid, i and j may take any
value within the length of the input and PREDICTION depends on
what kind of rule we are trying to explain (i.e. either binding or
non-binding).

The quality of these rules and the completeness of the overview
they provide in explaining a TCR prediction model depend on a
number of factors, including the clustering algorithm and the
hyperparameters of the Anchors algorithm (discussed in Section
3.4). In the next section, we introduce some metrics to evaluate
anchors.

Finally, note that there exists a trade-off between the quality of
the explanations and the computational resources (memory and
time) required for their generation. For reference, in our experiments
on a single Intel Xeon CPU E5-2667 (@3.30GHz), computing a
single anchor with default parameters requires between 15 min and
3 h, depending on the complexity of the rule. With less restrictive
parameters leading to lower quality rules, the computation can be
shortened to 2 min up to 30 min.

2.4.1 Anchors evaluation

Ideally, we would like a set of anchors to faithfully represent the
underlying model and be complete with respect to the whole space
of samples. In layman terms, this means that:

• The anchors should be able to replicate the same prediction of

the model. That means that if a sample fulfills an anchor rule,

this rule should lead to the same prediction as the one provided

by the model.
• The anchors should not overlap, i.e. different anchors should not

be applicable to the same sample simultaneously. This is especial-

ly important if the rules were generated from clusters belonging

to different data splits (Section 2.2). If a sample fulfills two an-

chor rules associated with different predictions, how can a user

decide which one is correct?

Fig. 1. Overview of DECODE interpretability pipeline. The test data are split into binding and non-binding samples based on the predictions of the model. Both sets of samples

are clustered and the medoid of each cluster is chosen as a representative example of the cluster. Note that the medoid is an actual sample from the cluster it represents. The

pipeline allows for the use of different clustering algorithms, see Section 2.3. For each medoid, DECODE generates a set of rules using Anchors. Finally, the pipeline offers a

range of visualizations and evaluation metrics for the final anchor rules

i248 I.Papadopoulou et al.

• The set of anchor rules should be able to cover the whole sample

space. Only if this condition is fulfilled, we may be able to under-

stand globally the model.

The last two points mean in particular that any admissible input
sample should ideally fulfill exactly one of the generated anchor
rules. The listed desiderata can be evaluated using standard predict-
ive performance metrics (accuracy, precision and recall), and other
overlap/completeness metrics that we will introduce later in this
section. The predictive performance metrics follow the usual
definitions:

AccuracyðAÞ ¼ TPþ TN

TPþ TN þ FPþ FN

PrecisionðPÞ ¼ TP

TPþ FP

RecallðRÞ ¼ TP

TPþ FN
;

where TP are true positives, TN are true negatives, FP are false posi-
tives and FN are true negatives. We provide these metrics at three
different levels, and the definition of a TP will depend on the level at
which the metric is computed. For a visual description of these met-
rics, please refer to Figure 2. A more detailed description of the fig-
ure can be found in the Supplementary Section S1.

• Cluster level (CL): a sample is considered a true positive if it ful-

fills only the anchor rule generated from the medoid of its cluster.

Perfect performance at this level (simultaneously for all the clus-

ters) would give us all the desiderata mentioned above. In par-

ticular, if all anchor rules are accurate, then they are faithful; if

they are all precise, then there is no overlap; and if they all have

perfect recall, then we have complete coverage.
• Cluster-split (CS) level : an anchor rule prediction on a sample is

considered a true positive if it leads to the same model-prediction

of the sample. In particular, the sample does not need to belong

to the same cluster from which the anchor is generated. In turn,

this means that high precision does not guarantee no-overlap.

This level is more relaxed than the previous one: low perform-

ance at the CL level, but high performance on the CS level may

be acceptable. This would mean that there are overlapping rules,

but at least these rules lead to the same prediction. However,

while this situation might be acceptable from a predictive point

of view, it poses a problem for interpretability. For instance, if

two rules apply, which one should we choose? Should both the

rules be considered simultaneously?

• Split level (SP): a sample is considered a true positive if it fulfills

any of the rules generated from the clusters of its same split. This

is a further relaxation of the CL level.

A different way of understanding the differences between the dif-
ferent anchor metrics is by considering the question being answered
by each metric. At the CL, we are answering the question how many
samples in a particular cluster fulfil the cluster’s rule. This leads to a
score per cluster. At the CS level, we are answering the question
“how many samples in a split fulfil the cluster’s rule”. The answer
also leads to a score per cluster. At the SP level, the question being
answered is “how many samples in a split fulfil any of the rules”.
Therefore, we only get one score for the whole set of anchor rules
(see Figure 4 for an example).

If a set of anchors performs poorly on the above metrics, we
might conclude that this set is not ideal, in terms of either faithful-
ness or completeness. Computing the overlap and completeness of
the rules might result in useful information to adjust the parameters
of the pipeline. With this goal in mind, we propose a simple count-
ing measure to monitor the degree of overlap between rules. Given
two anchors, the overlap is the number of (sub-)rules that are com-
patible, i.e. they require the same amino acids in the same positions.
For anchors computed from the same split, it is acceptable to have a
high count of overlaps. This might simply mean that the rules are re-
dundant. However, high overlap is not desirable for anchors gener-
ated from different splits: if both rules apply and lead to conflicting
predictions, how should the sample be interpreted?

To monitor the degree of completeness, for each sample in a val-
idation/test set, we simply count the number of anchors that are ap-
plicable to that sample. Ideally, all samples should fulfill one and
only one anchor. If there are a high number of samples with zero ap-
plicable anchors, it would mean that the generated set of anchors is
far from completeness.

2.4.2 Anchors visualization

To facilitate interpretability, we visualize the textual anchor rules
similarly to a sequence motif (e.g. Fig. 7). Since models may take as
an input very long sequences, we further facilitate rule visualization
by allowing the split of the motif in multiple regions, e.g. the
Framework Regions (FRs) and Complementarity-Determining
Regions (CDRs) for a TCR.

3 Results

As a proof of concept, we apply our pipeline to two recently published
deep-learning models for TCR-binding prediction, TITAN (Weber
et al., 2021) and pMHC-TCR-binding prediction network (pMTnet)

Fig. 2. Cluster metrics: graphical visualization. Blue stars represent samples predicted as binding by the model we want to explain. Red crosses are samples predicted as non-

binding. The thick continuous line is the decision boundary of the model. We can identify three clusters for the binding samples, and two for the non-binding ones. As an ex-

ample, we graphically visualize the three levels of metrics applied to the non-binding anchors. The black crosses denote the medoids of the (non-binding) clusters. Dotted circles

denote the boundary decisions of the computed anchors: all the samples within the circle fulfill the anchor rule. Red rectangles highlight the true positives according to the an-

chor rules. CL metrics considers true positives the samples that fulfill the anchor rule and belong to the same cluster as the medoid used to compute the rule. CS level metrics

considers true positives all the samples that fulfill the anchor rule and belong to the same split as the medoid considered. Finally, SL metrics considers true positives all the sam-

ples that fulfill any of the anchor rules of a split and belongs to that same split

DECODE i249

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac257#supplementary-data

(Lu et al., 2021). To keep our proof of concept simple, we analyze
both models only on a single epitope: the peptide KLGGALQAK from
Cytomegalovirus. This peptide was selected for being the one with the
largest number of associated TCRs in our dataset (Section 3.2).

3.1 The models to interpret
3.1.1 TITAN

TITAN (Weber et al., 2021) is a bimodal attention-based neural net-
work that takes as input a sequence representing an epitope and a
sequence representing a TCR.

TITAN can leverage different encodings, but in our experiments,
we use a SMILES (Weininger, 1988) representation for the fixed epi-
tope and BLOSUM encodings for the TCRs. Both sequences are
padded with a special ‘<PAD>’ token so that the lengths of the in-
put sequences for TITAN are fixed to 500 for the epitope and 500
for the TCR. To help the training of the model, the actual TCR se-
quence is preceded by a ‘<START>’ token and is followed by a
‘<STOP>’ token. We specifically retrain TITAN for 50 epochs on a
dataset containing solely the selected epitope. Details about the
dataset are provided in the next section. On this dataset, TITAN
achieves an accuracy of 77%.

3.1.2 pMTnet

pMTnet (Lu et al., 2021) is a transfer learning-based model that pre-
dicts TCR -epitope binding based on an Atchley factor encoding of
the CDR3 loop of the TCR and a joint encoding of epitope and
MHC similar to the netMHCpan model. pMTnet outputs the frac-
tional rank of each TCR compared to 10 000 background receptors,
i.e. its rank divided by 10 000, which we use as a proxy for the bind-
ing probability. We load the trained model provided on Github and
interpret the predictions on our test set, where the model achieves

an accuracy of 50%. We want to highlight that our test dataset is
not well suited for a fair judgment of pMTnets performance, since it
likely contains more noise than the dataset that pMTnet was trained
to achieve high performance on and we did not retrain or finetune
pMTnet on the single -epitope prediction task.

3.2 Data
As mentioned above, we choose to focus only on the peptide
KLGGALQAK. We build our peptide-specific dataset starting from
a 10X Genomics study (10X Genomics, 2020), which identified 13
647 different TCRs binding to this peptide. Since no true negative
data exists, we create non-binding pairs by retrieving TCRs that
have not been found to bind to this peptide. We compose this ‘nega-
tive’ subset using three different sources:

• 4207 TCRs included in the VDJ database (Bagaev et al., 2020)

that bind to different targets;
• 3951 naive TCR sequences from another 10X Genomics study; and
• 5399 TCR sequences generated with the tool IGor (Marcou

et al., 2018).

For our analysis, we focus solely on TCRb chain sequences.
After processing and cleaning, we obtain a balanced dataset of 21
832 samples, which we split in a training/test set. We run the inter-
pretability analysis for both models on the same test set comprised
of 2K samples.

3.3 Clustering results
As underlying distance metric for the clustering phase, we use the
Levenshtein distance, a string metric that counts the number of amino-

Fig. 3. Comparison of clustering algorithms. Top-left shows the mean Silhouette score s for all three different clustering methods and a number of different numbers of clusters.

AgglomerativeClustering achieves high scores for all numbers of clusters, with higher scores for higher numbers of clusters and a maximum of s¼0.66 for k¼20.

OPTICS shows an optimum for k¼14 clusters with a score of s¼0.47, while K-medoids has low scores for any number of clusters. The other plots show t-SNE plots, where

samples are color-coded according to their cluster assignment. The plots were generated for the number of clusters resulting in the highest Silhouette score for each clustering

method, respectively. All clustering results are shown for the binding class

i250 I.Papadopoulou et al.

acid edits (insertions, deletions or substitutions) necessary to turn a se-
quence into another. Unfortunately, not all algorithms allow for arbi-
trary distances. Therefore, in our case study, we restrict our analysis to
K-Medoids, OPTICS and AgglomerativeClustering (Müllner,
2011). We run K-Medoids and AgglomerativeClustering with
the number of clusters varying in a range between 5 and 20. For
OPTICS, we define a range for the density parameter � that leads to a
comparable number of clusters (between 2 and 31).

Because of the same distance metric constraint as above, we are
restricted to use the Silhouette score for the quantitative assess-
ment of the cluster partitions. For qualitative analysis, we use t-
SNE. Figure 3 shows the Silhouette score for each algorithms
and different number of clusters. For each algorithm, we further
plot the t-SNE projections color-coded according to the best clus-
tering as measured by the Silhouette score, e.g. for
AgglomerativeClustering, we use the cluster labeling obtained
by setting the number of clusters to 20.

For demonstration purposes, we focus this part of the analysis
on the binding split. However, similar results are obtained for the
non-binding split (see Supplementary Section S2).

From Figure 3, we notice that the top performing clustering for
the binding split is AgglomerativeClustering with 20 clusters.
Note that clustering metrics are just a heuristic to guide the selection
of the clustering algorithm, but there is no guarantee that this will
lead to the best possible anchor explanations. This selection step is
necessary since the algorithm to compute Anchors is computation-
ally expensive, and running it for each possible clustering result may
be prohibitive.

We further note that the best OPTICS setting (� ¼ 0:5, correspond-
ing to 14 clusters) seems to be qualitatively similar to
AgglomerativeClustering with 20 clusters, as per t-SNE visual-
ization. As we mentioned above, quantitative clustering metrics may not
correlate with the final quality of anchors. Therefore, a user may decide

to select OPTICS over AgglomerativeClustering in order to com-
pute a lower number of anchor rules, and reduce the computational bur-
den. In the following, we select the results from the Agglomerative
Clustering algorithm as a basis for the explainability phase.

3.4 Anchors metrics
The pipeline runs the Anchors algorithm as provided by the alibi
package (Klaise et al., 2021) with parameters that generate more
precise rules compared to the default parameters. More precisely,
we use d ¼ 0:3; s ¼ 0:3 and a threshold of 0.9. Figure 4 shows the
metrics at the three different levels, as introduced in Section 2.4.1.

The leftmost plot in Figure 4 shows the metrics at the CL.
Overall, the non-binding anchors (blue) and binding anchors (or-
ange) seem to do a good job at identifying their own cluster (rela-
tively high-accuracy). Notable difference is the fact that,
tendentially, non-binding anchors have low precision and high re-
call, while the contrary holds true for binding anchors. Simply put,
the Anchors algorithms generate for non-binding clusters decision
rules that are less-specific for their own clusters. On the other hand,
the rules generated for binding clusters seem to be too specific to the
cluster centroid. That is, the binding anchor rules do not seem to
well represent the other samples belonging to their own cluster.

Since non-binding anchors perform reasonably well at retrieving
samples from their own cluster (high recall), a legitimate question is:
how general are the non-binding rules? That is, do non-binding
anchors recognize also non-binding samples not belonging to the
same cluster? The CS level metrics (center plot in Fig. 4) help us an-
swer these questions. Interestingly, now the non-binding anchors be-
havior is more similar to the binding ones. This means that the
validity of a non-binding rule extends solely to its cluster, and not
much further. Unsurprisingly, the specificity of the binding rules is
further exacerbated at the SL.

Fig. 4. Anchors metrics. The accuracy, precision and recall of non-binding anchors (blue) and binding anchors (orange) are shown for the anchors generated from the clusters

identified by the AgglomerativeClustering algorithm with 20 clusters. From left to right: CL metrics, CS level metrics and SP metrics for a total of 40 anchors (20 non-

binding, 20 binding). Note that for the split metrics, we are jointly considering the 20 rules for each split at the same time (resulting in one metric per split)

Fig. 5. Anchors overlap and completeness analysis. Results are reported for the test set consisting of around 2k samples. Left plot shows the overlap between anchors visualized

as a heatpmap: non-binding rules are located in top-left corner of the matrix, while binding rules in the bottom right. Color denotes the number of overlapping rules, with

brighter colors indicating a higher number of rules. While there is some overlap of anchors rules within the same data splits (i.e. the binding and non-binding partitions), there

is no overlap across splits. That means that no sample fulfills both a binding and a non-binding rule. Right plot shows completeness, i.e. a histogram depicting how many sam-

ples (y-axis) fulfill a certain number of anchors (x-axis). With the pipeline settings used for this experiment, most samples do not fulfill any anchor rule, around 300 samples

fulfill either 1 or 10 rules, and few fulfill 11 rules. Therefore, the rules obtained in this experiment are not a complete set of rules

DECODE i251

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac257#supplementary-data

The SL metrics help us understand if the rules belonging to the
same split may collectively be able to identify their own split. The
rightmost plot in Figure 4 shows that the set of rules retains similar
accuracy/precision performance to the CS level, while significantly
improving on the recall. This means that overall the Anchors algo-
rithm managed to compute explanations that are faithful to the
underlying biology, but not complete/global enough. That is, we
have gained an understanding of how the model is functioning only
for a subset of samples.

In summary, these multi-level metrics help us understand if the
explanations generated from the pipeline are faithful to the model,
and the extent of their validity/globality. They further may help us
pinpoint which steps of the pipeline may require improvement. For
example, changing the default Anchors parameters may improve
the generality of binding rules (higher recall). Further, the ability of
non-binding rules to recognize their own cluster, while not being
able to collectively recognize the non-binding split, suggests that a
different clustering algorithm/parameters setting could be used to
find better representative non-binding samples.

To have a clearer idea of how to change the pipeline settings to
improve the generated explanations, we can have a look at the rule
overlaps and the completeness/coverage of the rules. The overlaps
between anchors can be visualized as a heatmap, similarly to inter-
action matrices (left plot in Fig. 5). The completeness can be readily
visualized with a histogram (right plot in Fig. 5) counting how many
(y-axis) samples fulfill a certain number of anchors (x-axis).

The left plot in Figure 5 suggests that there is quite some overlap
between non-binding rules (top-left quadrant of the interaction ma-
trix), which together with the previous conclusions, may suggest
that a solution is to select a different clustering algorithm that better
separates the clusters. As desirable, there is no overlap between non-
binding and binding rules.

The anchor fulfillment histogram reveals that there is a consider-
ably high number of samples not covered by the anchors, in

agreement with the SL metrics. Namely, most samples do not fulfill
any anchor rule, around 300 samples fulfill 1 rule and 10 rules, and
a few samples fulfill 11 rules. The latter samples are likely to be
non-binding samples whose rules tend to be less specific. This visual-
ization confirms once again that a better clustering algorithm (or
better parameters/metrics) might be the right solution.

An ablation study (Supplementary Section S3) confirms that by
varying clustering parameters, we can trade-off precision, coverage
and completeness of the generated anchor rules.

3.5 Anchors visual analysis
While the perfomance metrics shown in the previous section are far
from ideal, this does not mean that we cannot attempt a biological
interpretation of the model. While the previous results suggest that
the explanations may not be able to give a complete overview of the
model, they do seem to provide a correct interpretation.

3.5.1 Distribution of rules in biologically significant regions

The input sequences for an underlying TCR-binding prediction
model may be too long for the user to properly interpret them.
Indeed, in our case study, the input TCR sequences are 150 (500 if
we consider the padding) characters long (Section 3.1.1). To make
the anchor analysis more user-friendly, we provide functionalities to
align samples and anchor rules, and extract various regions of inter-
est, i.e. the FRs and CDRs (Section 2.4.1). A preliminary overview
of the locations of anchor (sub)rules can be obtained by counting
how many anchor rules fall into each of the regions. For a more fair
comparison of the regions, these counts are normalized by the length
of each of the regions. Figure 6 reports these counts separately for
non-binding and binding splits. Apart from the four FRs and three
CDRs, we report counts also for rules falling in a part of the se-
quence that was not aligned to either the FRs or the CDRs (‘Other’),

Fig. 6. Histograms showing the distribution of anchor rules on the different regions of a TCR sequences normalized to the length of the region. The figure reports the number

of anchors on the four FRs, three CDRs, other regions of the sequence not aligned with either the FRs or the CDRs (‘Other’), in the padded regions (‘PAD’), and on either the

start or stop token (‘Start’/‘Stop’). Left plot: binding rules. Right plot: non-binding rules

Fig. 7. Binding anchor rule examples from TITAN (left) and pMTnet (right). Top row represents the anchor rule, while the bottom row shows the sequence logo of the whole

binding split. For TITAN, we focus on the CDR2 region, where many rules fall. pMTnet uses only the CDR3 sequence as input, so gives more specific results for this region

i252 I.Papadopoulou et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac257#supplementary-data

in the padded region of the sequence (‘PAD’), or on either the start
or stop token (‘Start’/‘Stop’).

Interestingly, both non-binding and binding rules seem to put a
similar emphasis on the CDR2 and CDR1 regions as on the CDR3.
While it is generally agreed that the CDR3 region is more directly
implicated in binding an epitope, which might lead to an expected
higher concentration of rules in this region, all CDRs are physically
involved in the binding, and therefore, it is reasonable to find rules
concentrating on the CDR2 and CDR1 region. Another interesting
result is the fact that TITAN binding rules seem to have a preference
also for the FRs. FRs have a supporting role for binding, e.g. by
increasing the surface density of TCRs, without impacting their af-
finity (Thomas et al., 2019). Rules in FRs might also indicate a pref-
erence toward certain TCR gene segments when binding our target
peptide (Davis and Bjorkman, 1988). We observe that non-binding
rules in general exhibit a far lower density of rules, a sign that they
are far less strict than the binding rules. Moreover, many non-
binding rules seem to fall in the ‘Other’ region, which may not have
any biological significance. This is somewhat expected: the non-
binding samples of our dataset (Section 3.2) are randomly sampled
from a huge and heterogeneous pool of unspecific TCRs, and there-
fore may not be characterized by any ‘non-binding pattern’. Of
course, there could be other reasons for these biased results that
should be investigated, such as TITAN picking up spurious correla-
tions in the dataset.

3.5.2 Visual interpretation of an anchor

After the preliminary analysis, a user can visually inspect the gener-
ated anchor rules, as explained in Section 2.4.1. As a demonstrative
example, in Figure 7, we show two binding rules, one from TITAN
and one from pMTnet. Each rule (top row) is compared to the se-
quence logo of the same region (bottom row), which reports the
amino-acid frequencies in the binding split. Note that DECODE does
not simply detect the most frequent amino acids, which would be a
trivial task, but instead identifies rules that explain the prediction of
TITAN and pMTnet for a particular cluster of samples. Applying
DECODE to two different models let us exploit their specific advan-
tages. TITAN uses the whole TCR variable sequence as input and can
therefore inform on preferential V or J segment use. Indeed, the an-
chor shown in Fig. 7 directly implies a use of the TRBV19 segment,
indicating that TCRs with this gene segment have a high likelihood of
binding the KLGGALQAK-A*03:01 complex we examine. This is a
non-trivial finding, as the use of TRBV19 is not higher in the
KLGGALQAK binders listed in VDJdb compared to the whole VDJ
database. While associations of TRBV segments and epitopes or
MHCs are not uncommon, this specific interaction may represent a
new biological finding. Nevertheless, experimental validation would
be needed to confirm this result. pMTnet on the other hand has only
the CDR3 region as input and therefore provides more detailed insight
into the features important in this region. The example shown in
Figure 2.4.1 is typical for the rules we observe (see Supplementary
Material for all anchors), with mainly polar amino acids across the
whole CDR3 sequence being of high importance.

4 Discussion

In this article, we introduce DECODE, an easy-to-use and customiz-
able pipeline to interpret any model for TCR-binding prediction in a
faithful and global way. Faithfulness is achieved by leveraging an
established high-precision interpretable method, Anchors.
Globality is attained by obtaining representative samples of the
dataset via clustering, and finally applying Anchors to each of
them. We demonstrate how easy it is to extract and understand the
binding rules by DECODE-ing TITAN and pMTnet, two recently
published TCR-binding prediction models.

DECODE is easy to setup thanks to a customizable json configur-
ation file that the user can modify to select the best hyperparameters
for their dataset. User-friendliness is further enabled by a range of
metrics and visualization tools to help the user in the selection of the
best clustering method and the best Anchors parameters, and in the
understanding of the (non-)binding rules.

We note that our pipeline can be applied to both good perform-
ing and poor performing models. In the former case, the higher the
performance of a model, the more likely the extracted rules will
have a biological meaning. In the latter case, if the model does not
achieve a good accuracy, DECODE may be able to highlight the
weaknesses of the model and guide future improvements.

In the future, we plan to expand the selection of clustering algo-
rithms and visualization tools and enable an interactive exploration of
the binding rules. Moreover, we aim to further improve the user-
friendliness in at least two ways: first, by further simplifying the custom-
ization of the configuration file; and, secondly, by providing a frame-
work to guide the user in the selection of the best hyperparameters [e.g.
simple grid search, or Bayesian Optimization (Hutter et al., 2011)].

We believe that our work will be able to support the immun-
ology research community in understanding the intricate mecha-
nisms underlying TCR binding, and ultimately contribute to the
development of novel and safer immunotherapies.

Funding

This work was supported by the European Union’s Horizon 2020 Research

And Innovation Programme under the Marie Sklodowska-Curie program

[Grant Agreement No. 813545] and H2020- ICT-2018-2 program [Grant

Agreement No. 826121].

Conflict of Interest: none declared.

References

10X Genomics. (2020) A New Way of Exploring Immunity-Linking Highly

Multiplexed Antigen Recognition to Immune Repertoire and Phenotype.

https://www.10xgenomics.com/resources/application-notes/a-new-way-of-

exploring-immunity-linking-highly-multiplexed-antigen-recognition-to-im

mune-repertoire-and-phenotype/.

Abadi,M. et al. (2015) TensorFlow: Large-Scale Machine Learning on

Heterogeneous Systems. https://www.tensorflow.org/.

Ancona,M. et al. (2018) Towards better understanding of gradient-based attri-

bution methods for Deep Neural Networks. In: 6th International

Conference on Learning Representations (ICLR 2018), Vancouver, Canada.

Ankerst,M. et al. (1999) OPTICS: ordering points to identify the clustering

structure. SIGMOD Rec., 28, 49–60.

Bagaev,D.V. et al. (2020) VDJdb in 2019: database extension, new analysis in-

frastructure and a T-cell receptor motif compendium. Nucleic Acids Res.,

48, D1057–D1062.

Dash,P. et al. (2017) Quantifiable predictive features define epitope-specific T

cell receptor repertoires. Nature, 547, 89–93.

Davies,D.L. and Bouldin,D.W. (1979) A cluster separation measure. IEEE

Trans. Pattern Anal. Mach. Intell., PAMI-1, 224–227.

Davis,M.M. and Bjorkman,P.J. (1988) T-cell antigen receptor genes and

T-cell recognition. Nature, 334, 395–402.

Fischer,D.S. et al. (2020) Predicting antigen specificity of single T cells based

on TCR CDR 3 regions. Mol. Syst. Biol., 16, e9416.

Fürnkranz,J. et al. (2020) On cognitive preferences and the plausibility of

rule-based models. Mach. Learn., 109, 853–898.

Gielis,S. et al. (2019) Detection of enriched T cell epitope specificity in full T

cell receptor sequence repertoires. Front. Immunol., 10, 2820.

Glanville,J. et al. (2017) Identifying specificity groups in the T cell receptor

repertoire. Nature, 547, 94–98.

Harris,C.R. et al. (2020) Array programming with NumPy. Nature, 585,

357–362.

Hutter,F. et al. (2011) Sequential model-based optimization for general algo-

rithm configuration. In: Coello,C.A.C. (ed.) Learning and Intelligent

Optimization. Springer, Berlin, Heidelberg, pp. 507–523.

Jokinen,E. et al. (2021) Predicting recognition between T cell receptors and

epitopes with TCRGP. PLoS Comput. Biol., 17, e1008814.

Klaise,J. et al. (2021) Alibi explain: algorithms for explaining machine learn-

ing models. J. Mach. Learn. Res., 22, 1–7.

Kumar,B.V. et al. (2018) Human T cell development, localization, and func-

tion throughout life. Immunity, 48, 202–213.

Laydon,D.J. et al. (2015) Estimating T-cell repertoire diversity: limitations of clas-

sical estimators and a new approach. Phil. Trans. R Soc. B, 370, 20140291.

Lu,T. et al. (2021) Deep learning-based prediction of the t cell receptor–anti-

gen binding specificity. Nat. Mach. Intell., 3, 864–875.

DECODE i253

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac257#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac257#supplementary-data
https://www.10xgenomics.com/resources/application-notes/a-new-way-of-exploring-immunity-linking-highly-multiplexed-antigen-recognition-to-immune-repertoire-and-phenotype/
https://www.10xgenomics.com/resources/application-notes/a-new-way-of-exploring-immunity-linking-highly-multiplexed-antigen-recognition-to-immune-repertoire-and-phenotype/
https://www.10xgenomics.com/resources/application-notes/a-new-way-of-exploring-immunity-linking-highly-multiplexed-antigen-recognition-to-immune-repertoire-and-phenotype/
https://www.tensorflow.org/

Lundberg,S.M. and Lee,S.-I. (2017) A unified approach to interpreting model

predictions. In: Proceedings of the 31st International Conference on Neural

Information Processing Systems. pp. 4768–4777. Curran Associates Inc.,

Red Hook, NY, USA.

Marcou,Q. et al. (2018) High-throughput immune repertoire analysis with

IGoR. Nat. Commun., 9, 561.

Moris,P. et al. (2021) Current challenges for unseen-epitope TCR interaction

prediction and a new perspective derived from image classification.

Briefings in Bioinformatics, 22(4), 1–12. https://pubmed.ncbi.nlm.nih.gov/

33346826/.

Mösch,A. et al. (2019) Machine learning for cancer immunotherapies based

on epitope recognition by T cell receptors. Front. Genet., 10, 1141.

Müllner,D. (2011) Modern Hierarchical, Agglomerative Clustering Algorithms.

https://arxiv.org/abs/1109.2378.

Neuter,N.D. et al. (2018) On the feasibility of mining CD8þ T cell receptor

patterns underlying immunogenic peptide recognition. Immunogenetics, 70,

159–168.

Park,H.S. and Jun,C.H. (2009) A simple and fast algorithm for K-medoids

clustering. Expert Syst. Appl., 36, 3336–3341.

Paszke,A. et al. (2019) Pytorch: an imperative style, high-performance deep

learning library. In: Wallach,H. et al. (eds) Advances in Neural Information

Processing Systems, Vancouver, Canada, Vol. 32. pp. 8024–8035. Curran

Associates, Inc. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-

style-high-performance-deep-learning-library.pdf.

Pedregosa,F. et al. (2011) Scikit-learn: machine learning in python. J. Mach.

Learn. Res., 12, 2825–2830.

Ribeiro,M.T. et al. (2016) “Why should I trust you?” explaining the predic-

tions of any classifier. In: Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining.

pp. 1135–1144.

Ribeiro, M.T., et al. (2018). Anchors: High-Precision Model-Agnostic

Explanations. In: Proceedings of the AAAI Conference on Artificial

Intelligence, San Francisco, California, Vol. 32.

Rousseeuw,P.J. (1987) Silhouettes: a graphical aid to the interpretation and

validation of cluster analysis. J. Comput. Appl. Math., 20, 53–65.

Roweis,S.T. and Saul,L.K. (2000) Nonlinear dimensionality reduction by lo-

cally linear embedding. Science, 290, 2323–2326.

Sidhom,J.-W. et al. (2021) DeepTCR is a deep learning framework for reveal-

ing sequence concepts within T-cell repertoires. Nat. Commun., 12, 1605.

Strehl,A. and Ghosh,J. (2003) Cluster ensembles — a knowledge reuse frame-

work for combining multiple partitions. J. Mach. Learn. Res., 3, 583–617.

Thomas,S. et al. (2019) Framework engineering to produce dominant T cell

receptors with enhanced antigen-specific function. Nat. Commun., 10, 4451.

Van Der Maaten,L. and Hinton,G. (2008) Visualizing data using t-SNE.

Technical report.

Vaswani,A. et al. (2017) Attention is all you need. In: Guyon,I. et al.

(eds) Advances in Neural Information Processing Systems, Vol. 30.

Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/file/

3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Weber,A. et al. (2021) TITAN: T -cell receptor specificity prediction with bi-

modal attention networks. Bioinformatics, 37, i237–i244.

Weininger,D. (1988) SMILES, a chemical language and information system.

1. Introduction to methodology and encoding rules. J. Chem. Inf. Model.,

28, 31–36.

Zhang,T. et al. (1996) BIRCH: an efficient data clustering method for very

large databases. SIGMOD Rec., 25, 103–114.

i254 I.Papadopoulou et al.

https://pubmed.ncbi.nlm.nih.gov/33346826/
https://pubmed.ncbi.nlm.nih.gov/33346826/
https://arxiv.org/abs/1109.2378
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

